@ JOURNAL OF ELECTRONIC TESTING: Theory and Applications 21, 651-658, 2005
— (© 2005 Springer Science + Business Media, Inc. Manufactured in The United States.

Abort-on-Fail Based Test Scheduling*

ERIK LARSSON, JULIEN POUGET AND ZEBO PENG
Embedded Systems Laboratory, Department of Computer Science, Linkopings Universitet, Sweden

erila@ida.liu.se

Received March 24, 2004; Revised August 25, 2005

Editor: K.K. Saluja

Abstract. The long and increasing test application time for modular core-based system-on-chips is a major
problem, and many approaches have been developed to deal with the problem. Different from previous approaches,
where it is assumed that all tests will be performed until completion, we consider the cases where the test process is
terminated as soon as a defect is detected. Such abort-on-fail testing is common practice in production test of chips.
We define a model to compute the expected test time for a given test schedule in an abort-on-fail environment. We
have implemented three scheduling techniques and the experimental results show a significant test time reduction
(up to 90%) when making use of an efficient test scheduling technique that takes defect probabilities into account.

Keywords: SoC testing, test scheduling, abort-on-fail, defect probability

1. Introduction

The cost of testing is highly related to the test appli-
cation time; hence test time minimization is of high
importance. In production test of modular core-based
system-on-chip (SoC), each core has its dedicated tests,
and the tests are ordered by a scheduling algorithm such
that the test application time is minimal. In high vol-
ume production testing an abort-on-fail approach, i.e.
the test sequence is aborted as soon as a fault is de-
tected, is common practice as it reduces the test appli-
cation time. With the abort-on-fail assumption, the tests
should, in order to minimize the expected test time, be
ordered such that tests with a high probability to fail are
scheduled prior to tests with a lower probability to fail.

The ordering of tests, determined by a scheduling
algorithm prior to test application, is highly impacted
by the test access mechanism (TAM). The TAM, which
is responsible for the transportation of test data, can be

*The research is partially supported by the Swedish National Pro-
gram STRINGENT.

organized in different ways. The AMBA test bus is
a TAM that makes use of the existing functional bus
and where the tests are scheduled in a sequence [2].
In TestRail [9] and the approach by Varma and Bhatia
[14] several test buses can be used. The test on each
test bus is sequential; however, as several buses can
be used, concurrent application, several buses being
active at the same time, is possible. The TAM design
impacts the scheduling alternatives and the following
alternatives can be distinguished:

e sequential scheduling,i.e. only one test at a time, and
e concurrent scheduling, where it is possible to
execute several tests concurrently.

Concurrent scheduling can, depending on TAM
design, be further divided into the cases with fixed-
width TAM and those with flexible-width TAM [6].

A scheduling algorithm arranges the scanned
elements (scan-chain, wrapper inputs and wrapper out-
puts) at each core into wrapper chains, connects the
wrapper chains to TAM wires, and determines a start
time and an end time for the testing of each core. For

652 Larsson, Pouget and Peng

test scheduling, Iyengar et al. made use of integer-
linear programming [5] and Huang et al. [3] used a bin-
packing algorithm. Both approaches minimize the test
application time, assuming that all tests will be applied
and fully executed. Koranne proposed an abort-on-fail
technique to minimize the average-completion time by
scheduling tests with short test time early [8]. However,
defect probability is not taken into account. For non
SoCs and sequential testing only, several abort-on-fail
test scheduling techniques considering the defect prob-
ability have been proposed. Huss and Gyurcsik made
use of a dynamic programming algorithm to order the
tests [4]. Milor and Sangiovanni-Vincentelli proposed
a technique for the selection and ordering of the tests
based on the dependencies between the tests [11]. For
modular SoC, where cores are equipped with wrappers,
there is usually no dependency between the testing of
different cores. In the approach proposed by Jiang and
Vinnakota the actual fault coverage is extracted from
the manufacturing line and the technique minimizes
the average completion time by ordering of the tests
based on the failure probability assuming sequential
testing [7].

In this paper we address SoC test scheduling
considering defect detection probability (the defect
probability per module can be collected from the pro-
duction line). We define models to compute the ex-
pected test time for a given test schedule and we have
performed experiments to show the efficiency of ef-
fective test scheduling taking defect probability into
account.

The rest of the paper is organized as follows. Ex-
pected test time is discussed in Section 2; in Section
2.1 for sequential test scheduling and in Section 2.2
for concurrent test scheduling. The paper is concluded
with experimental results in Section 3 and conclusions
in Section 4.

2. Expected Test Time Calculation

In this section we discuss expected test time calculation
for high volume production test of modular core-based
SoCs for the following scheduling approaches; sequen-
tial, concurrent with fixed-width TAM, and concurrent
with flexible-width TAM.

2.1. Sequential Test Scheduling

In sequential testing, all tests are scheduled in a se-
quence, one test at a time. The test application time,

core 1 core 2
wrapper wrapper
Test source . TAM : Test sink
I I1
core 3 core 4
wrapper wrapper

Fig. 1. SoC example.

when all tests are assumed to be executed until com-
pletion, is given as the sum of each test’s (core’s) test
time. The test application time for a system as in Fig. 1
with the given sequential test schedule as in Fig. 2 is
71 + 7» + 73 + 74. Given the test times for each of the
tests in Table 1, the test application time is easily com-
putedto2+4 43+ 6 =15.

When all tests have been applied, test evaluation is
performed to determine if the chip is faulty or fault-
free. Assume the chip testing with a test schedule as in
Fig. 2 with a test time of 15, and that a fault is detected
by the first test (¢; with test time (7) equals 2). In such
a scenario, 13 time units are spent on testing a faulty
chip.

However, when the abort-on-fail approach is
assumed, the testing is terminated as soon as a defect is
detected. If a test schedule is given as in Fig. 2 and the
first test detects a fault, the testing is terminated after 2
time units (the testing time of the first test).

In the case when abort-on-fail testing is not
considered, the ordering in sequential testing is of no
importance. The test application time is always the
sum of the testing time of each core. However, when

Table 1. Data for an example system.

Corei Testt; Testtime r; Pass probability p; Costt; x p;

1 n 2 0.7 14
2 n 4 0.6 2.4
3 1 3 0.9 2.7
4 4 6 0.8 48
4 ty t ty
.
‘U T S B T

Fig. 2. Sequential schedule of the example (Table 1).

abort-on-fail testing is used, the probability of passing a
test impacts the testing times. If a core has a high prob-
ability of having a fault, it should be scheduled earlier
than the testing of a core that has a low probability of
having a fault.

In order to further discuss the expected test time we
assume that given is a core-based system with n cores,
for each core i there is a test #; with a test time t; and
a probability of passing p; (i.e., the probability that
test #; will detect a defect at core i is 1 — p;). The
probabilities are assumed to be given (e.g., collected
from the production line).

For a given schedule produced by any test scheduling
algorithm, the expected test time for sequential testing
is given by:

SA(%e) () om)

+(Zfi>xnpi (D
i=1 i=1

To illustrate the expected test time computation, we
use an example with four tests (Table 1). The tests are
scheduled in a sequence as in Fig. 2. For test #;, the
partial expected test time is given by the test time 1
and the probability of success p;. Note if there is only
one test in the system, the formula above will give the
expected test time to be 2 since we assume that every
test has to be fully executed before we can determine
if the test is successful or not.

The expected test time for the completion of the
whole test schedule in Fig. 2 is given in Fig. 3.

As a comparison, for the worst schedule, where the
test with highest passing probability is scheduled first,
the order will be 1, 3, 14, 11, and the expected test time is
12.1. In the case of executing all tests until completion,
the total test time does not depend on the order, and is
T+ T +13+ 174 =15.

Abort-on-Fail Based Test Scheduling 653

2.2. Concurrent Test Scheduling

The test time for a system can be reduced by executing
several tests at the same time, concurrent testing. Con-
current testing can be divided based on TAM archi-
tecture into fixed-width TAM and flexible-width TAM.
In this section we will discuss expected test time cal-
culation for both fixed-width TAM and flexible-width
TAM.

2.2.1. Fixed-width TAM. Fig. 5 shows for the
example system (with the test data given in Table 1)
a test schedule for the fixed-width TAM architecture in
Fig. 4. Note that, in contrast to the sequential case in
Section 2.1 where only one test was executed at a time,
it is possible to apply multiple tests concurrently. The
advantage with concurrent application is that the test
application time can be reduced. The total test time for
the schedule in Fig. 5 is 9, which is 6 time units less
then the test time for the schedule in Fig. 2.

The expected test time calculation for a given test
schedule must be extended so that all concurrent tests
at any moment are considered. For the calculation,
we introduce sessions as illustrated in Fig. 5. The test
schedule (Fig. 5) consists of four sessions, Si, 2, S3,
and S4. Test session S; consists of test 71, , and t3;
S1 = {11, p, 3}, and session S, consists of test #, and
3, $» = {t2, t3}; hence a test may be included in several
sessions. We will assume that a session ends when a
test terminates. For example, session S terminates at
time point 2 when test #; terminates. The length of a
session Sy is given by /;. For instance /; = 2. Note, that
it is possible to set the length of the sessions to a fixed
time step as well in order to have a finer granularity.

We assume that the abortion of the test process can
occur at any time during the application of the tests. The
probability to reach the end of a session depends not
only on a single test, but on all tests in the session. For
instance, the probability to complete session 1 depends
on the tests in session 1 (S7): #, t, and #3. As can be

2x(1-0.7)+
(2+6)x0.7%x(1-0.6)+

TX(1-py) +

(T1+T4)Xp1><(1—p4) +

(T1+T4+T3)Xp1><p4><(1 -p3) +

(’cl+'r4+'c3+12)><p1><p4><p3><(1—p2)+

(T3 HT)XP XPpgxp3Xpr=
=82

(2+6+3)x0.7x0.6x(1-0.9)+
(24+6+3+2)%0.7x0.6x0.9%(1-0.8)+
(2+6+3+2)x 0.7x0.6x0.9x0.8

/] test t; fails

// test t; passes but t, fails

// test t; and t4 pass but t; fails

/] test t1, t4 and t5 pass but t, fails
// all tests pass.

Fig. 3. Expected test time calculation in sequential testing.

654 Larsson, Pouget and Peng

core | core 2
TAMI wrln lppcr wrapper
Test source TAND Test sink
TAM3
| |
core 3 core 4
wrupp::r wruppcr
Fig. 4. SoC example.
ATAM
ttIM3 tl
tam, n'o.
tamy no, : 1 T
1 : 1 1 >
' ! 1 112 .13 ' l4 :
Si S 8 Sy

Fig. 5. Concurrent schedule of the example in Table 1.

observed in Fig. 5, only test #; is fully completed at the
end of session 1. We have in Section 2.1 discussed the
expected test time computation when a test is run until
completion. Here, we have to define how to handle a
test #; that is not completed at the end of a session. We
assume that the probability p;; for a test #; to pass the
test vectors applied during session k (S) as:

pix = p;'" @)

If a test #; is divided into m sessions, the probability
that the whole test set is passed is equal to:

m I b I
T 5 &

[[piu=rp xp’ x-xp,

=p ' =p 3)

since:

Z%:%lekzl 4)

k=1

The formula for computing the expected test time for
a complete concurrent test schedule is given as:

S((20)- ()

i=1 j=1Vnes;

x<1— I1 pki>)+<§;n> Xﬂpi)

Vi €S;

We make use of the test schedule in Fig. 5 to illustrate
how to compute the probabilities in session S;. The
three tests in session S; are t1, t,, and t3, and for each test
we compute the probability of pass during the length
of the session in relation to the test of each test. The
session length (/) is 2, which for #; with test length
2 is: p;; = 0.7%2. For test 1, the probability p;; is
equal to p; as f; is run until completion. For test ,
with a test length of 4 the probability during session 1
is po; = 0.8%/4 =0.89, and p3; = 0.9%3 = 0.93.

The computation of the expected test time for the
given test schedule in Fig. 5 is given in Fig. 6. First we
compute the probability for each test set in each session,
as discussed in the previous paragraph for session Sj.
The probabilities pij, p21, p31 are computed to 0.7,
0.89, and 0.93, respectively. For the other sessions (S,
S2, S3)Z

pn =0.7"4=0.91.
3 = 0.9"3 =0.96.
P23 = 0.8"/% = 0.95.
pa3 = 0.95'6 =0.99.
pas = 0.95%/6 = 0.96.

Fig. 6 shows the computation of the expected test time
using Eq. (5). The expected time to have a fault at

Iix(1=p11Xp21Xp31)*
(L HD)Xp11Xp2 1 Xp31X(1—-payXp3p)t
(Al 3)Xp11Xp21XP31%P20XP32% (1-pa3Xpa3)t

(Il H) Xp1 X2 1XP31%D20XP30XP23XP43XPas=

2x(1-0.7x0.89%0.93)+
(2+1)%0.7%0.89%0.93%(1-0.91x0.96)+
(2+14+1)%0.7x0.89x0.93%0.91x0.96x (1-0.95x0.99)+
(ll+l2+l3+l4)><p1 1XD21XD31XP22XP32XP23%P 43X (1-pag)t (24+1+1+5)%0.7x0.89x0.93%0.91x0.96%0.95x0.99% //fault-session 4
(1-0.96)H(2+1+145)x0.7x0.8x0.9x0.95

//fault-session 1
//fault-session 2
//fault-session 3

//fault-free chip
=5.66. //expected test time

Fig. 6. Expected test time calculation in concurrent testing.

core | \ Icnrc 2 ‘
I\L\l’ wr:t:ppcr wmlppn:r
Test source | : = i Test sink
i * 1 11
core 3 ‘ core 4 |
wrapper wrapper

Fig. 7. SoC example.

A S A
= L

0
-

Fig. 8. SoC test schedule for the ex-
ample Table 1.

the end of each session is computed as well as the
expected time that all tests pass. The expected test time
for this example is 5.66. As a comparison, if all tests
are assumed to be executed until completion, the total
test time will be 9.

2.2.2. Flexible-width TAM. A flexible-width TAM
architecture with TAM bandwidth |W| 4 for the same
example design is shown in Fig. 7. The cores are as-
signed to one or more of the four TAM wires in W={w,
wy, w3, Wy}, A test schedule is given in Fig. 8. Note
that the concept of buses is not used here. Instead the
TAM width is seen as a set of wires where each wire
can be assigned to any core. The constraint is that con-
current testing on a wire is not allowed. For instance,
the testing of core 1 and core 2 cannot be performed
concurrently due to the sharing of TAM wire ws.

The test application time when abort-on-fail testing
is not used is given by the time the TAM wire that is
used the most. In the example in Fig. 8 it is wire w;.

The expected test time can be computed with the
same approach as for fixed-width TAM in Section 2.2.1.

3. Experimental Results

The objective with the experiments is to demonstrate
that by taking the defect probability into account and
allowing abort-on-fail testing, the test time will be

Abort-on-Fail Based Test Scheduling 655

Table 2. Pass probabilities (%) for design d695, p22810
and p93791.

Design
Core d69s p22810 p93791
1 98 98 99
2 99 98 99
3 95 97 97
4 92 93 90
5 99 91 91
6 94 92 92
7 90 99 98
8 92 96 96
9 98 96 91
10 94 95 94
11 93 93
12 91 91
13 92 91
14 93 90
15 99 99
16 99 98
17 99 97
18 95 99
19 96 99
20 97 99
21 93 90
22 99 99
23 96 90
24 98 98
25 99 92
26 92 96
27 91 95
28 91 91
29 93 90
30 94 96

reduced, and that the expected test time can be fur-
ther reduced by taking both defect probability and test
scheduling strategy into consideration.

We have compared three scheduling approaches:

e sequential testing where the tests are ordered and
executed one at a time in a sequence,

e fixed test time where the test time for each core is
assigned to a fixed test time prior to scheduling (for
details see [13]), and

656 Larsson, Pouget and Peng

Table 3. Experimental results. Test time (Ty(;|q))—technique x (x = 1,2, 3), n = no abort-on-fail, a = abort-on-fail.

Technique 1—sequential testing

Technique 2—fixed test time

Technique 3—flexible test time

Improvement Improvement Improvement ~ Comparision
TAM (Ti,n — T1,a) (2,0 — T2,0) (30 — 13.a) (Tin — T3,a/T1n)
Design = width 71, TlLa /T1n (%) T2, .4 /T2.n (%) T, Ba /T30 (%) (%)
de9s 128 36158 31113 13.9 13348 10884 18.5 13348 9468 29.1 73.8
96 36232 31158 14.0 19932 14716 26.2 17257 11712 32.1 67.7
80 36232 31158 14.0 19932 14881 253 18691 14509 224 59.9
64 45798 40586 11.4 32857 25483 224 20512 16652 18.8 63.6
48 45972 40692 11.5 33031 27388 17.1 29106 23983 17.6 47.8
32 78077 70411 9.8 65136 50998 21.7 41847 33205 20.6 57.5
Average 12.4 21.9 23.4 61.7
p22810 128 503088 423852 15.7 142360 72628 49.0 128332 50484 60.7 89.9
96 503534 423852 15.8 215339 93921 56.4 159994 59177 63.0 88.2
80 503635 423993 15.8 223463 122641 45.1 195733 71995 63.2 85.7
64 531631 443459 16.6 294046 141999 51.7 236186 92218 61.0 82.6
48 619537 510795 17.6 418226 213995 48.8 352834 121865 65.5 80.3
32 664665 535586 19.4 574120 355646 38.1 473418 160237 66.1 75.9
Average 16.7 48.2 63.2 83.8
p93791 128 639827 491279 23.1 618150 431628 30.2 457862 124278 72.9 80.6
96 672119 524537 22.0 650402 488083 25.0 639217 192940 69.8 71.3
80 1174475 942900 19.7 1155800 852477 24.2 787588 197393 74.9 832
64 1240170 983943 20.7 1221495 922505 24.5 945425 270979 713 78.1
48 1377123 1072900 22.1 1358448 1003672 26.1 1220469 360045 70.5 73.9
32 2432511 1941982 20.2 2432511 1941892 20.2 1827819 682101 62.7 72.0
Average 21.3 25.0 70.4 76.6

o flexible test time where the testing time versus the
number of used TAM wires for each core is flexible
(for details see [12]).

We have modified the algorithms such that it is pos-
sible to set the sorting cost function to consider or
not consider defect-probabilities. For each of the three
scheduling techniques, we have compared the test time
when not taking defect probability into account with
taking defect probability into account at various TAM
widths. We have used the three ITC’02 designs [10]
d695, p22810 and p93791 and for all experiments we
have used an AMD 1800 machine (1.53 GHz, 512
MB RAM). The computational cost is usually a few
seconds, and it never exceeds 15 seconds. The test-
passing probability for each core is collected in Table 2,
and the experimental results are collected in Table 3.

80000 T T T T

T T T T T
Scheduling technique 1 - no abort-on-fail ——
Scheduling technique 1 - abort-on-fail —X—
Scheduling technique 2 - no abort-on-fail —¥—
Scheduling technique 2 - abort-on-fail —B— -
Scheduling technique 3 - no abort-on-fail ——
Scheduling technique 3 - abort-on-fail —&—

60000 4

70000 -

50000

40000

30000

20000

10000

30 40 50 60 70 80 90 100 110 120 130
TAM width

Fig. 9. Results on d695.

The results are also plotted in Fig. 9 (d695), Fig. 10
(p22810) and Fig. 11 (p93971).

The experimental results show that by taking the
defect probability into account, the test time can be

700000 T T T T T T
 technique 1 - no abort-on-fail

heduling technique 1 - abort-on-fall —x—
Schedullng technique 2 - no abort-on-fail —¥—
800000 L duling technique 2 - abort-on-fail —B—

Schedullng technique 3 - no abort-on-fail —li— 7
Scheduling technique 3 - abort-on-fail —&—

500000

400000 |-
300000 |-

200000 |-

100000 _\e\e\&\s_\q_

30 40 50 60 70 80 90 100 110 120 130
TAM width

Fig. 10. Results on p22810.

2.5e+06 T T T T T T T T
Scheduling technigue 1 - no abort-on-fail —4—
Scheduling technique 1 - abort-on-fail —>—
Scheduling technique 2 - no abort-on-fail —¥—
Scheduling technique 2 - abort-on-fail —E—
Scheduling technigue 3 - no abort-on-fail —l—
2e+06 | Scheduling technique 3 - abort-on-fail —6— _|

1.5e+06

1e+06

500000

30 40 50 60 70 80 90 100 110 120 130
TAM width

Fig. 11. Results on p93971.

significantly reduced. For instance, the test time is on
average reduced for the sequential testing technique,
by 12.4% for d695, 16.7% for p22810, and 21.3% for
p93971, and, for the flexible testing technique reduced
by 23.4% for d695, 63.2% for p22810, and 70.4% for
p93971.

The results also show that significant reduction in test
time can be achieved by considering both defect proba-
bilities and test scheduling strategy. The test times pro-
duced by the sequential testing technique when defect
probability is not considered with the results produced
by the flexible testing time technique when defect prob-
ability is taken into account show that the testing times
are reduced on average by 61.7% for d695, 83.8% for
p22810, and 76.6% for p93791.

4. Conclusions

A major problem in testing modular core-based SoCs
is the long test application times. In this paper we have

Abort-on-Fail Based Test Scheduling 657

discussed test scheduling techniques for SoC that take
the defect probability of each test into account in the
scheduling process, assuming an abort-on-fail test en-
vironment. The advantage with our approach is that by
considering defect probabilities during the test schedul-
ing process, the expected test time can be minimized,
which is important in large volume production of SoC
where the testing process is terminated as soon as a
defect is detected. We have defined models to compute
the expected test time for a varity of TAM architec-
tures and scheduling approaches. We have performed
experiments on three scheduling approaches and three
benchmarks where we show a significant test time re-
duction (up to 90%) by taking both defect-probability
into account in test scheduling and making use of an
efficient test scheduling approach.

References

1. M.L. Flottes, J. Pouget, and B.Rouzeyre, “Sessionless Test
Scheme: Power-constrained Test Scheduling for System-on-a-
Chip,” Proceedings of the 11th IFIP on VLSI-SoC, Montpellier,
2001, pp. 105-110.

2. P. Harrod, “Testing reusable IP-a case study,” in Proceedings
of International Test Conference (ITC), Atlantic City, NJ, USA,
1999, pp. 493-498.

3. Y. Huang, W.-T. Cheng, C.-C. Tsai, N. Mukherjee, O. Samman,
Y. Zaidan, and S.M. Reddy, “Resource Allocation and Test
Scheduling for Concurrent Test of Core-based SOC Design,”
in Proceedings of IEEE Asian Test Symposium (ATS), Kyoto,
Japan, 2001, pp. 265-270.

4. S.D. Huss and R.S. Gyurcsik, “Optimal Ordering of Analog
Integrated Circuit Tests to Minimize Test Time,” in Proceedings
of the ACM/IEEE Design Automation Conference (DAC), 1991,
pp. 494-499.

5. V.lyengar, and K. Chakrabarty, and E.J. Marinissen, “Test Wrap-
per and Test Access Mechanism Co-Optimization for System-
On-Chip,” in Proceedings of International Test Conference
(ITC), Baltimore, MD, USA, 2001, pp. 1023-1032.

6. V. Iyengar, K. Chakrabarty, and E.J. Marinissen, “Test Access
Mechanism Optimization, Test Scheduling, and Tester Data Vol-
ume Reduction for System-on-Chip,” Transactions on Comput-
ers, vol. 52, no. 12, pp. 1619-1632, 2003.

7. WJ. Jiang and B. Vinnakota, “Defect-Oriented Test Schedul-
ing,” IEEE Transactions on Very-Large Scale Integration (VLSI)
Systems, vol. 9, no. 3, pp. 427-438, 2001.

8. S.Koranne, “On Test Scheduling for Core-Based SOCs,” in Pro-
ceedings of the IEEE International Conference on VLSI Design
(VLSID), Bangalore, India, January 2002, pp. 505-510.

9. E.J. Marinissen, R. Arendsen, G. Bos, H. Dingemanse, M.
Lousberg, and C. Wouters, “A Structured and Scalable Mech-
anism for Test Access to Embedded Reusable Cores,” in Pro-
ceedings of International Test Conference (ITC), Washington,
DC, USA, 1998, pp. 284-293.

10. EJ. Marinissen, V. Iyengar, and K. Chakrabarty, “A Set of
Benchmarks for Modular Testing of SOCs,” in Proceedings

658

12.

Larsson, Pouget and Peng

of International Test Conference (ITC), Baltimore, MD, USA,
2002, pp. 519-528.

. L. Milor and A.L. Sangiovanni-Vincentelli, “Minimizing Pro-

duction Test Time to Detect Faults in Analog Circuits,” /[EEE
Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 13, no. 6, pp. 796—, 1994.

J. Pouget, E. Larsson, and Z. Peng, “SOC Test Time Minimiza-
tion Under Multiple Constraints,” in Proceedings of Asian Test
Symposium (ATS), Xian, China, 2003.

13.

14.

J. Pouget, E. Larsson, Z. Peng, M.L. Flottes, and B. Rouzeyre,
“An Efficient Approach to SoC Wrapper Design, TAM Config-
uration and Test Scheduling,” Formal Proceedings of European
Test Workshop 2003 (ETW ’03), Maastricht, The Netherlands,
2003, pp. 51-56.

P. Varma and S. Bhatia, “A Structured Test Re-Use Methodology
for Core-based System Chips,” in Proceedings of International
Test Conference (ITC), Washington, DC, USA, 1998, pp. 294—
302.

