
An Architecture for Combined Test Data Compression and Abort-on-Fail Test

Erik Larsson and Jon Persson

Embedded Systems Laboratory

Department of Computer and Information Science

Linköpings Universitet, Sweden

Abstract1

The low throughput at IC (Integrated Circuit) test-
ing is mainly due to the increasing test data volume,
which leads to high ATE (Automatic Test Equipment)
memory requirements and long test application times.
In contrast to previous approaches that address ei-
ther test data compression or abort-on-fail testing, we
propose an architecture for combined test data com-
pression and abort-on-fail testing. The architecture
improves throughput through multi-site testing as the
ATE memory requirement is constant and independent
of the degree of multi-site testing. For flexibility in
modifying the test data at any time, we make use of a
test program for decompression; only test independent
evaluation logic is added to the IC. Major advantages
compared to MISR (Multiple-Input Signature Register)
based schemes are that our scheme (1) allows abort-
on-fail testing at clock-cycle granularity, (2) does not
impact diagnostic capabilities, and (3) needs no special
care for the handling of unknowns (X).

1 Introduction

The technology development makes it possible to
manufacture Integrated Circuits (ICs) where transis-
tor count, transistors per area unit, wiring layers, die
size, clock rate and power consumption increase while
feature size and voltage decrease. The complex man-
ufacturing leads to low throughput mainly due to the
high test data volume needed to ensure fault-free ICs.

The high test data volume leads to long test appli-
cation times and high ATE (Automatic Test Equip-
ment) memory requirements. Multi-site testing, sev-
eral devices are tested in parallel, increases throughput
but also ATE memory requirement.

Test scheduling based on abort-on-fail testing, the
testing is terminated as soon as a fault is detected,
lower the test application times. Larsson et al. defined
an abort-on-fail scheduling technique where defect
probabilities for the testable units are taken into ac-

1The research is partially supported by the Swedish STRIN-

GENT project.

count when ordering the tests such that the expected
test time is minimized [1]. Ingelsson et al. showed that
by using abort-on-fail at finer granularity, the savings
in test time becomes significant [2].

Test data compression is useful to address the high
test data volume. Several approaches have been pro-
posed. For example, Chandra and Chakrabarty use
FDR (Frequency-Directed Run-Length) code [3] and
Gonciari and Al-Hashimi [4] use Huffman-coding. Bal-
akrishnan and Touba [5] use matrix operations, and
Jas and Touba [6] use an embedded processor for de-
compression.

These compression schemes make use of MISRs
(Multiple-Input Signature Registers) for test response
compression (compaction). There are disadvantages
with MISRs. First, the usage of time saving abort-
on-fail testing is limited as the test result is known
only at the end of the testing when the signature is
produced. Second, diagnostic capabilities are reduced
as it is difficult to determine where the fault is in the
DUT (device under test) based on a faulty signature.
And finally, when the unspecified bits in the test stim-
uli are defined, the expected test responses are defined
after simulation. Unfortunately, simulation cannot al-
ways determine all bits in the test responses to 0 or
1. In these cases the responses are simply unknown
(X). A fault-free design may produce a 0 or 1 at such
an X-position where both are correct; however, it cor-
rupts the signature in the MISR. Several masking ap-
proaches have been proposed; however they become
test dependent and cannot guarantee masking all Xs.

In order to address these problems, we propose
a MISR-free test compression scheme that supports
abort-on-fail testing with termination at clock-cycle
granularity and has good diagnostic capabilities. We
propose a novel approach to test response compres-
sion and make use of a processor, placed on-chip or at
the ATE loadboard. The processor receives the com-
pressed test data volume from the ATE, decompresses
and applies it to the DUT. The test evaluation is per-
formed on-chip by added test independent logic.

1-4244-0630-7/07/$20.00 ©2007 IEEE.

7C-3

726

SC1 SC2 SC3

SCi: scan chain i
ERj : expected test responses from stimuli j
TSj : test stimuli for vector j
l(SCi): length of scan chain i

l(SC1)��

TS1: 1x1x0xxx1 xx1x0x0x1 10x0x1x0x

ER1: xx10x10x1 0xx0x10xx x0x0x1x0x

TS2: x0x0x10x1 x01x0x0xx 1x10x1xx1

ER2: 1x1x0x0xx 0x1x01x0x 1x10x1x0x
...

...
...

...
TSn: xx1xxx0x1 0x1xx1x0x x0x0x1x0x

ERn: xx10x1x0x 00xx0100x x0x00xx0x

Figure 1: Scan chains and their test data.

A major advantage with the proposed architecture
is that the ATE memory requirement is constant re-
gardless of the degree of multi-site testing. Further, it
is straight forward to modify (increase/decrease) the
tests as the added evaluation logic is test independent
and decompression is performed by a test program
running on a processor. The possibility to modify
tests is important as the development of tests ranges
through stages as rapid silicon prototyping, first sil-
icon, volume production, and in-field test. Unavoid-
able re-spins, introduction of new technologies as well
as moving the production to a new site makes it im-
portant to have the possibility to modify the tests.

In order to verify the architecture, we have imple-
mented the facsimile compression algorithm and made
experiments on ISCAS designs and an industrial de-
sign. The test data volume for the industrial design
with 87% unspecified bits was compressed 69%. The
test decompression program is only 88 bytes in size;
hence when test is to start, low loading time is needed.

The paper is organized as follows. The prior ar-
chitecures are outlined in Section 2 and the proposed
architecture is described in Section 3. The results are
in Section 4 and conclusions are in Section 5.

2 Prior Test Architectures
For illustration we use an IC with three scan chains

where the number of scan-chains and their length
along with test data are given, see Figure 1. The
test data volume, test stimuli (TS) and expected test
responses (ER), contains specified bits (0 and 1) and
unspecified bits (x).

2.1 Architecture without Compression

Figure 2 shows a typical setup when compression
is not used. Prior to test application, the test data
volume, TS and ER, is arranged in the ATE to cor-
respond to the scan chain configuration in the DUT.
Figure 3 shows the arrangment of TS1 (the first test
stimulus) in the ATE for the DUT in Figure 2.

TS: test stimuli
PR: produced responses
ER: expected responses

DUTATE

memory depth��

Scan Chain 1

Scan Chain 2

Scan Chain 3

TS

PR

ER

TS

Figure 2: A DUT at test application.

At test application, TS are fed to the DUT and
the PR (produced test responses) are sent to the ATE
to be compared with ER. The comparison between
PR and ER can be done at clock cycle granularity as
PR are produced each clock cycle but at the capture
cycles. Hence, the setup is suitable for abort-on-fail
testing as it is possible to terminate the testing at
clock-cycle granularity. Further, the setup is suitable
for diagnosis. In the case of a fault, it is possible to
determine where in the DUT the fault is.

Figure 2 shows single-site testing; a single DUT is
tested at a time. In order to increase the throughput,
several DUTs can be tested concurrently. However,
the ATE memory requirement will then increase. If TS
and ER are duplicated for each n degree of multi-site
test, the memory requirement will be n× (TS + ER).
If TS is broadcasted to n devices, the ATE memory
requirement is TS+n×ER. The memory requirement
increases linearly with the degree of multi-site test (n).

2.2 Architecture with Compression

The common approach to test data compression is
to fill the high number of unspecified bits (x) in the
TS such that high compression ratio is reached. Once
the unspecified bits in the TS are defined, the unspeci-
fied bits in ER are determined through simulation and
then the on-chip response compressor, the MISR, can
be designed for the defined ER.

At test application, the added decompression hard-
ware receives CTS (compressed test stimuli) from the
ATE and produces DTS (decompressed test stimuli),
which are fed to the DUT. PR are compressed into a
MISR. At the end of the testing, the MISR signature
is shifted out and compared to the expected signature
stored in the ATE.

Disadvantages are that test result is only known at
the end of the testing, when the signature is produced;
hence the usage of time saving abort-on-fail testing is
limited. Further, the diagnostic capabilities are lim-

7C-3

727

SC1 SC2 SC3

SCi: scan chain i
TSj : test stimuli for vector j
TSpart(ij): test stimuli partition for vector j of scan chain i

TS1: 1x1x0xxx1 xx1x0x0x1 10x0x1x0x

ATE

1x1x0xxx1

xx1x0x0x1

10x0x1x0x

. . .

. . .

. . .

SC1

SC2

SC3

�
��

�
�

���

�
�

�
�

�
���

TSpart11 TSpart12 TSpart13

Figure 3: ATE arrangement for test stimuli TS1.

ited as it is; in case of a faulty signature, difficult to
determine the fault location and which TS detected
the fault. And finally, if an unknown (X) is produced;
it might corrupt the MISR signature. Additional logic
can be added; however, only a limited number of Xs
can be handled.

3 Proposed Test Architecture

The proposed architecture allows, in contrast to
prior architectures, integrated test data compression
and abort-on-fail testing. It handles any number of
Xs, does not limit diagnosis, and has a constant ATE
memory requirement that is independent on the de-
gree of multi-site testing.

3.1 Test Preparations

The preparation prior to application is outlined in
Figure 4 using the example in Figure 1. First the test
data, TS and ER, are arranged for the ATE to fit the
scan-chains (Figure 4(a)). The unspecified bits in TS
are filled to result in high compression (Figure 4(b)).
The way we handle TS is similar to previous compres-
sion schemes.

Different from previous approaches is our handling
of ER. Instead of compressing PR on-chip, we com-
press ER and store it off-chip in the ATE. In order to
find a scheme that allows arbitrary filling of the bits
in ER, we introduce a mask (M), see Figure 4 (b).

We explain M. For each bit in ER there is a corre-
sponding bit in M (Figure 4 (b)). Initially all bits in
M are set to 0. For any specified bit (0 or 1) in ER,
the corresponding bit in M is set to 1.

Finally, TS, ER and M are compressed into CTS
(compressed test stimuli), CER (compressed expected
test responses), and CM (compressed mask). CTS,
CER and CM are all stored in the ATE (Figure 4(c)).

3.2 Test Application

The scheme at test application is outlined in Fig-
ure 5. Given is an ATE where CTS, CER, and CM
are stored. At test application, CTS, CER, and CM

TS
1x1x0xxx1
xx1x0x0x1
10x0x1x0x

. . .

. . .

. . .

ER
xx10x10x1
0xx0x10xx
x0x0x1x0x

. . .

. . .

. . .

(a)

		

����

TS
101001001
101001001
101001001

. . .

. . .

. . .

ER
001011011
001011011
001011001

. . .

. . .

. . .

M
001101101
100101100
010101010

. . .

. . .

. . .

(b)

���

�

�

ATE

CTS

CER

CM

(c)

Figure 4: Test data handling: (a) arranging test
data for ATE, (b) unspecified bit filling, mask

definition, and (c) compressed test data in ATE.

CTS: compressed test stimuli
CER: compressed expected responses
CM: compressed mask
DTS: decompressed test stimuli
DER: decompressed expected responses
DM: decompressed mask

PR: produced responses
EL: evaluation logic

ATE

CTS
CER
CM

�
�
� CPU

EL

DTS �
DER�
DM �
S�

DUTPR�

Figure 5: Illustration of the scheme at test
application where the DUT is as in Figure 2.

are sent and decompressed by a test program running
on a processor.

The processor is an on-chip processor or a proces-
sor placed on the ATE loadboard. The processor is
used for decompression and must be tested prior to
testing the DUT. In the case of an on-chip processor
it is tested first, and in the case of a processor on the
loadboard it is tested once for the batch of DUTs (all
dies) that are to be tested.

The test program takes CTS, CER, and CM as in-
puts and produces DTS (decompressed test stimuli),
DER (decompressed expected responses) and DM (de-
compressed mask). The DTS are sent and applied to
the DUT and the PR (produced responses) are re-
ceived by added EL (evaluation logic). The EL hard-
ware receives as input the PR, DER and DM and
produces a signature (S) that indicates if a fault is
detected or not (0 if fault-free, 1 if fault). In the fault-
free case, the test process proceeds; however, in the
case of a detected fault, the testing can be aborted,
and if desirable, the response bits can be shifted out
for diagnostics.

The test evaluation logic (EL) in Figure 5 is detailed
in Figure 6. For each produced test response bit, PRi,
the corresponding decompressed mask bit DMi, and

7C-3

728

DERn: decompressed expected response bit n
PRn: produced response bit n
Rn: result at bit n
Sn: signature after bit n
DMn: decompressed mask bit n
s/c: scan-shift/capture selector

DER1 PR1

MUX
DM1

XOR
R1/S1

’0’

s/c
SFF

DER2 PR2

MUX
DM2

XOR

R2

s/c
SFF

OR
S2

DERn PRn

MUX
DMn

XOR

Rn

Sn−1

s/c
SFF

scan out

OR
Sn

� � �

� � �

� � �

Figure 6: The test evaluation logic.

decompressed expected response bit DERi defines a
result bit Ri. Ri is stored in an added scan flip-flop
and Si is used to produce the signature.

Table 1 contains the truth table for the evaluation
of a response bit where the comments are:

A: DMi= 0 and PR is masked

B: PR=ER - no fault

C: PR �= ER - a fault is detected

At each clock cycle the n evaluation bits are com-
bined by or-operation into a single bit signature that
indicates pass or fail. In our example with three scan
chains there are three bits produced each clock cycle.
Assume at a given clock cycle the PR corresponding to
the initial ER ”x1x” are ”010”. The initial ER is filled
such that when decompressed it is ”110”. Even though
ER ”110”and PR ”010”are different, the mask, which
for ER ”x1x” is ”010” will ensure that only the mid-
dle bit is used for test evaluation, and as the middles
bits in expected responses and produced responses are
equal there is no fault. The mask will ensure that only
specified bits in ER are compared with PR.

In the case of a fault, it is possible to terminate
the testing (abort-on-fail) at clock-cycle granularity
or terminate the testing for diagnosis.

In the case of diagnosis, the position of a fault is
stored in the added scan flip-flops, and by shifting out
the response bits stored in EL, it is possible to identify
at which scan-chain the fault appeared.

Note, as the mask is used to identify the initially
specified bits in ER the problem with X-handling; the
simulation cannot define if an output should be 0 or
1, is solved. Only specified bits in the ER are used
for test evaluation as the evaluation logic masks away
unspecified bits using the mask data.

The overhead is for each bit an added MUX, an
XOR, an OR (but for the first bit) and a scan flip-

flop (SFF). If n bits are produced as test responses, n

MUXes, n XORs, n − 1 ORs and n SFFs are needed.
The hardware cost is linear to n (number of produced
response bits per clock cycle). Note, that the EL is
test independent; hence the order of tests and the tests
themselves can be modified at any time.

Finally, as test evaluation is performed on-chip, the
test data stored in the ATE, CTR, CER, and CM, can
be broadcasted to n parallel DUTs; hence the mem-
ory requirement is constant in the case of multi-site
testing.

DERi PRi DMi Si Comment

- - 0 0 Comment A

0 0 1 0 Comment B

1 1 1 0 Comment B

0 1 1 1 Comment C

1 0 1 1 Comment C

Table 1: Truth table for DERi (decompressed
expected response), PRi (produced response), and

DMi (decompressed mask) at TAM wire i.

4 Experimental Results
The objectives with the experiments are (1) show

that our scheme produces similar compression ratio
as previous approaches on stimuli compression, (2)
demonstrate that good compression can be achieved
when stimuli, expected responses including the mask
are compressed, and (3) illustrate ATE memory sav-
ings with the proposed scheme at multi-site test.

For the experiments, we have made use of the IS-
CAS circuits and one industrial design. The efficiency
of data compression is computed as:

Compression (%) = Original Bits - Compressed Bits
Original Bits × 100.

The proposed scheme assumes a test program (soft-
ware) for decompression. We have in this paper made
use of facsimile compression algorithm (facsimile cod-
ing standard is the ITU-T Group 3 standard) [8]. The
basic idea is that a line on a printed paper is similar
to the line just above and therefore only the difference
is sent. A dot on the paper is coded to be either white
or black, also known as Bi-Level images.

We made an analysis on the test data to find the
most suitable coding words as the codewords in the
facsimile standard are based on paper copies charac-
teristics. Further, as the order in which the test vec-
tors are applied does not impact the test result, we
order the test data volume to achieve better compres-
sion. The size of the decompression program is 88 as-
sembly instructions only. First, we compare test stim-

7C-3

729

Circuit FDR [3] Matrix [5] Linear [7] Prop. Scheme

Comp. bits % Comp. Comp. bits % Comp. Comp. bits % Comp. Comp. bits % Comp.

s13207 30880 81.30 33470 79.99 9920 94.44 25204 84.68

s15850 26000 66.22 23552 67.88 11168 87.65 19832 66.54

s38417 93466 43.26 69556 56.00 30432 82.58 66428 54.11

s38584 77812 60.91 66838 65.15 30208 84.25 72103 56.80

s5378 12346 48.02 10390 59.20 5696 81.39 11005 48.57

s9234 22152 43.59 16888 53.49 9280 74.27 14209 48.17

Table 2: Comparing test stimuli compression.

Circuit Size (bits) Stimuli only Size (bits) Responses only

(stimuli only) Comp. bits % Comp. (responses only) Comp. bits % Comp.

s838 5092 2218 56.44 2584 789 69.47

s9234 27417 14209 48.17 27750 12815 53.82

s38584 166896 72103 56.80 166896 72095 56.80

s13207 164500 25204 84.68 185650 28936 84.41

s15850 59267 19832 66.54 66348 23676 64.32

s5378 21400 11005 48.57 22800 10860 52.37

s35932 21156 3502 83.45 24576 3553 85.55

s38417 144768 66428 54.11 151554 71640 52.73

Table 3: Separate test stimuli compression and expected test responses compression.

Circuit Original test data volume Compressed test data volume Compression ratio

(stimuli and expected responses) (stimuli, expected responses, and mask) (%)

(bits) (bits)

s838 7676 3979 48.16

s9234 55167 40754 26.13

s38584 333792 238922 28.42

s13207 350150 117236 65.52

s15850 125615 72680 42.14

s5378 44200 36556 17.29

s35932 45732 10434 77.18

Industrial design 14056068 4398738 68.71

Table 4: Combined compression of test stimuli and test responses.

uli compression to demonstrate that facsimile com-
pression produces compression ratio similar as previ-
ously proposed compression techniques. We compare
against the methods by Chandra and Chakrabarty [3],
Balakrishnan and Touba [5] and Balakrishnan and
Touba [7]. The results collected in Table 2 show that
facsimile produces results in similar range as previous
approaches.

Second, we compared the compression ratio of test
stimuli compression and expected test response com-
pression. The objective is to demonstrate that simi-
lar compression ratio can be achieved for compression
of expected test responses as for compression of test

stimuli. We made experiments where stimuli as well
as responses are compressed separately and the result
can be found in Table 3. Column two gives the orig-
inal size of the test set, column three and four gives
the compressed size and the percentage. Column five
through seven shows the same for the responses. The
results confirm that compression of expected test res-
ponses reaches similar compression ratio as test stimuli
compression.

Third, we demonstrate the proposed scheme where
the test stimuli, expected test responses and the mask
are compressed. The results are collected in Table 4.
The second column shows the original test data vol-

7C-3

730

ume (test stimuli and test responses). For each design
the compressed data size and the compression ratio
(percentage) in relation to the initial test data vol-
ume are shown. Note that original test data volume
includes only the original test stimuli and expected
test responses, and not the mask data, while the com-
pressed test data includes test stimuli, test responses,
and mask data.

Fourth, we show the ATE memory requirement at
n-degree multi-site test. We compare (1) a standard
approach that duplicates TS and ER based on the de-
gree (n) of multi-site test, (2) a broadcast approach
that duplicates ER only, and (3) the proposed ap-
proach. From Figure 7 the memory saving becomes
clear using the proposed approach has it has constant
ATE memory requirement independent of the degree
of multi-site test.

 0

 5

 10

 15

 20

 1 2 3 4 5 6 7 8 9 10

A
T

E
 m

em
or

y
re

qu
ire

m
en

t (
re

la
tiv

e
to

 s
in

gl
e-

si
te

 te
st

)

Degree of multi-site testing (n)

(3) n*(TS+ER)

(2) TS+n*ER

(1) TS+ER+M

Figure 7: Relative ATE memory requirement at
multi-site (n) for the approaches (1) proposed, (2)

stimuli broadcast, and (3) standard.

5 Conclusions

Low throughput when testing Integrated Circuits
(ICs) is a problem mainly due to the increasing test
data volume. High test data volume leads to long test
times and high ATE memory requirements. Multi-site
testing can increase throughput; however, ATE mem-
ory requirement increases. The long test application
times can efficiently be addressed by making use of
abort-on-fail testing; the testing is terminated as soon
as a fault is detected. The high test data volume can
be addressed by test data compression; however, com-
pression techniques prohibit the usage of time saving
abort-on-fail testing.

The paper proposes an architecture that allows test
data compression and abort-on-fail testing. We make

use of a novel way to handle test responses. The com-
pressed test data volume is stored on the ATE and
fed to a test program that decompress test data and
feds the device under test. Added test independent
evaluation logic determines at clock cycle granularity
the result. Advantages are that the technique does
not limit diagnosis, handles any number of unknowns
(X-tolerance), and needs constant ATE memory; in-
dependent of the degree of multi-site testing.

The experiments on ISCAS designs and one in-
dustrial results show that the proposed scheme per-
forms well compared to previous compression schemes
in terms of compression ratio.

References
[1] E. Larsson, J. Pouget, and Z. Peng, “Defect-Aware

SOC Test Scheduling,” in VLSI Test Symposium, 2004,
pp. 359–364.

[2] U. Ingelsson, S. Goel, E. Larsson, and E. J. Marinissen,
“Test Scheduling for Modular SOCs in an Abort-on-
Fail Environment,” in European Test Symposium, 2005,
pp. 8–13.

[3] A. Chandra and K. Chakrabarty, “Test Data Compres-
sion and Test Resource Partitioning for System-on-
a-Chip Using Frequency-Directed Run-Length (FDR)
Codes,” Transactions on Computers, vol. 52, no. 8, pp.
1076–1088, Aug 2003.

[4] P. T. Gonciari, B. M. Al-Hashimi, and N. Nicolici, “Im-
proving Compression Ratio, Area Overhead, and Test
Application Time for System-on-a-Chip Test Data
Compression/Decompression,” in Design, Automation
and Test in Europe, March 2002, pp. 604–611.

[5] K. J. Balakrishnan and N. A. Touba, “Matrix-Based
Test Vector Decompression Using an Embedded Pro-
cessor,” in Defect and Fault Tolerance in VLSI Systems,
Nov 2002, pp. 159–165.

[6] A. Jas and N. A. Touba, “Deterministic Test Vec-
tor Compression/Decompression for Systems-on-a-
Chip Using an Embedded Processor,” Journal on Elec-
tronic Testing: Theory and Applications (JETTA),
vol. 18, no. 4/5, pp. 503–513, Aug 2002.

[7] K. J. Balakrishnan and N. A. Touba, “Determinis-
tic Test Vector Decompression in Software Using Lin-
ear Operations,” in VLSI Test Symposium, April-May
2003, pp. 225–231.

[8] S. Kahlid, Introduction to Data Compression, 2nd ed.
Morgan Kaufmann Publishers, 2000.

7C-3

731

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

