
Figure 1. Test generation and testability analysis in
a hardware/software co-design environment

A Hierarchical Test Generation Technique for Embedded Systems

Gert Jervan, Petru Eles, Zebo Peng
Dept. of Comp. and Information Science, Linköping University, Sweden

e-mail: {gerje, petel, zebpe}@ida.liu.se

Abstract1 This paper presents a hierarchical test generation technique
for embedded systems containing hardware and software. The technique is
applied to the system-level specification of such systems. Different from the
traditional approaches, hardware and software parts of an embedded
system are handled in a uniform way. We will in particular show how the
proposed technique can be applied at high levels of abstraction and how the
software domain of the specification can also be successfully covered.

1. Introduction
The development of hardware/software codesign techniques has made it possible to

design hardware and software of an embedded system at the high levels of abstraction in a
uniform way. However the testing of the hardware and software parts of the system are still
considered as totally unrelated problems and solved with very different methods.

In the early phases of the design cycle, system synthesis is performed starting from an
implementation independent specification. Reasoning about testability at this level can be
facilitated by an uniform test generation technique, which is both applicable to the hardware
and software domains. In [1], [4-5], [13] test generation and testability analysis for this par-
ticular problem has been studied, but not many efficient techniques have been developed yet.

In our approach, testability evaluation and test generation at the system level are based on
hierarchical test generation (HTG) [9]. We apply HTG, using a decision diagram (DD) [12]
based representation, and show that it can be used for both the hardware and software
domains as well as for different levels of abstraction.

2. Hierarchical Test Generation for Hardware/Software Systems
Test generation has been proven to be an NP-complete problem [6]. There has been a lot

of research devoted to solve the test generation problem for gate-level circuits. Working at
this level provides very high quality of the tests but is computationally very expensive in the
case of large circuits and therefore practically
not usable. Several approaches have been
developed to handle test generation for
relatively large combinational circuits in a
reasonable time. Test generation for large
sequential circuits remains, however, an
unsolved problem, despite rapid increase of
computational power. Hierarchical test
generation has been proposed as one possible
solution [2, 8, 10].

To give the designer an opportunity to
perform design for testability already in the

1 This work was partially supported by the Swedish National Board for Industrial and Technical Development (NUTEK).

System
Specification

System
Synthesis

Hardware Software

Testability
Analysis

Hierarchical Test
Generation

System Implementation
&

Integration

Test
Vectors

if (IN1 < 0) then
 A := IN1 * 2; ------ q=1
else
 A := IN1 + 2; ------- q=2
endif;

B := IN1*29; --------q=3
A := B*2;
B := A+43; -------- q=4

a) Specification (comments start with “--“)

q 1 IN1 * 2A

IN1 + 2

B*2

A’

3

2

4

q
3

IN1 * 29B

A+43
4

1,2
B’

b) the Control-flow DD
(q denotes the state variable
and q’ is the previous state)

c) Data-flow DD

Figure 2. A DD example

early design stages, testability evaluation should be applied directly to the system
specification. And a testability metric should be part of the cost function considered during
system level synthesis, and in particular for hardware/software partitioning.

 Figure 1 shows how testability evaluation and test generation fit into such a system
synthesis concept. As discussed in section 1, testability evaluation and test generation are
performed on a high level implementation-independent representation and they provide
results to be interpreted and used in a coherent way for both the hardware and software
partitions.

3. HTG for Specifications to be Implemented in Software

In our approach, decision diagrams are used for design modeling at the high abstraction
levels. The main advantage of modelling with DDs lies in the fact that a uniform concept can
be applied on different abstraction levels.
An extended overview of DDs is
presented in [12].

Our main objectives are to show how
DDs can be used for test generation at the
behavioural level and how HTG can be
used for testing the part of the system
which finally will be implemented as
software. Hierarchical test generation
technique for hardware has been reported
at [8].

At this level, for every internal
variable and primary output of the design a
data-flow DD will be generated. Terminal
nodes of the data-flow DD represent
arithmetic expressions. Further, an
additional DD which describes the control-
flow has to be generated. The control-
flow DD describes the succession of
statements and branch activation
conditions. Figure 2 depicts an example
of DD, describing the behavior of a
simple function. For example, variable A
will be equal to IN1+2, if the system is in the state q=2 (Figure 2c). If this state is to be
activated, condition IN1≥0 should be true (Figure 2b). The DDs extracted from a specification
will be used as a computational model in HTG for symbolic path activation.
3.1. Test Generation Algorithm

There are two types of tests which we consider in the current approach. One set targets
nonterminal nodes of the control-flow DD (conditions for branch activation) and the second
set aims at testing operators, depicted in terminal nodes of the data-flow DD.

The whole test generation task is performed in the following way. Tests are generated
sequentially for each nonterminal node of the control-flow DD. Symbolic path activation is
performed and functional constraints are extracted. Solving the constraints gives us the path
activation conditions to reach a particular segment of the specification. In order to test the
operations, presented in the terminal nodes of the data-flow DD, different approaches can be

q’ IN1 1
<00q

2

3
1,2

4

0

3

4

used. In this paper, we use mutation testing [4] for test generation for the operations at the
terminal nodes. For path activation, a slightly modified version of the algorithm described in
[8] is used.
3.2. Conformity Test

For the nonterminal nodes of the control-flow DD, conformity tests will be applied. The
conformity tests target errors in branch activation. In order to test nonterminal node IN1
(Figure 3), one of the output branches of this node should be activated. Activation of the
output branch means activation of a certain set of program statements. In our example,
activation of the branch IN1<0 will activate the branches in the data-flow DD where q=1
(A:=X). For observability the values of the variables calculated in all the other branches of
IN1 have to be distinguished from the value of the variables calculated by the activated
branch. In our example, node IN1 is tested, in the case of IN1<0, if X≠Y. The path from the
root node of the control-flow DD to the
node IN1 has to be activated to ensure
the execution of this particular
specification segment. The conditions,
generated here, should be justified to
the primary inputs of the module. This
process will be repeated for each output
branch of the node. In the general case
there will be n(n-1) tests, for every
node, where n is the number of output
branches.
3.3. Testing Arithmetic Operators

As mentioned earlier, test vectors for the terminal nodes can be generated based on
different approaches, and our HTG technique does not impose a specific one. Currently we
use a mutation based fault model [4] for testing terminal nodes of the data-flow DD. We are
using a library of operator mutations, which describes for each operator a set of corresponding
mutants and conditions, which can distinguish between the mutant and the original operator.
Suppose we have the expression: x:=(a+b)-c. To rule out the fault that the first “+” is
changed to “-”, b must not be 0 (because a+0=a-0). Additionally, to rule out the fault that
instead of “+” there is “∗”, we have to assure that a+b≠a∗b. For more details about operator
mutants, we refer the reader to [7].

4. Experimental Results
Experiments were conducted in the environment consisting of our hierarchical test

generator, the library of mutants for different arithmetic operators, and the Generic Coverage
Tool (GCT) [11] which measures the quality of the generated test cases. Conversion between
different representations (VHDL, C, Fortran and DD) is performed by corresponding
translation tools. In order to evaluate our results we compare them with those produced by the
software test generation tool Mothra [3]. Experiments were carried out on three embedded
software examples. Table 1 presents the experimental results of our approach in comparison
with the results achieved by Mothra. The Achieved fault coverage reflects synthetically
several different coverage criteria (statement coverage, branch coverage, loop coverage etc.).
As observed, the mutation based testing tool Mothra generates a much larger set of test
vectors, which, at the same time, produces a weaker coverage.

 ≠

 ≠

Control-
flow DD:

Data-flow DD:

q q’
0

...

IN1 1

2

<0

Figure 3. Conformity test

A q
1

2

X

Y

Mothra Our approach
Design
module

Number of
lines in the

specification

Number
of

branches

Number
of

mutants

Number of
generated
test cases

Number of
optimized
test cases

Fault
coverage

Number of
generated
test cases

Fault
coverage

Square 38 12 813 707 5 77.65% 10 94.12%

Mult 20 6 478 449 3 84.00% 6 90.00%

FFT 31 4 1682 1639 4 83.91% 6 86.21%

Table 1. Experimental results
5. Conclusions

This paper describes a novel hierarchical framework for test generation in hardware/software
systems. Hardware and software parts of an embedded system can be handled in a uniform way.
The same DD representation can be used for describing systems at different abstraction levels,
including the system level. Based on this representation, reasoning about testability in the early
design phases and test generation for both the hardware and the software domain is possible. We
have shown how HTG can be applied at the high levels of abstraction and how the software
domain of the specification can be successfully covered. Experimental results have shown that the
quality of the generated test vectors is even better than those produced by specific software test
generation tools Our future research is to integrate the testability metrics based on HTG into a
hardware/software codesign environment.

6. Acknowledgements
The authors would like to thank Prof. Raimund Ubar from Tallinn Technical University for

his helpful discussions concerning the Decision Diagrams.

7. References
[1] G. Al-Hayek, C. Robach, “An Enhancement Process for High-Level Hardware Testing Using Software

Methods,” IEEE European Test Workshop (ETW98), Barcelona, Spain, 1998, pp. 215-219
[2] J. D. Calhoun, F. Brglez, “A Framework and Method for Hierarchical Test Generation,” IEEE

Transactions on Computer-Aided Design, Vol. 11, No. 1, January 1992
[3] R. DeMillo, D. Guindi, K. King, M. M. McCracken, J. Offutt. “An Extended Overview of the Mothra

Software Testing Environment,” Second Workshop on Software Testing, Verification, and Analysis,
Banff, Canada, July 1988, pp. 142-151

[4] R. A. DeMillo, R. J. Lipton, F. G. Sayward, “Hints on Test Data Selection: Help for the Practical
Programmer,” IEEE Computer, Vol.11, No.4, Apr. 1978

[5] O. P. Diaz, I. C. Teixeira, J. P. Teixeira, “Metrics for Quality Assessment of Testable Hw/Sw Systems
Architectures,” IEEE European Test Workshop (ETW98), Barcelona, Spain, 1998, pp. 205-209

[6] H. Fujiwara, “Logic Testing and Design for Testability,” MIT Press Series in Computer Systems, MIT
Press, Cambridge, Massachusetts, London, England, 1985

[7] W. E. Howden, “Weak Mutation Testing and Completeness of Test Sets,” IEEE Transactions on
Software Engineering,” Vol. SE-8, No.4, July 1982

[8] G. Jervan, A. Markus, J. Raik, R. Ubar, “Hierarchical Test Generation with Multi-Level Decision Dia-
gram Models,” 7th IEEE North Atlantic Test Workshop, West Greenwich, RI, USA, 1998, pp.26-33.

[9] G. Jervan, P. Eles, Z. Peng, “A Uniform Test Generation Technique for Hardware/Software Systems,”
IEEE European Test Workshop (ETW99), Constance, Germany, 1999

[10] J. Lee, J. H. Patel, “ARTEST: An Architectural Level Test Generator for Data Path Faults and Control
Faults,” IEEE International Test Conference (ITC’91), 1991, pp. 729-738

[11] B. Marick, “Using Weak Mutation Coverage with GCT,” Testing Foundations, 1992
[12] R. Ubar, “Test Synthesis with Alternative Graphs,” IEEE Design and Test of Computers, Vol. 13, No. 1,

pp. 48-57, Spring 1996
[13] H. P. E. Vranken, M. F. Witteman, R. C. Van Wuijtswinkel, “Design for testability in hardware software

systems” IEEE Design & Test of Computers Vol. 13, No. 3, pp. 79-86, Fall 1996

