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We have developed techniques to address fault tolerance aspects during scheduling and design 
optimization of embedded systems in order to provide efficient design solutions under resource constraints
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Scheduling Tables

Transparency is achieved with frozen

Errors caused by transient faults have to be tolerated before they crash the system or lead to dramatic quality deterioration

N1 true 1P
F

1P
F  11 PP FF ∧

11 PP FF ∧  211 PPP FFF ∧∧  

P1 0 35  70   
P2   30 100 65 90 
m1   31 100 66  
m2   105 105 105  
m3    120  120 

Contact info: http://www.ida.liu.se/~viaiz
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Hard process with hard deadline:

Ua(t)30
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50 ms 110 ms

Ua(50) = 15

Ub(110) = 10

Overall utility:: U = 15 + 10 = 25

Soft processes with utility functions:

FTSS – static scheduling with fault tolerance
FTSF – quasi-static scheduling with 

straightforwardly-introduced fault tolerance

FTQS – quasi-static scheduling with fault tolerance

Utility-based Optimization with Soft and Hard Real-Time Constraints

+ Global Optimization of Checkpointing

+ Mapping of Embedded Systems with Performance/Transparency Trade-off
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Mapping and replication (MR)

Mapping and re-execution (MX)

Mapping and policy assignment (MRX)
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increased transparency

leads to the reduction in performance

Good for debugging and testing but…

Transparency is achieved with frozen
processes and messages that are always 
scheduled at one time independent of 
external fault occurrences, which results in 
a much smaller number of system states

Which fault-tolerance policy should be
assigned to which process?

The quasi-static scheduling generates a set of static schedules
that maximize the  overall utility for a particular execution and

fault scenario while satisfying hard deadlines


