
Scheduling and Optimization of
Fault-Tolerant Embedded Systems

Viacheslav Izosimov

RadiationElectromagnetic
interference (EMI)

Lightning storms Internal EMI

Crosstalk

Power supply
fluctuations

Software errors
(Heisenbugs)

We have developed techniques to address fault tolerance aspects during scheduling and design
optimization of embedded systems in order to provide efficient design solutions under resource constraints

Transient and Intermittent Faults
(Transient Faults)

Pon N te
d

sk = 2

Fault-Tolerance Policy Assignment Transparency vs. Performance

Processes: Re-execution,
Active Replication, Rollback

Recovery with Checkpointing

Messages: Fault-
tolerant predictable

protocol

…

Fault Occurrences

P2

P4P3

P5

P1

m1
m2

Maximum k transient faults within each application run

PP22 PP11

PP44

m2 m1m3

PP33

PP22 PP11

PP44

m2 m1m3

PP33

Final ProductApplication Mapping Transparency Fault-Tolerant Conditional
Process Graph (FT-CPG)

Scheduling Tables

Transparency is achieved with frozen

Errors caused by transient faults have to be tolerated before they crash the system or lead to dramatic quality deterioration

N1 true 1P
F

1P
F 11 PP FF ∧

11 PP FF ∧ 211 PPP FFF ∧∧

P1 0 35 70
P2 30 100 65 90
m1 31 100 66
m2 105 105 105
m3 120 120

Contact info: http://www.ida.liu.se/~viaiz

U
ti

lit
y

N
or

m
al

iz
ed

 t
o

FT
Q

S
 (

%
)

Application Size (Processes)
0

20

40

60

80

100

120

10 15 20 25 30 35 40 45 50

FTQS (2 faults)
FTQS (1 fault)
FTQS (no faults)

FTQS (3 faults)
FTSS (3 faults)

FTSF (3 faults)

S1

S2

S1

S3

S1

S2
S2

S3

S4

S1

S2

S3

P1

P3

P2

tc(P1) > 40

90<tc(P1/2)
≤ 100

tc(P1/2) > 100

tc(P2/1) > 90 tc(P2/1) > 160 tc(P3/1) > 150

P2 P3P1

P1 P3 P2

S1
1

S2
1

Pc

Hard process with hard deadline:

Ua(t)30
15

t
Ub(t)

20
10 t

Pa Pb

50 ms 110 ms

Ua(50) = 15

Ub(110) = 10

Overall utility:: U = 15 + 10 = 25

Soft processes with utility functions:

FTSS – static scheduling with fault tolerance
FTSF – quasi-static scheduling with

straightforwardly-introduced fault tolerance

FTQS – quasi-static scheduling with fault tolerance

Utility-based Optimization with Soft and Hard Real-Time Constraints

+ Global Optimization of Checkpointing

+ Mapping of Embedded Systems with Performance/Transparency Trade-off

P1/1 P1/2 P1/3

Re-execution
N1

P1(1)

P1(2)

P1(3)R
ep

lic
at

io N1

N2

N3

P1(1)/1

P1(2)

N1

N2

P1(1)/2

R
e-

ex
ec

ut
re

pl
ic

ask = 2

80

20
0

40

60

100

20 40 60 80 100

Mapping and replication (MR)

Mapping and re-execution (MX)

Mapping and policy assignment (MRX)

Number of processes

A
vg

. %
 d

ev
ia

ti
on

fr
om

 M
R

X

7343276641243927142918102216880
86583279542858391943301334241260
97663990603472492858402043291740
13986481338348115743992603263442420
k=3k=2k=1k=3k=2k=1k=3k=2k=1k=3k=2k=1k=3k=2k=1

100%75%50%25%0%
increased transparency

leads to the reduction in performance

Good for debugging and testing but…

Transparency is achieved with frozen
processes and messages that are always
scheduled at one time independent of
external fault occurrences, which results in
a much smaller number of system states

Which fault-tolerance policy should be
assigned to which process?

The quasi-static scheduling generates a set of static schedules
that maximize the overall utility for a particular execution and

fault scenario while satisfying hard deadlines

