
Defect Probability-based System-On-Chip Test Scheduling

Erik Larsson, Julien Pouget and Zebo Peng

Embedded Systems Laboratory

Linköpings Universitet, Sweden

{erila, g-julpo, zebpe}@ida.liu.se

Abstract1

In this paper we address the test scheduling problem for system-on-chip. Different from
previous approaches where it is assumed that all tests will be performed until
completion, we consider the cases where the test process will be terminated as soon as
a defect is detected. This is common practice in production test of chips. The proposed
technique takes into account the probability of defect-detection by a test set in order to
schedule the test sets so that the expected total test time will be minimized. It supports
different test bus structures, test scheduling strategies (sequential scheduling vs.
concurrent scheduling), and test set assumptions (fixed test time vs. flexible test time).
Several heuristic algorithms have been developed and experiments performed to
demonstrate their efficiency.

1. Introduction
The cost of developing electronic systems is increasing and a significant part of the cost is related

to the testing of the systems. One efficient way to reduce the total development cost is therefore to

reduce the testing cost. Testing cost reduction can be achieved by minimizing the testing time of the

system. An efficient ordering, test scheduling, of the execution of the tests will minimize the total

testing time.

The core-based design technique is another approach to reduce the increasing development costs.

With such a technique, pre-designed and pre-verified blocks of logic, so called cores, are integrated

to a complete system, which can be placed on a single die to form a system-on-chip (SOC). To test

a SOC, a test bus is used for the transportation of test data in the system and its organization often

has a great impact on the test schedule. SOC test scheduling can be performed assuming: sequential
scheduling, i.e. only one test at a time, or concurrent scheduling, with a possibility to execute several

tests at the same time. The testing time for the execution of each test set can be fixed, or flexible
where it is possible to adjust it.

In a large volume production test for SOC, an abort-on-fail approach is usually used, which

means that the test sequence is aborted as soon as a fault is detected. This approach is used to reduce

the test application time. With the abort-on-fail assumption, the tests should be ordered in such a

way that tests with a high probability to fail are scheduled before tests with a lower probability to

fail since this will minimize the average testing time.

In this paper we propose a test scheduling technique based on defect detection probability, can be

either collected from the production line or generated based on inductive fault analysis. We have

1. The research is partially supported by the Swedish National Program on Socware.

defined models to compute the expected test time as well as scheduling heuristic taking the defect

probabilities into account. We have performed experiments to show the efficiency of the proposed

approach.

The rest of the paper is organized as follows. An overview of related work is given in Section 2.

Sequential test scheduling is discussed in Section 3 and concurrent test scheduling is described in

Section 4. The proposed algorithms are presented in Section 5, and the paper is concluded with

experimental results in Section 6 and conclusions in Section 7.

2. Related Work
Test scheduling determines the order of the execution of the test sets for a system. The most

common objective is to minimize the test time while considering test conflicts. In SOC systems,

where each core is equipped with a wrapper, an interface to the test access mechanism (TAM), test

conflict is due to the sharing of the TAM or the test bus. The TAM, used for the transportation of

test data, is used to connect the test source, the cores and the test sink. The test source is where the

test vectors are generated or stored and the test sink is where the test responses are analyzed or

stored. An automatic test equipment (ATE) is an example of a test source and test sink.

A TAM can be organized in different ways, which impacts the test scheduling. An example is the

AMBA test bus, which makes use of the existing functional bus, however, the tests have to be

scheduled in a sequence [2]. An alternative is the approach proposed by Varma and Bhatia where

several test buses are used. The tests on each bus are scheduled in a sequence, however, since several

buses are allowed, testing can be performed concurrently [11]. Another approach is the TestRail,

which allows a high degree of flexibility [8]. The TestRail approach has recently gained interest and

several scheduling techniques for SOCs have been proposed [3,5,7]. The approaches assume that

the cores are tested with the scan approach. The objective is to arrange the scan-chains into wrapper

chains, which then are connected to TAM wires. Iyengar et al. made use of integer-linear

programming [5] and Huang et al. used a bin-packing algorithm. Both these approaches assume that

the tests will always be performed until completion.

Koranne proposed an abort-on-fail technique to minimize the average-completion time by

scheduling tests with short test time early [7]. For sequential testing, several abort-on-fail test

scheduling techniques considering the defect probability have been proposed [4,6]. Huss and

Gyurcsik made use of a dynamic programming algorithm to order the tests [4]. Milor and

Sangiovanni-Vincentelli proposed a technique for the selection and ordering of the test sets [10],

which is based on the dependencies between the test sets. For SOC testing with cores in wrappers,

however, there is no dependency between the testing of different cores. In the approach proposed

by Jiang and Vinnakota the actual fault coverage is extracted from the manufacturing line [6]. The

technique minimizes the average completion time by ordering of the tests based on probability of

failure.

3. Sequential Test Scheduling
In sequential testing, all tests are scheduled in a sequence, one test at a time. When the abort-on-fail
approach is assumed, if a defect is detected, the testing process should be terminated at once. In

order to account for the case when the test responses are compacted into a single signature after a

whole test set is applied, we assume that the test abortion occurs at the end of a test set even if the

actual defect is detected in the middle of applying the test set. This assumption is also used in our

formula to compute the expected test time. Note, this means that the computational results are

pessimistic, or the actual test time will be smaller than the computed one, in the case when the tests

are actually aborted as soon as the first defect is detected.

Given a core-based system with n cores, for each core i there is a test set ti with a test time τi and

a probability of passing pi (i.e. the probability that test ti will detect a defect at core i is 1-pi). For a

given schedule, the expected test time for sequential testing is given by:

For illustration of the computation of the expected test time, we use an example with four tests

(Table 1). The tests are scheduled in a sequence as in Figure 1(a). For test t1, the expected test time

is given by the test time τ1 and the probability of success p1, τ1×p1=2×0.7=1.4.Note if there is only

one test in the system, our above formula will give the expected test time to be 2 since we assume

that every test set has to be fully executed before we can determine if the test is a successful test or

not. The expected test time for the completion of the complete test schedule in Figure 1(a) is:

τ1×(1−p1)+(τ1+τ2)×p1×(1−p2)+

(τ1+τ2+τ3)×p1×p2×(1-p3)+(τ1+τ2+τ3+τ4)×p1×p2×p3×(1−p4)+

(τ1+τ2+τ3+τ4)×p1×p2×p3×p4=

2×(1−0.7)+(2+4)×0.7×(1-0.8)+

(2+4+3)×0.7×0.8×(1-0.9)+(2+4+3+6)×0.7× 0.8 ×0.9×(1−0.95)+

(2+4+3+6)×0.7×0.8×0.9×0.95 = 9.5

As a comparision, for the worst schedule, where the test with highest passing probability is

scheduled first, the order will be t4, t3, t2, t1, and the expected test time is 13.6. In the case of

executing all tests until completion, the total test time does not depend on the order, and is

τ1+τ2+τ3+τ4=15.

4. Concurrent Test Scheduling
The total test time of a system can be reduced by executing several tests at the same time, concurrent
testing. Concurrent testing is for instance possible in systems with several test buses. In this section,

we analyze concurrent scheduling with fixed test time per test set and flexible test time per test set.

4.1 Test Sets with Fixed Test Times

A concurrent test schedule of the example system used in Section 3 with data as in Table 1 assuming

3 TAMs (test buses) is in Figure 1(b). The test schedule (Figure 1 (b)) consists of a set of sessions,

τ j
j 1=

i

∑ 
 
 

p j
j 1=

i 1–

∏ 
 
 

× 1 pi–()×
 
 
 

τ i
i 1=

n

∑ 
 
 

pi
i 1=

n

∏×+
i 1=

n

∑ (1)

Figure 1. (a) Sequential schedule and (b) Concurrent
schedule of the example given in Table 1.

ττ1 τ2 τ3

t1 t2 t3 t4

τ4

τ

t1

t2

t3 t4

l4l1 l2 l3

tam3

tam2

tam1

TAM

Core i Test ti
Test

time τi

Probability to
pass, pi

1 t1 2 0.7

2 t2 4 0.8

3 t3 3 0.9

4 t4 6 0.95

 Table 1. Example data.

(a)

(b)

S1, S2, S3, and S4. The test session S1 consists of test t1, t2 and t3; S1={t1,t2,t3}. The length of a

session Sk is given by lk. For instance l1=2. We assume now that the abortion of the test process can

occure at any time during the application of the tests. To simplify the computation of expected test

time, it is assumed that the test process will terminate at the end of a session (note this is again a

pessimistic assumption). The probability to reach the end of a session depends in the concurrent test

scheduling approach not only on a single test but on all tests in the session. For instance, the

probability to complete session 1 depends on the tests in session 1: t1, t2 and t3. As can be observed

in Figure 1(b), only test t1 is fully completed at the end of session 1. For a test ti that is not completed

at the end of a session, the probability pik for it to pass all test vectors applied during session k is

given by: . It can be seen that for a test set ti, which is divided into m sessions, the

probability that the whole test set is passed is equal to:

For example, the probability for the tests in session S1 are (Figure 1(b)): p11 = p1 = 0.7, p21 =0.82/4

= 0.89., p31 =0.92/3 = 0.93. The formula for computing the expected test time for a complete

concurrent test schedule is given as:

As an example, the computation of the expected test time for the test schedule in Figure 1(b) is

given below. First we compute the probability for each test set in each session. The probabilities p11,
p21, p31 are computed to 0.7, 0.89, and 0.93, respectively (see above). The rest are computed to:

p22=0.81/4=0.95, p32=0.91/3=0.96, p23=0.81/4=0.95, p43=0.951/6=0.99, p44=0.955/6=0.96. From the

formula we can compute the expected test time for this example as:

l1×(1−p11×p21×p31)+(l1+l2)×p11×p21×p31×(1−p22×p32)+

(l1+l2+l3)×p11×p21×p31×p22×p32×(1−p23×p43)+

(l1+l2+l3+l4)×p11×p21×p31×p22×p32×p23×p43×(1-p44)+

(l1+l2+l3+l4)×p11×p21×p31×p22×p32×p23×p43×p44=

2×(1−0.7×0.89×0.93)+(2+1)×0.7×0.89×0.93×(1−0.95×0.96)+

(2+1+1)×0.7×0.89×0.93×0.95×0.96×(1−0.95×0.99)+

(2+1+1+5)×0.7×0.89×0.93×0.95× 0.96×0.95×0.99×(1-0.96)+

(2+1+1+5)×0.7×0.8×0.9×0.95= 5.61.

As a comparision, if all tests are assumed to be executed until completion, the total test time will

be 9.

4.2 Test Sets with Flexible Test Times

A way to further reduce the test application time is to modify, if possible, the test times of the

individual test sets. For instance, in scan tested cores the test times at each core can be modified by

loading several scan chains in parallel. The scan-chains and the wrapper cells are to form a set of

wrapper chains. Each wrapper chain is then connected to a TAM wire. If a high number of wrapper

chains are used, their length is shorter and the loading time of a new test vector is reduced. However,

the higher number of wrapper chains require more TAM wires.

In Figure 2(a) the TAM bandwidth |W| is 4, there are four wires in W={w1, w2, w3, w4}. The

testing of each core is performed by transporting test vectors on the assigned TAM wires to a core

and the test response is also transported from the core to the test sink using the TAM. The testing of

pik pi
lk τ i⁄=

pik
k 1=

m

∏ pi

l1

τ i

pi

l2

τ i

… pi

lk

τ i

××× pi

lk

τ i

k 1=

m

∑
pi since

lk

τ i

k 1=

m

∑ 1

τ i
---- lk

k 1=

m

∑× 1.===== (2)

l j
j 1=

i

∑ 
 
 

pkj
tk S j∈∀
∏

j 1=

i 1–

∏ 
 
 

× 1 pki
tk Si∈∀
∏–

 
 
 

×
 
 
 

τ i
i 1=

n

∑ 
 
 

pi
i 1=

n

∏×+
i 1=

n

∑ (3)

cores sharing TAM wires cannot be executed concurrently. For instance, the testing of core 1 and

core 2 cannot be performed concurrently due to the sharing of TAM wire w1 (Figure 2(a)). A test

schedule for the system is given in Figure 2(b) and the computation of the expected test time can be

done using formula 3 in Section 4.

5. Algorithms
The algorithm for test scheduling based on defect probability in the sequential case is straight

forward, it sorts the tests in descending order based on τi×pi and schedule the tests in this order

(Figure 3(a)).

In concurrent scheduling with fixed test times, we sort the tests based on τi×pi and select n tests

for the n TAMs based on the sorted list. The selected tests are scheduled and removed from the list.

As soon as a test terminates, a new test from the list of unscheduled tests is selected. The process

continues until all tests are scheduled (sketch of the algorithm is given in Figure 3(b).)

We have based the algorithm for concurrent test scheduling with flexible test times on the

algorithm presented by Flottes et al. [1]. The algorithm is outlined in Figure 3(c). We start by

computing the test time for all configurations of each core. The Pareto-optimal points are selected

and placed descended in a sorted list computed based on the defect level. The algorithm selects a

test from the sorted list and tries to maximize the TAM usage of the available TAM wires at each

iteration step.

We will use the ITC’02 benchmark Q12710 [9] to illustrate the algorithm. The design consists of

4 scan tested cores. For the computation of test time τij for a test ti at core i given j TAM wires/

wrapper chains, we have used the wrapper chain algorithm proposed by Flottes et al. [1]. The results

are in Table 2(a). We have also attached each test with a probability of passing (non failure testing)

for each core: core 1 p1=0.9, core 2 p2=0.7, core 3, p3=0.85, core 4 p4=0.85. For the Pareto-optimal

points, we have computed the cost cij=τij×(1-pi) (Table 2(b)).

The test scheduling result using Q12710 at W=12 is presented in Figure 2. The scheduling

algorithm starts at τ=0 and selects the test maximizing the TAM usage; test t2 is selected at

configuration j=14 (Table 2). At τ=0, all 20 TAM wires are free and t2 uses 14 (it maximizes the

TAM usages). A temporary session length is given by the test time of t2. We try to find a test that

fits the temporary session using no more than 6 TAM wires. From the search in the cost list, we find

t3. We cannot schedule more tests starting at τ=0 and we therefore let τ=τ36 (the time when test t3
ends). We then try to schedule a test during the time given by the test time at t3 minus the test time

at t2. No test is found. We then come to a point where a new session is to be created and we select

t4 with a configuration using 10 wires. We can in the same session schedule the last test; t1. As soon

Figure 2. (a) SoC example. (b) SOC schedule of the example (Table 1), (c) schedule of Q12710.

Test
source

Test
sink

core 1

wrapper

core 2

wrapper

core 3

wrapper

core 4

wrapper

W

τ

t1
t2

t3
t4

l4l1 l2 l3

w4

w3

w2

w1

W

τ

t1

t2

t3

t4

l4l1
l2

l3

w20
w18
w16
w14
w12
w10
w8
w6
w4
w2

W

(c)(b)(a)

as a test is scheduled, all its configurations are removed from the list L (Table 2(b)). When the list

is empty, all tests are scheduled and the algorithm terminates.

6. Experimental Results
We have performed experiments using the Q12710 design (presented in Section 5), one of the

ITC’02 designs [9]. In the Q12710 design all cores are tested using the scan technique. It means that

the test time is not fixed. In the experiments, we have used the following four test scheduling

approaches:

1. Sequential testing with fixed test times with the test time for each core given by the test time

where the product τi×j (j - number of TAM wires/wrapper chains) is minimal.

2. Sequential testing with fixed test times with the fixed test time for each core given by the test

time when we assigned the full bandwidth |W| to each core.

3. Concurrent testing with fixed test times. The fixed test times in concurrent scheduling of test

sets with fixed test times, was computed in the same way as in Sequential scheduling with fixed

test times, that is for each core i we minimize the τi×j (j is the number of TAM wires/wrapper

chains).

4. Concurrent testing with flexible test times. Finally, for the concurrent scheduling of test sets

with flexible test times, we computed all test times and selected the Pareto-optimal points (dis-

cussed in Section 5).

We have for each of the four approaches assumed a TAM with a bandwidth in the range from 8 to

24 wires in steps of 4 (Table 3). For each approach at each bandwidth we have computed the total

Figure 3. (a) Sequential test scheduling algorithm. (b) Concurrent test
scheduling algorithm for tests with fixed test times (c) Concurrent test

scheduling algorithm for tests with flexible test times.

1. Compute the test time τij for every core i with j in 1 to |W|

2. Select the Pareto-optimal points

3. Compute the cost cij =τij×(1-pi) for all Pareto-optimal points.

4. Sort the costs cij descending in L1
5. until all tests are scheduled // L1 is empty begin
6. for all tests begin
7. for all created sessions j begin
8. τbk - is the beginning of session k.

9. for all configurations of tests ti in the list L1begin
10. select in order the test ti that maximizes the usage

11. of available TAM wires

12. end
13. if τbk+τi< τmax then begin
14. schedule ti
15. remove all configurations of ti from L1
16. end else store test in L2
17. end
18. if no test is scheduled then begin
19. schedule the first test in L1
20. end
21. move all tests in L2 to L1

22. end

1. Compute the cost ci =pi×τi for all tests ti
2. Sort the costs ci descending in L
3. until L is empty (all tests are scheduled)

4. begin
5. select, schedule and remove

the first test in L
6. end

1. Compute the cost ci =pi×τi for all tests ti
2. Sort the costs ci descending in L
3. f=number of TAMs

4. τ=0 // current time,

5. until L is empty (all tests are scheduled)

begin
6. at time τ until f=0 begin
7. select tests from L in order and reduce

f accordingly

8. end
9. τ=time when first test terminates.

10. end

(b) (c)

(a)

test time without considering defect probability and the estimated test time assuming a given defect

probability. For instance, in the sequential scheduling (approach 1) at bandwidth 8, the test time is

11566270 and the estimated test time is 9057026, a average reduction of 21.7%. The estimated test

time is, as expected, lower than the test time in all cases. It is interesting to observe that in some

cases such as in approach 4 at bandwidth 12 and 16, the test time is actually higher at bandwidth 16

compared to bandwidth 12. However, the estimated test time is lower at the bandwidth 16 compared

to bandwidth 12.

7. Conclusions
In this paper we have presented several test scheduling techniques for system-on-chip (SOC) that

take into account the defect probability of each test set. The advantage with our approach is that by

considering defect probabilities during the test scheduling process, the expected test time can be

substantially reduced, which is important in large volume production of SOC where the testing

process is terminated as soon as a defect is detected.

We have analyzed several different test bus structures and scheduling approaches, and defined

models to compute the expected test times and test scheduling algorithms for several types of test

buses. We have also performed experiments to demonstrate the efficiency of our approach.

References

[1] M.L. Flottes, J.Pouget, and B.Rouzeyre, “Sessionless Test Scheme: Power-constrained Test Scheduling for
System-on-a-Chip”, Proceedings of the 11th IFIP on VLSI-SoC, pp. 105-110, Montpellier, June 2001.

core i wire j test time τij (τi×j) difference (%) core i wire j test time τij cost cij (τij×(1-pi))

1 6 951094 5706564 - 2 2 15743179 4722954

1 7 829115 5803805 1.7% 2 4 6323834 1897150

1 2 3000853 6001706 4.2% 2 7 3680684 1104205

1 4 1779357 7117428 24.7% 3 2 6531263 979689

2 4 6323834 25295336 - 4 2 6531263 979689

2 7 3680684 25764788 1.9% 2 10 2644464 793339

2 10 2644464 26444640 4.5% 2 14 2222349 666705

2 14 2222349 31112886 23.0% 3 4 3733199 559980

2 2 15743179 31486358 24.5% 4 4 3733199 559980

3 6 2145671 12874026 - 3 6 2145671 321851

3 2 6531263 13062526 1.5% 4 6 2145671 321851

3 4 3733199 14932796 11.1% 1 2 3000853 300085

3 9 1588751 14298759 16.0% 3 9 1588751 238313

4 6 2145671 12874026 - 4 9 1588751 238313

4 2 6531263 13062526 1.5% 1 4 1779357 177936

4 9 1588751 14298759 11.1% 1 6 951094 95109

4 4 3733199 14932796 16.0% 1 7 829115 82912

(a) (b)

Table 2 (a) The Pareto-optimal points and their difference to the optimal for Q12710, (b) The Pareto-
optimal points for design Q12710 sorted descending based on the cost cij=τι× (1-pi).

[2] P. Harrod, “Testing reusable IP-a case study”, Proceedings of International Test Conference (ITC), Atlantic City,
NJ, USA, pp. 493-498, 1999.

[3] Y. Huang, W.-T. Cheng, C.-C. Tsai, N. Mukherjee, O. Samman, Y. Zaidan and S. M. Reddy, “Resource Allocation
and Test Scheduling for Concurrent Test of Core-based SOC Design”, Proceedings of IEEE Asian Test Symposium
(ATS), pp 265-270, Kyoto, Japan, November 2001.

[4] S. D. Huss and R. S. Gyurcsik, “Optimal Ordering of Analog Integrated Circuit Tests to Minimize Test Time”,
Proceedings of the ACM/IEEE Design Automation Conference (DAC), pp. 494-499, 1991.

[5] V. Iyengar, and K. Chakrabarty, and E. J. Marinissen, “Test wrapper and test access mechanism co-optimization
for system-on-chip”, Proc. of International Test Conference (ITC), Baltimore, MD, USA, pp. 1023-1032, 2001.

[6] W. J. Jiang and B. Vinnakota, “Defect-Oriented Test Scheduling”, IEEE Transactions on Very-Large Scale
Integration (VLSI) Systems, Vol. 9, No. 3, pp. 427-438, June 2001.

[7] S. Koranne, “On Test Scheduling for Core-Based SOCs”, Proceedings of the IEEE International Conference on
VLSI Design (VLSID), pp. 505-510, Bangalore, India, January 2002.

[8] E. J. Marinissen, R. Arendsen, G. Bos, H. Dingemanse, M. Lousberg, C. Wouters, “A structured and scalable
mechanism for test access to embedded reusable cores”, Proceedings of International Test Conference (ITC),
Washington, DC, USA, pp. 284-293, October 1998.

[9] E. J. Marinissen, V. Iyengar, and K. Chakrabarty, “A Set of Benchmarks for Modular Testing of SOCs”,
Proceedings of International Test Conference (ITC), pp. 519-528, Baltimore, MD, USA, October 2002.

[10] L. Milor and A. L. Sangiovanni-Vincentelli, “Minimizing Production Test Time to Detect Faults in Analog
Circuits”, IEEE Trans. on Computer-Aided Design of Integrated Circ. & Sys. , Vol. 13, No. 6, pp 796-, June 1994.

[11] P. Varma and S. Bhatia, “A Structured Test Re-Use Methodology for Core-based System Chips”, Proceedings of
International Test Conference (ITC), pp. 294-302, Washington, DC, USA, October 1998.

Bandwidth
Average

8 12 16 20 24

Sequential -
fixed test times

(minimizing τi×j)

Test time without considering

defect probability τt:
11566270 11566270 11566270 11566270 11566270 11566270

 Test time considering

defect probability τe:
9057026 9057026 9057026 9057026 9057026 9057026

Difference

(τt-τe)/τt×100:
21.7% 21.7% 21.7% 21.7% 21.7% 21.7%

Sequential -
fixed test times
(τi at |W| wires)

Test time without considering

defect probability τt:
11566270 6651081 6228966 6228966 6228966 7380850

 Test time considering

defect probability τe:
9057026 4818481 4415579 4415579 4415579 5424449

Difference

(τt-τe)/τt×100:
21.7% 27.6% 29.1% 29.1% 29.1% 26.5%

Concurrent -
fixed test times

(τi×j)

Test time without considering

defect probability τt:
11566270 6323834 6323834 6323834 6323834 7372321

 Test time considering

defect probability τe:
9057026 4653913 4516623 4516623 3667362 5282309

Difference

(τt-τe)/τt×100:
21.7% 26.4% 28.6% 28.6% 42.0% 28.3%

Concurrent -
flexible test times

Test time without considering

defect probability τt:
11041062 5821966 5955548 3811100 3177502 5961436

 Test time considering

defect probability τe:
7319653 4073684 4012068 2929196 2508045 4168529

Difference

(τt-τe)/τt×100:
33.7% 30.0% 32.6% 23.1% 21.0% 30.0%

. Table 3. Experimental results on Q12710 from the ITC’02 benchmarks.

