
On-line techniques to adjust and optimize
checkpointing frequency

Dimitar Nikolov†, Urban Ingelsson†, Virendra Singh‡ and Erik Larsson†

Department of Computer Science† Supercomputer Education and Research Centre‡

Linköping University Indian Institute of Science
Sweden India

Abstract1

Due to increased susceptibility to soft errors in recent
semiconductor technologies, techniques for detecting and
recovering from errors are required. Roll-back Recovery with
Checkpointing (RRC) is one well known technique that
copes with soft errors by taking and storing checkpoints
during execution of a job. Employing this technique, in-
creases the average execution time (AET), i.e. the expected
time for a job to complete, and thus impacts performance.
To minimize the AET, the checkpointing frequency is to
be optimized. However, it has been shown that optimal
checkpointing frequency depends highly on error probability.
Since error probability cannot be known in advance and can
change during time, the optimal checkpointing frequency
cannot be known at design time. In this paper we present
techniques that are adjusting the checkpointing frequency
on-line (during operation) with the goal to reduce the
AET of a job. A set of experiments have been performed
to demonstrate the benefits of the proposed techniques.
The results have shown that these techniques adjust the
checkpointing frequency so well that the resulting AET is
close to the theoretical optimum.

I. Introduction

Recent semiconductor technologies have enabled fab-
rication of integrated circuits (ICs) that contain a very
large number of transistors. These ICs offer a wide range
of functionalities and provide high performance, which is
usually achieved by implementing several processor cores
on the same silicon die. While recent technologies enable
fabrication of such powerful ICs, it has been noted that
ICs manufactured using recent technologies are becoming
increasingly susceptible to soft errors, [4], [6]. Therefore
techniques for dealing with soft errors are required.

One well known technique that detects and recovers
from soft errors is Roll-back Recovery with Checkpoint-
ing (RRC). This technique proposes taking and storing
checkpoints while a job is being executed. A checkpoint
represents a snapshot of the current state of the job

1The research is partially supported by The Swedish Foundation
for International Cooperation in Research and Higher Education
(STINT) by an Institutional Grant for Younger Researchers.

at the time when the checkpoint is taken. To enhance
error detection, a job is executed simultaneously on two
independent processor nodes. If an error occurs, the error
is detected by comparing the checkpoints taken from both
processor nodes, because it is highly unlikely that both
processor nodes experience the same error. Once an error
is detected the job is restarted (rolled-back) from the last
taken checkpoint. The cost of employing this technique
is the need of two processor nodes and the extra time
for taking and comparing the checkpoints, and eventual
roll-back. The time cost is related to the checkpointing
frequency. Higher checkpointing frequency enables errors
to be detected earlier, because of the shorter intervals
between checkpoints, and reduces the time spent in re-
execution, but it increases the overall time cost due to the
more frequent checkpointing and comparison operations.
Lower checkpointing frequency reduces the total amount
of checkpoints during the execution of the job and thereby
the cost imposed of the checkpointing and comparison
operations, but the penalty paid in case of an error is in-
creased since there is a larger interval between checkpoints
which will have to be re-executed.

In [8] is shown that it is possible to calculate an optimal
number of checkpoints, and thus an optimal checkpoint-
ing frequency, for a given error probability and a fault-
free execution time. Employing the optimal checkpointing
frequency minimizes the average execution time (AET),
i.e. the expected time for a job to complete. Many papers
have addressed the problem of finding the optimal check-
pointing frequency, [1], [7], [8], [9], [10], [11], [12], [13], [14],
[15] and they have reported that the optimal checkpointing
frequency highly depends on the failure rate (error proba-
bility). However in reality, the error probability cannot be
known at design time and it can further change during
time in operation. Therefore in this paper we present
techniques that adjust the checkpointing frequency on-line
(during operation) with the goal to minimize the AET.

II. Preliminaries

We assume an MPSoC architecture, described in Fig-
ure 1, which consists of n processor nodes, a shared
memory, and a compare & control unit. The processor
nodes are general-purpose processor nodes that include



Node1 Node2
q q q

Noden
Shared
memory

Compare&
control unit

bus

Figure 1: MPSoC architecture with n processor nodes,
a shared memory and a compare & control unit

private memory, and the shared memory, which is com-
mon for all processor nodes, is used for communication
between processors. The compare & control unit, added
for fault tolerance, detects whether errors have occurred
by comparing the contexts (checkpoints) of two processors
executing the same job at predetermined intervals. We
address errors that occur in the processors, and we assume
that errors that occur elsewhere (buses and memories) can
be handled by other fault-tolerant techniques such as error
correction codes.

In RRC, each job is executed concurrently on two pro-
cessors and a number of checkpoints are inserted to detect
errors. A given job is divided into a number of execution
segments and between every execution segment there is a
checkpoint interval. The checkpoint interval represents the
time required to take a checkpoint. Figure 2 illustrates the
execution segments and the inserted checkpoint intervals.
When a job is executed and a checkpoint is reached, both
processors send their respective contexts to the compare
& control unit. The compare & control unit compares
the contexts. If the contexts differ, meaning that an error
has occurred during the last execution segment, the last
execution segment is to be re-executed. In the case that
the contexts of the processors do not differ, meaning that
there is no error, the execution proceeds with the next
execution segment.

As discussed earlier in section I, checkpointing at higher
or lower frequency impacts the time cost in different man-
ners. In [8], Väyrynen et al. have addressed the problem
of obtaining an optimal number of checkpoints that min-
imizes the average execution time (AET). They proposed
a mathematical framework for the analysis of AET, and
presented an equation for computing the optimal number
of checkpoints. The AET when applying RRC on a job is
given as:

AET (P, T ) =
T + nc × (2 × τb + τc + τoh)

nc
√

(1 − P )2
(1)

where P is the error probability per time unit, T is the
fault-free execution time, nc is the number of checkpoints,
and τb, τc and τoh are time parameters due to checkpoint
overhead. Given Eq. (1), Väyrynen et al. showed that the
optimal number of checkpoints (nc) is given as:

nc(P, T ) = − ln(1−P )+

√
(ln(1− P ))2 − 2× T × ln(1− P )

2× τb + τc + τoh
(2)

q q q ES τ ES τ q q q
>

time

τ : checkpoint interval

ES : execution segment

Figure 2: Execution segments and checkpoint intervals

Using the optimal number of checkpoints, nc, (Eq. (2)),
the optimal AET can be calculated with Eq. (1).

The computation of optimal number of checkpoints,
and thus optimal checkpointing frequency, requires the
following parameters: error probability (P ), fault-free ex-
ecution time (T ), and parameters for checkpoint overhead
(τb, τc and τoh). The parameters for checkpoint overhead
can be estimated at design time; however it is difficult
to accurately estimate error probability. The real error
probability cannot be known at design time, it is different
for different ICs, and it is not constant through the lifetime
of an IC [1] [2] [3] [5].

III. Techniques for on-line adjustment of
checkpointing frequency

As shown in the previous section, optimal checkpointing
frequency depends on the error probability. Since error
probability cannot be known in advance, and it can change
during time in operation, the optimal checkpointing fre-
quency cannot be known at design time. Therefore in this
section we present two on-line techniques that adjust the
checkpointing frequency during operation with the aim to
optimize RRC. These techniques adjust the checkpointing
frequency based on estimates on error probability gen-
erated during operation. One way to provide accurate
error probability estimates is to extend the architecture
described earlier (Figure 1) by employing a history unit
that keeps track on the number of successful (no error)
executions of execution segments (ns) and the number
of erroneous execution segments (execution segments that
had errors) (ne). Having these statistics, error probability
can be estimated during time, periodically or aperiodically.
Thus we propose a periodic approach,Periodic Probability
Estimation (PPE), and an aperiodic, Aperiodic Probabil-
ity Estimation (APE). For both approaches we need some
initial parameters, i.e. initial estimate on error probability
and adjustment period. It should be noted, that the
adjustment period is kept constant for PPE, while for APE
it is tuned over time.

A. Periodic Probability Estimation
PPE assumes a fixed adjustment period,Tadj , and es-

timates the error probability,pest, using the following ex-
pression:

pest =
ne

ne + ns
(3)

where ns is the number of successful (no error) executions
of execution segments and ne is the number of erroneous



ESτ ES τESτ ES τ ES τ ES τ ES τ ES τ ES τ

� -� -� -p pest1 pest2

� -� -� -Tadj Tadj Tadj

τ : checkpoint interval

ES : execution segment

p : initial error probability

pesti
: estimated error probability

Tadj : adjustment period

Figure 3: Graphical presentation of PPE

execution segments. As can be seen from Figure 3 esti-
mates on error probability, pest, are calculated periodically
at every Tadj . The value of pest is used to obtain the
optimal number of checkpoints, nc, by applying Eq. (2).
During an adjustment period, nc equidistant checkpoints
are taken. So the checkpointing frequency is adjusted
periodically (after every Tadj) according to the changes
of the error probability estimates.

B. Aperiodic Probability Estimation

APE adjusts the checkpointing frequency by elaborating
on both Tadj and pest. The idea for this approach comes
from the following discussion. As this approach estimates
the error probability, it is expected that during operation
the estimates will converge to the real values, so we should
expect changes on the estimated error probability during
time. These changes can be used to adjust the length of
Tadj . If the estimates on error probability start decreasing,
that implies that less errors are occurring and then we
want to decrease the checkpointing frequency, so we in-
crease the adjustment period (the checkpointing frequency
is determined as number of checkpoints during adjustment
period, nc/Tadj). On the other hand, if the estimates on
error probability start increasing, that implies that errors
occur more frequently, and to reduce the time spent in re-
execution we want to increase the checkpointing frequency,
so we decrease the adjustment period.

If the control & compare unit encounters that error
probability has not changed in two successive adjustment
periods, it means that during both adjustment periods
the system has done a number of checkpoints which is
greater than the optimal one. This can be observed by the
following relation which is derived from Eq. (2):

2× nc(P, Tadj) > nc(P, 2× Tadj) (4)

In APE, error probability is estimated in the same
manner as PPE, i.e. using Eq. (3). What distinguishes
this approach from PPE, is that the adjustment period
is updated during time. Eq. (5) describes the scheme for
updating the adjustment period.

q q q ES τ ES τ ES τ ES τ ES τ ES τ ES τ q q q
� -� -� -pest1 pest2 pest3

� -� -� -Tadj1 Tadj2 Tadj3

τ : checkpoint interval

ES : execution segment

pesti
: estimated error probability

Tadji
: adjustment period

Figure 4: Graphical presentation of APE

if pesti+1 > pesti then

Tadji+1 = Tadji − Tadji × α

else

Tadji+1 = Tadji + Tadji × α (5)

The APE approach is illustrated in Figure 4. After every
Tadj time units, the control & compare unit, computes a
new error probability estimate (pesti+1) using the Eq. (3).
The latest estimate (pesti+1) is then compared against the
previous value (pesti). If estimation of error probability
increases, meaning that during the last adjustment period,
(Tadji), more errors have occurred, the next adjustment
period, (Tadji+1), should be decreased to avoid expensive
re-executions. However, if the estimation of error probabil-
ity decreases or remains the same, meaning that less or no
errors have occurred during the last adjustment period,
(Tadji), the next adjustment period, (Tadji+1), should be
increased to avoid excessive checkpointing. The new value
for the adjustment period (Tadji+1) together with the latest
estimate on error probability (pesti+1) are used to calculate
the optimal number of checkpoints, nc, that should be
taken during the following adjustment period.

IV. Experimental Results

To conduct experiments and thus evaluate the accu-
racy of the presented techniques we have developed a
simulator tool. The simulator uses the following inputs:
initial estimated error probability, p, adjustment period,
Tadj , real error probability distribution, P , and fault-free
execution time for the simulated job, T . We have simulated
three approaches: Periodic Probability Estimation (PPE),
Aperiodic Probability Estimation (APE), and Baseline
Approach (BA). Each approach uses the following inputs:
initial estimated error probability, p, and adjustment pe-
riod, Tadj . PPE and APE were described earlier in III-A
and III-B respectively. BA uses its inputs, i.e. the initial
estimated error probability, p, and the adjustment period,
Tadj , and computes an optimal number of checkpoints, nc,



0

5

10

15

20

25

30

35

40

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

AETdev
(%)

p− P

’Baseline’
’PPE’
’APE’

Figure 5: Relative deviation from optimal AET (%) for
constant real error probability P = 0.01

for these inputs using Eq. (2). Further, it takes checkpoints
at a constant frequency nc/Tadj , so no adjustments are
done during execution.

We made experiments to determine an appropriate value
for α parameter in APE. The experiment was repeated for
different values for the real error probability and for the
adjustment period Tadj , and it was found that out of the
considered values, α = 0.15 provided the best results, i.e.
the lowest deviation from optimal AET.

We conducted two sets of experiments. In the first set,
we have examined the behavior of the approaches when
the real error probability is constant during time, while
in the second set, the real error probability changes over
time, following a predefined profile.To get the AET for the
simulated approaches, each approach is simulated for 1000
times with the same inputs.

In the first set of experiments, we compare the three
simulated approaches: PPE, APE and BA against the op-
timal solution in terms of AET (%). The optimal solution
is obtained by using the equations proposed by Väyrynen
et al. [8] and using the real error probability, P , and fault-
free execution time, T , as inputs for these equations. In
Figure 5 we present on the y-axis the deviation of the
AET obtained from the simulated approaches, relative to
the optimal AET in %. On the x-axis we present the
difference between the initial estimated error probabil-
ity, p, and the real error probability, P . We assume a
constant real error probability, P = 0.01, and fault-free
execution time T = 1000000 time units. We choose the
adjustment period to be Tadj = 1000 time units, and
then simulate the approaches with different values for the
initial estimated error probability, p. One can observe from
Figure 5 that APE and PPE always perform better than
the BA approach, and they do not deviate much from
the optimal solution. Furhter, Figure 5 shows that APE
performs slightly better than PPE.

In the second set of experiments, we have examined the
behavior of the approaches when real error probability
changes over time. For this purpose, we define different
error probability profiles showing how error probability
changes over time, and then we run simulations for each
of these profiles. Three probability profiles are presented
in Table I. We assume that the probability profiles are
repeated periodically over time. The results in Table II
present the deviation of the AET obtained from the simu-
lated approaches, relative to the fault-free execution time
in %. For these simulations, we choose the adjustement
period to be Tadj = 1000 time units and the initial
estimated error probability to be equal to the real error
probability at time 0, i.e. p = P (0). We assume fault-free
execution time of T = 1000000 time units. As can be seen
from Table II, both PPE and APE perform far better than
BA, with a very small deviation in average execution time
relative to the fault-free execution time. Again we notice
that APE gives slightly better results than PPE approach.

P1(t) =


0.01, 0 ≤ t < 200000
0.02, 200000 ≤ t < 400000
0.03, 400000 ≤ t < 600000
0.02, 600000 ≤ t < 800000
0.01, 800000 ≤ t < 1000000

P2(t) =

 0.02, 0 ≤ t < 350000
0.01, 350000 ≤ t < 650000
0.02, 650000 ≤ t < 1000000

P3(t) =

{
0.01, 0 ≤ t < 90000
0.10, 90000 ≤ t < 100000

Table I: Error probability profiles

Probability Profile
Approaches

Baseline PPE APE
P1 55.93% 4.50% 2.84%
P2 50.69% 4.53% 2.74%
P3 56.02% 4.65% 2.50%

Table II: Relative deviation from fault-free execution
time (%) for variable real error probability

V. Conclusion

Fault tolerance becomes a challenge with the rapid de-
velopment in semiconductor technologies. However, many
fault tolerance techniques have a negative impact on
performance. For one such technique, Roll-back Recovery
with Checkpointing, which inserts checkpoints to detect
and recover from errors, the checkpointing frequency is to
be optimized to mitigate the negative impact on perfor-
mance. However, the checkpointing frequency depends on
error probability which cannot be known in advance.



In this paper we have proposed two techniques that
adjust the checkpointing frequency during operation with
the aim to reduce the average execution time. These two
techniques are a periodic approach, where the adjustment
is done periodically based on the error probability that
is estimated after every Tadj , and an aperiodic approach
where Tadj is tuned over time. To perform experiments
we have implemented a simulator. The simulator runs
the proposed approaches given the following inputs: initial
estimated error probability, adjustment period, real error
probability and expected fault-free execution time of the
simulated job. By presenting the results from the simula-
tor, we demonstrate that both proposed techniques achieve
results comparable to the theoretical optimum. From
the results we also notice, that the proposed aperiodic
approach gives slightly better results than the periodic
approach, in terms of average execution time.

References

[1] I. Koren and C. M. Krishna, “Fault-Tolerant Systems”, Morgan
Kaufman, 1979.

[2] E.H. Cannon, A. KleinOsowski, R. Kanj, D. D. Reinhardt, and
R. V. Joshi, “The Impact of Aging Effects and Manufacturing
Variation on SRAM Soft-Error Rate”, IEEE Trans. Device and
Materials Reliability, vol. 8, no. 1,pp. 145-152, March 2008

[3] V. Lakshminarayanan, “What causes semiconductor devices to
fail?”, Centre for development of telematics, Bangalore, India –
Test & Measurement World, 11/1/1999.

[4] V. Chandra, and R. Aitken, “ Impact of Technology and Voltage
Scaling on the Soft Error Susceptibility in Nanoscale CMOS”,
IEEE International Symposium on Defect and Fault Tolerance
of VLSI Systems, pp. 114-122, Oct. 2008

[5] T. Karnik, P. Hazucha, and J. Patel, “Characterization of Soft
Errors Caused by Single Event Upsets in CMOS Processes”,
IEEE Trans. on Dependable and secure computing, vol. 1, no.
2, April-June 2004

[6] J. Borel, “European Design Automation Roadmap”, 6th Edition,
March 2009

[7] D. K. Pradhan and N. H. Vaidya, “Roll-Forward Checkpointing
Scheme: A Novel Fault-Tolerant Architecture”, IEEE Transac-
tions on computers, vol. 43, no. 10, pp. 1163-1174, October 1994

[8] M. Väyrynen, V. Singh, and E. Larsson, “ Fault-Tolerant Av-
erage Execution Time Optimization for General-Purpose Multi-
Processor System-on-Chips”, Design Automation and Test in
Europe (DATE 2009), Nice, France, April, 2009.

[9] Y. Ling, J. Mi and X. Lin, “A Variational Calculus Approach to
Optimal Checkpoint Placement”, IEEE Transactions on comput-
ers, vol. 50, no.7, pp. 699-708, July 2001.

[10] J.L. Bruno and E.G. Coffman,“Optimal Fault-Tolerant Comput-
ing on Multiprocessor Systems”, Acta Informatica, vol. 34, pp.
881-904, 1997.

[11] E.G. Coffman and E.N. Gilbert, “Optimal Strategies for
Scheduling Checkpoints and Preventive Maintenance”, IEEE
Trans. Reliability, vol. 39, pp. 9-18, Apr. 1990.

[12] P. L‘Ecuyer and J. Malenfant, “Computing optimal checkpoint-
ing strategies for rollback and recovery systems”, IEEE Trans.
Computers, vol. 37, no. 4, pp. 491-496, 1988.

[13] E. Gelenbe and M. Hernandez, “Optimum Checkpoints with
Age Dependent Failures”, Acta Informatica, vol. 27, pp. 519-531,
1990.

[14] C.M. Krishna, K.G. Shin, and Y.H. Lee, “Optimization Criteria
for Checkpoint Placements”, Comm. ACM, vol. 27, no. 10, pp.
1008-1012, Oct. 1984.

[15] V.F. Nicola, “Checkpointing and the Modeling of Program
Execution Time”, Software Fault Tolerance, M.R. Lyu, ed., pp.
167-188, John Wiley&Sons, 1995.


