
Energy-Efficient Mapping and Scheduling for DVS Enabled
Distributed Embedded Systems

Marcus T. Schmitz and Bashir M. Al-Hashimi
Dept. of Electronics and Computer Science

University of Southampton
Southampton, SO17 1BJ, United Kingdom

{m.schmitz,bmah}@ecs.soton.ac.uk

Petru Eles
Dept. of Computer and Information Science

Linköping University
S-58183 Link̈oping, Sweden

petel@ida.liu.se

Abstract

In this paper, we present an efficient two-step iterative synthe-
sis approach for distributed embedded systems containing dy-
namic voltage scalable processing elements (DVS-PEs), based
on genetic algorithms. The approach partitions, schedules, and
voltage scales multi-rate specifications given as task graphs
with multiple deadlines. A distinguishing feature of the pro-
posed synthesis is the utilisation of a generalised DVS method.
In contrast to previous techniques, which ”simply” exploit
available slack time, this generalised technique additionally
considers the PE power profile during a refined voltage selec-
tion to further increase the energy savings. Extensive experi-
ments are conducted to demonstrate the efficiency of the pro-
posed approach. We report up to 43.2% higher energy reduc-
tions compared to previous DVS scheduling approaches based
on constructive techniques and total energy savings of up to
82.9% for mapping and scheduling optimised DVS systems.

1. Introduction and Related Work
Modern embedded systems are often implemented as dis-
tributed systems consisting of several processing elements
(PEs), like programmable microprocessors, ASIPs, FPGAs,
and ASICs. In reality, such embedded systems have to con-
currently perform a multitude of complex tasks under a strict
timing behaviour, given in the system specification. However,
due to the various degrees of application parallelism, the PEs
experience non-uniform workloads, resulting in idle intervals.
Furthermore, the performance of the allocated architecture can
often not be adapted perfectly to the application needs, turning
out as slack between deadline and the real finishing time.

Dynamic voltage scaling (DVS) exploits such idle and slack
times to reduce the power consumption [12, 14, 21]. This is
done by conjointly changing the supply voltage and the opera-
tional frequency during run-time, with respect to temporal per-
formance requirements. Recent implementations of DVS pro-
cessors have shown that voltage scaling can reduce the power
consumption by up to 10 times when running real-life appli-
cations [5]. Nevertheless, modern microprocessors make often
use of gated clocks to switch off unused circuit parts during idle

times. Hence, the power consumption depends on the function
carried out, resulting in non-uniform PE power profiles; this
holds also for DVS-PEs [5]. It was shown in [14, 19, 23] that
the consideration of the PE power profile during the voltage
selection leads to further energy savings.

System level co-design is a methodology aiming to aid the
system designers/architects to solve the difficult problem of
finding the ”best” suitable implementation for a system spec-
ification. Three important co-synthesis steps are: a)Mapping:
Determining the assignment of computational tasks to PEs and
data transfers to communication links (CLs), b)Scheduling:
Determining the execution order (sequencing) of tasks mapped
to PEs and communications to CLs, and c)Evaluation: De-
termining the quality of the implementation candidate (timing
feasibility, cost, power, area, etc.). Previous research in co-
synthesis is extensive but has mainly focused on traditional
architecturesexcludingissues related to power [15, 20, 26] or
considered energy optimisation with components that arenot
DVS enabled [8, 16, 22]. This research will provide a valuable
basis for the presented work. However, three recently proposed
synthesis approaches for distributed systems have a close re-
lationship to the problems we address in this paper. In [11],
a DVS optimised schedule is derived using a constructive list
scheduling technique with a dynamic re-calculation of task pri-
orities based on average energy dissipation. If the found sched-
ule does not meet the specified deadline, priorities of tasks on
the critical path are increased and all tasks are re-scheduled. In
[18], a mobility based list schedule is modified towards DVS
utilisation by distributing slack time more evenly among the
tasks of the system. A method for the identification of scaled
supply voltages for distributed system was introduced in [3].
However, it focuses mainly on the voltage selection and its iter-
ative nature results in undesirable high execution times, which
can not be tolerated in the inner most loop of an iterative sched-
ule and mapping optimisation. All these approaches are based
on constructive scheduling heuristics and neglect the power
profile information during the supply voltage selection.

This paper presents an iterative list scheduling heuristic to
simultaneously optimise the schedule towards feasible timing
behaviour and utilisation of DVS-PEs, and hence the minimi-
sation of the dissipated energy. Due to the potentially larger

search space of iterative optimisation methods, compared to
constructive techniques, schedules with reduced energy dissi-
pation are likely be found. Furthermore, the optimisation pro-
cess is guided by a generalised DVS algorithm [23]. This volt-
age scaling technique takes into account the PE power profiles
during a refined voltage selection, leading to further energy re-
ductions. In addition to the schedule optimisation, we employ
a task mapping based on GA to push the distribution of tasks
among the architecture towards energy-efficiency by abetting
the exploitation of DVS. Overall, we concentrate here on the
task mapping and scheduling aspects rather than on the voltage
selction, which is explained in [23].

The presented work makes the following contributions: a)
It is shown how iterative improvement mapping and schedul-
ing algorithms can be effectively adapted to optimise system
implementations towards an efficient utilisation of the DVS-
PEs while meeting, at the same time, hard deadlines. This is
done using a new two-step approach for scheduling and map-
ping based on genetic algorithms (GAs). b) The outlined sched-
ule optimisation is based on a DVS algorithm, which takes into
account the PE power profiles, hence, leading to further energy
savings. c) To illustrate the efficiency of the proposed approach,
a comparative study is presented, comparing our results with
two recently published synthesis approaches [11, 18], which are
based on constructive list scheduling heuristics and neglect the
PE power profiles. This further includes a quantitative com-
parison between a variable-voltage system and a multi-voltage
system, which demonstrates the efficiency of the proposed tech-
nique also for multi-voltage processors.

The remainder of this paper is organised as follows: Prelim-
inary aspects are introduced in Section 2. Section 3 describes
our synthesis approach in detail which then, in Section 4, is
extended to multi-voltage systems. In Section 5 we present ex-
tensive experiments and comparisons with the results produced
by other approaches. We conclude in Section 6.

2. Preliminaries

2.1. Specification and Architectural Model
In this work, we consider that a multi-rate application is spec-
ified as a set of communicating tasks, represented by a task
graphGS(T ,C). This (hyper) task graph might be the combi-
nation of several smaller task graphs, capturing all task activa-
tions for the hyper-period (LCM of all graph periods). Fig. 1(a)
shows a task graph example. Each nodeτ ∈ T in these graphs
represents a task, an atomic unit of functionality to be executed
without preemption. A node might inherit a hard deadlineθ,
which must be met at run-time in order to ensure correct func-
tionality. Edgesγ ∈ C in the task graph denote precedence con-
straints and data dependencies between tasks. If two tasks,τi

andτ j , are connected by an edge, then the execution of taskτi

must be finished before taskτ j can be started. Data dependen-
cies inherit a data value, reflecting the quantity of information
to be exchanged by two tasks. Further, each task graph has a
specific periodp, representing the time limit between two suc-
cessive invocations. An implementation is only feasible when
all timing and precedence constraints are fulfilled.

(b)(a)

CI

CI

CI

τ τ 4

τ0

τ

p=
2.

0m
s

DVS−PE2

DVS−PE0

PE1

τ 6
θ6

3 τ 5
4,5θ

τ 21

=1.4ms

 =1.6ms

Figure 1. Task graph and DVS architecture

The architectures we consider here consist of heterogeneous
PEs, like general purpose processors, ASIPs, FPGAs, and
ASICs. These componentsincludestate-of-the-art DVS-PEs.
Furthermore, the PEs might employ lower level power manage-
ment techniques, like gated clocks. An infrastructure of com-
munication links, like buses and point-to-point connections,
connects these PEs through communication interfaces (CIs),
able to adapt to the different operational frequencies caused
by scaling the DVS-PEs. An example architecture is shown
in Fig. 1(b). The architecture is captured using a directed graph
GA(P ,L) where nodesπ ∈ P represent PEs and edgesλ ∈ L
denote CLs.

Each task of the system specification might have multi-
ple implementation alternatives, therefore, it can be potentially
mapped to several PEs able to execute this task. If two com-
municating tasks are accommodated on different PEs,πn and
πm with n 6= m, then the communication takes place over a CL,
involving a communication time and power overhead. For each
possible task mapping certain implementation properties, like
e.g. execution time, dynamic power dissipation, memory, and
area requirements, are given in a technology library. These val-
ues are either based on previous design experience or on esti-
mation techniques such as those presented in [4, 17, 25]. This
is not a trivial task and influenced by various parameters, e.g.
the input data of the application. However, such techniques are
essential to enable an effective co-synthesis, including the pre-
sented approach.

2.2. Task Execution Order and DVS
The relation between dynamic power dissipationPdyn, opera-
tional frequencyf , and supply voltageVdd is expressed by,

Pdyn = CL ·N0→1 · f ·V2
dd (1)

f = k · (Vdd−Vt)2/Vdd (2)

whereCL denotes the load capacitance of the digital circuit,
N0→1 represents the zero-to-one switching activity,k is a circuit
dependent constant, andVt is the threshold voltage. It can be
observed from Equation (2) that the operational frequencyf
decreases with decreasing supply voltageVdd, and hence the
task execution time increases. Thereby, DVS is applicable in
schedules where idle and slack times can be found, allowing to
slow down certain tasks while meeting hard deadlines. Since
the execution order of tasks influences the idle and slack times
in a schedule it should be optimised for the utilisation by DVS.
To clarify this, consider the following illustrative example.

PE0

PE1

PE2

4τ τ5

0τ
τ1 τ2

3
τ

6τ

(mW)

Slack

P

t
(ms)

E=71 Jµ

1 1.61.4

0.3 0.6 1

10.7 1.4 1.6

(a) Execution at nominal supply
voltageVmax

PE0

PE1

PE2

4τ τ5

0τ
τ1 τ2

τ3 τ6

P
E=65.6 Jµ

1 1.4 1.6

10.3 0.6

(mW)

t
(ms)

1.14 1.4 1.6

(b) Scaled execution with
Vdd3 = 2.08V andVdd6 = 2.34V

Figure 2. Possible schedule not optimised for DVS

Fig. 2(a) shows a possible schedule for the tasks given in
Fig. 1(a) executing at nominal supply voltage. The underlying
architecture consists of two DVS-PEs (PE0, PE2) and one non-
DVS-PE (PE1) connected through a bus, as given in Fig. 1(b).
The nominal supply voltageVmax and the threshold voltageVt

of PE0 and PE2 areVmax = 3.3V andVt = 0.8V, respectively,
while PE1 runs all tasks atVmax. For the sack of simplicity, the
communications are neglected when discussing this particular
example. The task execution timestmin and power dissipations
Pmaxat nominal supply voltage are given in Table 1, which also
shows the task mapping. According to these values, the energy

Task tmin (ms) Pmax (mW) mapping

τ0 0.3 10 PE1
τ1 0.3 20 PE1
τ2 0.4 15 PE1
τ3 0.1 40 PE2
τ4 0.4 70 PE0
τ5 0.2 90 PE0
τ6 0.3 20 PE2

Table 1. Execution times, power dissipations, and
mappings for the example task graph

dissipation corresponding to the given schedule can be calcu-
lated asE = ∑τ∈T Pmax(τ) · tmin(τ) = 71µJ. Considering the
deadlines given in Fig. 1(a), it can be observed from Fig. 2(a)
that the tasksτ3 andτ6 are eligible for scaling, sinceτ6 finishes
at 1msand it has a deadlineθ6 = 1.4ms, resulting in a slack
of 0.4ms. An extension of any other task can not be tolerated,
since taskτ5 has a finishing time equal to its deadline. By scal-
ing the schedule, using our implementation of the generalised
DVS technique (taking the PE power profile into account) pre-
sented in [23], the voltage schedule shown in Fig. 2(b) can be
produced, with tasksτ3 andτ6 executing at 2.08V and 2.34V,
respectively. Thereby, the energy is reduced to 65.6µJ (using
Equations (1) and (2)), a 7.6% reduction.

Now, consider a second feasible schedule at nominal supply
voltage, as shown in Fig. 3(a), where the order ofτ1 andτ2 has
been exchanged. Since the mapping of the tasks has not been
modified the dissipated energy remainsE = 71µJ. Observing

PE0

PE1

PE2

0τ

4τ τ5

τ1τ2

3
τ

6τ
t

(mW)
P

Slack

E=71 Jµ

0.7 1.1 1.3

10.70.3

(ms)
1.1 1.4 1.6

(a) Execution at nominal supply
voltageVmax

PE0

PE1

PE2

0τ
τ1τ2

3
τ

6τ
t

(mW)
P

E=53.9 Jµ

1.1 1.4 1.6

10.70.3

0.7 1.25

(ms)

4τ
5τ

(b) Scaled execution with
Vdd4 = 2.74V andVdd5 = 2.41V

Figure 3. Schedule optimised for generalised DVS

this schedule shows that only tasksτ4 andτ5 can be extended.
This is due to the slack time of taskτ5, which finishes execution
at 1.3mswhile its deadline isθ5 = 1.6ms. Generating a voltage
schedule for this execution order of tasks results in the supply
voltagesVdd4 = 2.74V andVdd5 = 2.41V, using the same gen-
eralised DVS technique as for the previous alternative. Hence,
the energy is reduced toE = 53.9µJ, an improvement of 24.1%
compared to the 7.6% of the first schedule.

Although the schedule in Fig. 3(a) shows less slack than
the one in Fig. 2(a), its energy reduction is significantly higher
(with 16.5%). This is due to the particular power consumptions
when executing the different tasks. The example demonstrates
how important it is to take into consideration the power profiles
during scheduling, in order to produce energy-efficient imple-
mentations with DVS-PEs.

2.3. Genetic List Scheduling Algorithm
List scheduling algorithms (LS) make scheduling decisions
based on task priorities. They maintain one or more ready list,
which contain tasks ready to be scheduled. A static schedule is
constructed by scheduling the ready task with the highest pri-
ority as soon as the eligible PE becomes available. Thereby,
the assignment of priorities defines the task execution order.
Most traditional list scheduling approaches use various sophis-
ticated algorithms to calculate these task priorities statically
(before list scheduling) or dynamically (re-calculation after
each scheduling step).

In contrast, genetic list scheduling algorithms (GLSA) con-
struct and evaluate many different schedules during an itera-
tive optimisation process. Task priorities are encoded into pri-
ority strings, hence, a manipulation through genetic operators
(e.g. crossover, mutation, etc.) is possible. As common for ge-
netic algorithms (GAs), the optimisation is guided by a objec-
tive, called fitness, which needs to be minimised or maximised.
More details on our GLSA are given in Section 3.1. The three
main advantages of GLSA over traditional LS are: a) The ob-
jective can be based on an arbitrary complex function which
needs to be optimised. b) The enlarge search space provides
the opportunity to find solutions with a potentially higher qual-

ity. c) There is a large freedom to trade-off between acceptable
synthesis time and solution quality, as opposed to constructive
techniques.

2.4. Problem Formulation
Using the common triplet notation for scheduling problems, our
problem is described byQm|prec|θ j , fA,∑Es

j , whereQm spec-
ifies a multiprocessor environment,precrefers to a task model
with precedence constraints,θ j and fA are objectives capturing
the deadline and area constraints, respectively.∑Es

j denotes the
additional objective to minimise the energy dissipation based
on DVS. Therefore, the scheduling problem for DVS is to find
an arrangement of the task execution order and mapping, such
that the energy reduction through DVS-PEs is maximised and
all specification constraints (timing, precedence, area, etc.) are
met. A more detailed description of the synthesis problem, in-
cluding the DVS problem, can be found in [24].

We make the assumption that the specified tasks are of suf-
ficiently coarse granularity and that the PEs can continue oper-
ation during the voltage scaling (as the case for the DVS pro-
cessor in [5]), which allows to neglect of the scaling overhead
in terms of power and time.

3. Energy-Efficient Synthesis Approach
In contrast to the GLSA based synthesis approach presented
in [6, 10], our synthesis approach separates task mapping and
scheduling into two nested optimisation steps; see Fig. 4(a).
• The GLSA for energy-efficiency, which produces an opti-

mised sequencing of task executions (Section 3.1).
• A mapping optimisation based on GA, which distributes

the tasks among the PEs of the architecture and, by this,
decides on the execution time and power dissipation of
each task (Section 3.2).

We have split these two steps due to the following reasons: a)
The combination of list scheduling and mapping algorithms de-
cide upon task priorities which task is to be scheduled next, but
at this point it isnot known where to execute the chosen task.
Therefore, the execution time and power dissipation of the task
are unknown as well. In this context, it is the duty of the sched-
uler to make a ”greedy” mapping decision based on the power
and time values with respect to the design objectives. How-
ever, DVS influences the execution times and power dissipa-
tions, hence, the mapping decision made upon the static values
might proof to be wrong, especially from the energy reduction
point of view. Separating the scheduling and mapping into two
nested iterative optimisations overcomes this problem since the
mapping is given before a schedule is constructed. b) Due to the
constructive nature of list scheduling and mapping algorithms
a solution is constructed one by one. This results in a greedy
approach, which is likely to get trapped at low quality or in-
feasible solutions in the presence of tight area and timing con-
straints. A solution to overcome this problem was presented in
[15]. However, this approach neglects issues related to power.
By splitting the problem into two steps, we avoid this greedi-
ness problem and can leverage the advantage of an increased
search space, which is explored iteratively. Clearly, increasing

τ0

τ1

τ2

τ4

τ 3

τ0

1τ

3τ

τ2

τ4

(a) (b)

Pr = 5

Pr = 4

Pr = 7

Pr = 3

Pr = 2

Pr
io

ri
ty

T
as

k

3

5

2

4

7

Architecture + Specification

Optimised implementation

Evaluation

Voltage Scaling

Mapping

Scheduling

E
E

−G
LS

A

E
E

−G
M

A

Figure 4. Presented energy-efficient synthesis ap-
proach and task priority encoding into priority string

the search space results in high optimisation times, however,
we show in Section 5 that these times are still reasonable.

3.1. Low-Energy Genetic List Scheduling Algorithm

In this section, we give an overview of our DVS optimised
GLSA for energy-efficiency, calledEE-GLSA. The algorithm
generates an energy-efficient schedule of tasks and communi-
cations, for agivenmapping. By imitating and applying the
principles of natural selection and ”survival of the fittest” on
a population pool of individuals, GAs are able to evolve (op-
timise) solutions over several generations. In each generation
a new population is evolved by mating (through crossover) the
fittest individuals of the current population. Mutation provides
an additional opportunity to enter unexplored regions of the
search space by applying randomly changes to an individual.
In our case, each individual is represented by a priority string
(solution candidate) and each solution represents a schedule.
Fig. 4(b) shows the encoding and the relations between prior-
ity string and tasks. A description of theEE-GLSA is given in
Fig. 5. The distinguishing features of this GA can be found in
steps 02, 03, and 04, which are explained next. The remaining
steps vary only slightly from common GAs, and more details
on the functionality of GAs can be found elsewhere [9]. In step
02, for each priority string of the population a schedule is gener-
ated by going through the following two steps: a) The priorities
of each individual are assigned from the corresponding prior-
ity string. b) Based on this priority assignment, the execution
order of tasks is determined by a list scheduling algorithm. In
addition, our implementation of the list scheduler relies solely
on the priorities to make scheduling decisions, i.e., no other
optimisation technique (e.g. hole filling) is applied. Although
such techniques can improve the timing behaviour by eliminat-
ing idle periods, we dissociate from them since DVS exploits
exactly these idle times.

In step 03, the produced schedules are passed to our gener-
alised DVS algorithm [23], which identifies the supply voltage
for each task executed on a DVS-PE to minimise the energy
dissipation. These voltage schedules are generated taking into
account the PE power profiles, leading to a further energy re-
duction. Based on the steps 02 and 03, the fitness for each
priority string is calculated in step 04. It is this fitness function
which guides the optimisation process, and therefore, it should
lead the search towards low energy and feasible implementa-

EE-GLSA
Input: - task graph TG

- mapping and execution properties corresponding
to the mapping

Output: - timing and energy optimised schedule

01: Initialisation: Create initial population poolP of priority
strings, half randomly generated and half based on mobility.

02: Perform List Scheduling: Generate, for each member of
the solution pool, a schedule based on the corresponding
priority string.
a) Assign task priorities from the priority string
b) Invoke list scheduler without hole filling

03: Perform Voltage Scaling: Invoke the generalised DVS tech-
nique, calculating supply voltages for each task executed on a
DVS-PE. This is done under the consideration of the indi-
vidual power dissipation of tasks.

04: Assign Fitness:Compute fitness of each individual in the
population pool.
a) Calculate timing penalty
b) Calculate energy based on the supply voltages
c) Derive fitness based on energy and timing penalty

05: Ranking: Individuals are ranked according to their fitness.
06: Selection:According to the size of the generational overlap,

select individuals for mating. High ranked individuals have a
high probability to be selected.

07: Mating: Produce two-point crossover between a pair of
selected individuals.

08: Mutation: Randomly change genes of individuals using a
dynamic mutation probability scheme, with exponential
decreasing probability during run-time.

09: Offspring insertion: Exchange low ranked individuals by
newly produced individuals with respect to the size of the
generational overlap.

10: Termination: If no improved individual (improve-
ment> 1%) has been produces for 10 generations, then
terminate. Otherwise, continue with step 02.

Figure 5. The proposed EE-GLSA approach for energy-
efficient schedules

tions. OurEE-GLSA relies on the following fitness functionFS

to achieve these goals,

FS =

(
∑

ε∈A
E(ε)

)
︸ ︷︷ ︸

Energy diss.

·

1+
∑

τ∈Td

DV2
τ

T2
HP

︸ ︷︷ ︸

Time penalty

(3)

whereA = T ∪C defines the set of all activities andTd rep-
resents all hard deadline tasks. The first part of the equation
is used to calculate the total dynamic energy dissipation of all
activities ε ∈ A . Based upon the type of activity, the energy
dissipation can be calculate in the following way,

E(ε) =

Pmax(ε) · tmin(ε) · V2

dd(ε)
V2

max(ε) if ε ∈ TDVS

Pmax(ε) · tmin(ε) if ε ∈ T \TDVS

PC(ε) · tC(ε) if ε ∈ C

wherePmaxandtmin refer to the power dissipation and execution
time at nominal supply voltage, respectively,Vdd is the scaled

supply voltage,TDVS is the set of all tasks mapped to DVS-
PEs, andPC and tC denote the power and execution time of
communication activities. The second part of the fitness func-
tion (3) introduces a penalty factor due to deadline violations of
deadline tasks which are given byDVτ = max

(
0, tF(τ)− td(τ)

)
,

wheretF(τ) andtd(τ) denote the finishing time and deadline of
taskτ, respectively.THP is the hyper task graph period, used
to relate the deadline violations. Squaring has been applied in
order to assign a higher penalty to larger violations of imposed
deadlines. The parameters of the GA where set as follows: The
population pool consists of 25 individuals, the dynamic mu-
tation probability is calculated asMP = max(0.15,1/exp(NS ·
0.05)) (NS is the current generation), and the generational over-
lap is 50%.

3.2. Low-Energy Task Mapping Algorithm
The mapping step determines which PE carries out which task.
Thereby, it determines the execution time and power dissipa-
tion at nominal supply voltage. The mapping also specifies the
area requirements of tasks in terms of bytes or gates, whether
implemented as software or hardware. Obviously, due to the in-
terrelation between scheduling and mapping, the distribution of
tasks among the PEs has an influence on how well the allocated
DVS-PEs can exploit their energy reduction possibilities.

We have extended a GA based task mapping algorithm sim-
ilar to the one given in [8] such that it solves our specific prob-
lem. The extension is based on the presentedEE-GLSA algo-
rithm (see Section 3.1), which is called from inside the mapping
optimisation loop and is used to calculate parts of the mapping
fitness functionFM. In our GA based mapping approach, called
EE-GMA, solution candidates are encoded into mapping strings.
Each gene of these strings captures a mapping of a task to a PE.
The GA we use to evolve the solutions is similar to the previ-
ously presented one (Fig. 5). In order to guide the optimisation
not only towards low energy and timing feasible solutions, us-
ing the scheduling fitness, but also towards feasibility in term
of area, the fitness functionFM uses an additional objective,
namely area. The fitness we assign to individuals is expressed
by,

FM = FS·∏
π∈P

APπ (4)

whereFS denotes the schedule fitness (including the DVS re-
duced energy and the timing penalty, as given by Equation (3))
andAPπ represents an area penalty for each PEπ ∈ P with ex-
ceeded area constraints. The exact equation for the calculation
of APπ is given by,

APπ =

{
1 if AAπ ≥ SAπ

k ·
(

SAπ
AAπ
−1
)

+1 otherwise

where the used area is denoted asSAπ and the maximal avail-
able area is represented byAAπ. If the available areaAAπ is
not exceeded we do not need to assign an area penalty, hence,
FS is multiplied by one. Otherwise, the used areaSAπ and the
available areaAAπ are related and multiplied by a constantk,
which allows to adjust the aggressiveness of the penalty. Dur-
ing our experiments we have setk = 0.02. This was found to

be low enough to keep a high population diversity while avoid-
ing, at the same time, infeasible results. The parameters of the
GA where set as follows: The population pool consists of 50
individuals, the dynamic mutation probability is calculated as
MP = max(0.05,1/exp(NM ·0.05)) (NM represents the current
generation), and the generational overlap is 20%.

4. Variable-Voltage vs. Multi-Voltage
This section clarifies the differences between variable-voltage
and multi-voltage DVS-PEs and introduces necessary equa-
tions, later used in the experimental results. The generalised
DVS technique [23], as used in our synthesis approach, pro-
duces supply voltages under the assumption that a continuous
voltage range is available. However, real DVS processors [1, 2,
5] show a limited number of supply voltages at which tasks can
be executed. For example, the DVS processor given in [5] uses
a 7 bit frequency register, allowing to operate at 15 different
discrete voltage-frequency (5 bit VCO) settings. Therefore, the
continuous selected supply voltages are not directly applicable,
however, they can be used as a base for mutli-voltage selection.
It has been shown in [14] that the two neighbouring discrete
voltagesVd1 andVd2, Vd1 < Vdd < Vd2, around the continuous
selected voltageVdd are the ones which minimise energy, under
the assumption that the time overhead for switching between
voltages can be neglected. The corresponding execution times
td1 andtd2 for task execution atVd1 andVd2, can be calculated
as,

td1 = texe·
Vd1 · (Vdd−Vt)2

(Vd1−Vt)2 ·Vdd
·

Vdd
(Vdd−Vt)2 − Vd2

(Vd2−Vt)2

Vd1
(Vd1−Vt)2 − Vd2

(Vd2−Vt)2

(5)

td2 = texe− td1 (6)

wheretexe denotes the execution time of the task at the contin-
uous selected voltageVdd.

5. Experimental Results
The proposed synthesis approach was tested on several bench-
mark examples to demonstrate its capability to produce high
quality solutions in terms of energy, timing, and area re-
quirements. It was implemented using C++ on a Pentium-
III/750Mhz/128MB Linux PC. The benchmarks consist of four
sets: 1) We have used TGFF [7] to generate 25 hypothetical
examples (tgff1 – tgff25)1. These specifications include
power managedDVS-PEs and non-DVS-PEs. Accordingly, the
power dissipation varies among the executed tasks (with max-
imal variations of 2.6 times). 2) TheHou examples are taken
from [13]. The PEs of these benchmarks are characterised by
non uniform power profiles. Since the initial PEs, considered
in [13], are not DVS enabled, we extended the same PEs with
DVS capabilities, such thatVt = 0.8V andVmax= 3.3V. 3) The
benchmark setsTG1andTG2where taken from [11] and con-
sist of 30 graphs, each. These specifications include DVS-PEs
with constant power dissipation (uniform power profile) and
the given time constraints represent tight deadlines. 4) The final
benchmarkmeas was taken from [3] and represents a measure-
ment application with 12 tasks and 12 communications. The

1Available at: http://www.ecs.soton.ac.uk/˜ms99r/benchmarks.html

EVEN-DVS [18] Proposed
No. of Reduction Reduction Reduction

Example tasks/ mobility GLSA EE-GLSA
edges (%) (%) (%)

Tgff1 8/9 45.50 46.27 71.05
Tgff2 26/43 2.80 22.91 26.79
Tgff3 40/77 25.98 51.89 69.18
Tgff4 20/33 6.66 12.55 12.99
Tgff5 40/77 5.34 11.13 17.14
Tgff6 20/26 1.23 1.35 1.61
Tgff7 20/27 10.16 24.47 29.90
Tgff8 18/26 7.28 10.01 13.83
Tgff9 16/15 2.25 16.76 24.85
Tgff10 16/21 26.08 34.65 35.77
Tgff11 30/29 1.28 13.67 16.96
Tgff12 36/50 3.14 4.49 5.11
Tgff13 37/36 16.73 19.56 20.71
Tgff14 24/33 12.78 23.44 28.12
Tgff15 40/63 0.84 2.13 4.15
Tgff16 31/56 16.63 28.68 29.88
Tgff17 29/56 13.06 19.34 22.20
Tgff18 12/15 0.00 6.87 23.44
Tgff19 14/19 20.63 23.98 27.84
Tgff20 19/25 37.77 45.02 52.30
Tgff21 70/99 0.07 6.13 19.45
Tgff22 100/135 13.48 19.87 29.10
Tgff23 84/151 6.70 15.05 23.20
Tgff24 80/112 0.06 2.08 8.53
Tgff25 49/92 1.50 14.18 20.16
Hou 20/29 7.29 22.46 39.40

Hou c 8/7 20.64 20.64 28.56

Table 2. Scheduling comparison between EVEN-DVS
[18] and the proposed EE-GLSA approach

architecture consists of two identical, uniform power profile
DVS-PEs.

To give insight into the energy efficiency of the proposed
synthesis approach, we compare it first with the approach pre-
sented in [18], which neglects the PE power profiles (in the
following we call this approachEVEN-DVS). Table 2 shows
this comparison for the benchmark setstgff andHou. Each
benchmark is characterised by its complexity in terms of nodes
and edges. Column 3 shows the achieved energy reductions
(with respect to a task execution at nominal supply voltage) of
theEVEN-DVS approach using a mobility based schedule. This
represents the approach presented in [18]. Column 4 shows
the energy reduction for the same DVS technique, however, the
mobility based scheduling was replaced by a GLSA. More ex-
actly, the scheduling is performed using our GA based approach
but without the generalised DVS technique which is part of the
EE-GLSA. In Column 5 the energy reductions of the proposed
EE-GLSA approach, based on a generalised DVS technique and
a GLSA, are presented. Comparing Column 3 and 5, it can be
observed that our approach is able to reduce the energy dissipa-
tion of all examples further. The achieved reductions are up to
43.2% percent higher. However, to avoid the misleading argu-
ment that these higher energy reductions are solely introduced
by the GLSA, we have combined theEVEN-DVS approach with
exactly the same scheduling technique (GLSA) as used in our
approach, Column 4 shows the results. It can be observed that
the proposedEE-GLSA technique results in higher energy sav-
ings for all examples, with reductions of up to 24.78% com-

LEneS [11] Proposed
Average CPU Average Average CPU

Example Reduc. time Reduc. Reduc. time
dis. (%) (s) cont. (%) dis. (%) (s)

TG1 28 10–120 41.16 37.61 3–16
TG2 13 10–120 18.82 15.83 0.3–1.7

Table 3. Comparison between the results of the LEneS
algorithm [11] and the proposed EE-GLSA

pared to theEVEN-DVS based GLSA. This indicates that the
generalised DVS technique [23] combined with the presented
scheduling approach generates solutions, that lead to higher en-
ergy savings. Regarding the computational complexity, the re-
sults in the Columns 3, 4, and 5 where achieved in most 0.23s,
1.19s, and 17.99s, respectively, for benchmarks with up to 100
tasks.

Next, we compare the approach proposed by Gruian et al.
[11], calledLEneS, with the presented scheduling technique.
Similar to EVEN-DVS, LEneS neglects the PE power profile
during the voltage selection. Table 3 presents the results ob-
tained by both algorithms for the benchmarksTG1 andTG2.
LEneS was able to reduce the power consumption of both
benchmark sets on average by 28% and 13%. The optimisation
took between 10sand 120s for each of the 60 task graphs in the
benchmark sets. The presentedEE-GLSA was able to reduce
these values further. The average energy reductions resulted
in 41.16% and 18.82%. However, since our approach produces
continuous selected scaling voltages, we have adopted the same
discrete voltages (0.9V, 1.7V, 2.5V, and 3.3V) as given in [11]
to ensure a fair and accurate comparison. Using Equations
(5) and (6) the energy reductions of the multi-voltage system
are calculated as 37.61% and 15.81%. Note that, since the
benchmark setsTG1andTG2show constant power dissipation
among the executed tasks, our approach is not able to lever-
age its additional energy reduction feature to consider these
power variations. However, the achieved savings are 9.61% and
2.81% higher, showing that our approach performs well even
when applied to systems with uniform power profiles. Com-
paring the computational times indicates a performance advan-
tage of the proposed method, which produced results in 0.3s to
16s. Another interesting observation is that the multi-voltage
setting (using just 4 discrete voltages) consumes only less than
4% more power than the variable-voltage approach.

We have further conducted a set of mapping optimisation ex-
periments and achieved similar results and observations as for
the GLSA andEE-GLSA based schedule optimisation. The re-
sults are given in Table 4, which comparesEVEN-DVS and the
proposedEE-GLSA when included into the same mapping al-
gorithm (EE-GMA, Section 3.2). The proposed technique was
able to further reduce the energy dissipation when compared
to the results of theEVEN-DVS approach, with improvements
of up to 42.26%. The optimisation times forEVEN-DVS var-
ied between 1.91s and 172.38s for task graphs with up to 100
nodes. Our approach optimised the same examples in 2.27s to
87657s. These increased execution times are due to two rea-
sons: a) The search space forEVEN-DVS is smaller, since it is
based on a constructive list scheduling, and b) The generalised

EVEN-DVS [18] Proposed
Example Reduction CPU time Reduction CPU time

(%) (s) (%) (s)

Tgff1 65.23 1.91 70.60 6.53
Tgff2 11.80 13.34 47.08 46.78
Tgff3 24.60 39.68 66.86 2394.47
Tgff4 75.37 12.15 82.88 585.47
Tgff5 24.92 41.23 54.00 1824.16
Tgff6 70.44 11.66 82.14 374.11
Tgff7 21.59 5.55 28.75 51.08
Tgff8 65.18 8.49 72.44 49.91
Tgff9 40.36 4.63 46.28 63.97
Tgff10 9.41 3.98 23.58 14.81
Tgff11 16.02 14.48 25.79 133.10
Tgff12 48.36 37.61 80.45 3295.83
Tgff13 44.92 32.56 61.22 1958.38
Tgff14 1.88 14.39 17.09 96.06
Tgff15 10.34 54.39 22.85 1066.99
Tgff16 27.05 24.64 28.97 275.79
Tgff17 29.69 26.80 45.32 396.99
Tgff18 17.80 2.80 30.02 12.27
Tgff19 36.59 4.12 47.14 23.96
Tgff20 60.87 7.18 76.42 144.99
Tgff21 29.30 59.71 33.41 3441.92
Tgff22 22.74 172.38 47.48 3438.95
Tgff23 40.90 87.85 61.97 87657.76
Tgff24 58.07 98.07 72.08 16355.14
Tgff25 20.95 44.36 26.44 2740.64
Hou 9.41 11.43 41.48 31.51

Hou c 20.53 1.97 37.76 2.27

Table 4. Comparison between the mapping optimisa-
tion for EVEN-DVS [18] and EE-GLSA

DVS approach [23] shows a higher computational complexity
than the voltage scaling used inEVEN-DVS.

The next experiment is concerned with the benchmark ex-
amplemeas. We had to re-calculate the throughput constraints
at nominal supply voltageVdd = 5V for the same scheduling
and mapping as given in [3], since we employ a different com-
munication model (contention, requests for the bus, etc.). Un-
fortunately this makes a direct comparison to the results given
in [3] impossible. Nevertheless, due to the highly serialised
structure of this example, we could calculate the theoretically
optimal supply voltages settings, which resulted in an energy
reduction of 13%, with respect to a task execution at nominal
supply voltage. Our synthesis approach found a near optimal
solution, with an energy dissipation only 4% higher than the
theoretical bound, in 8.3s.

The final experiment demonstrates that our scheduling op-
timisation (EE-GLSA) does not only reduce significantly the
dissipated energy, but simultaneously improves the timing be-
haviour compared to constructive techniques. This is of great
importance since high quality solutions could be found in de-
sign space regions where infeasible and feasible solutions are
spatially placed closely together. Making a wrong decision
might involve a more costly implementation of the system. To
clarify this, consider the mapping and scheduling results shown
in Table 5. The ten examples are taken from Gruian’s bench-
marks setTG1 and use an architecture of 10 identical DVS-
PEs. Column 2 shows the reduction results obtained by EVEN-
DVS, which is based on a constructive list scheduling heuristic

EVEN-DVS [18] Proposed
Example Reduc. (%) CPU time (s) Reduc. (%) CPU time (s)

r000 unsolved 18.60 26.53 194.86
r001 21.97 13.87 47.35 804.73
r002 unsolved 16.51 25.89 189.97
r003 28.43 15.98 44.29 769.58
r004 unsolved 19.97 36.15 360.58
r005 37.45 16.75 49.83 1596.67
r006 unsolved 17.55 34.62 827.22
r007 unsolved 20.20 32.48 269.07
r008 unsolved 19.25 26.32 207.46
r009 37.64 14.99 54.23 1535.28

Table 5. Comparison between the mapping optimisa-
tion for EVEN-DVS [18] and EE-GLSA for TG1

(mobility based). Observe that for 6 out of 10 task graphs the
scheduling and mapping attempt failed (unsolved), making it
necessary to increase the performance of the allocated system.
On the other hand, ourEE-GLSA is able to improve infeasible
schedules by providing feedback to the optimisation process. In
this way, it was possible to find feasible mappings and sched-
ules for all examples by using ourEE-GLSA approach. This
effect is likely to appear in the presence of tight deadline spec-
ifications, as e.g., the benchmark setTG1of Gruian et al. [11].
Of course, these higher quality results require longer optimisa-
tion times.

6. Conclusions
We have presented a new approach for the energy-efficient
scheduling and mapping of distributed embedded systems. The
energy-efficiency is achieved not only through the schedule and
mapping optimisation towards DVS, but under the additional
consideration of the PE power profiles during these optimisa-
tion steps. Furthermore, it was shown that genetic list schedul-
ing and mapping algorithm can be extended to solve the specific
problems introduced through voltage scaling. We have also val-
idated the quality of the proposed approach through extensive
benchmark examples and a comparison with two recently pro-
posed synthesis techniques for DVS enable distributed systems.
This has shown that with the usage of a GA based synthesis ap-
proach for DVS enabled architectures it is possible to find better
solutions in reasonable amounts of time.

Acknowledgements
The authors wish to acknowledge Flavius Gruian (Lund Uni-
versity, Sweden) and Neal K. Bambha (University of Maryland,
USA) for kindly providing their benchmark sets.

References
[1] Intelr XScaleTM Core, Developer’s Manual, December 2000.

Order Number 273473-001.
[2] Mobile AMD AthlonTM4, Processor Model 6 CPGA Data Sheet,

November 2000. Publication No 24319 Rev E.
[3] N. Bambha, S. Bhattacharyya, J. Teich, and E. Zitzler. Hybrid

Global/Local Search Strategies for Dynamic Voltage Scaling in
Embedded Multiprocessors. InProc. CODES, pages 243–248,
April 2001.

[4] C. Brandolese, W. Fornaciari, F. Salice, and D. Sciuto. Energy
Estimation for 32 bit Microprocessors. InProc. CODES, pages
24–28, May 2000.

[5] T. D. Burd, T. A. Pering, A. J. Stratakos, and R. W. Brodersen.
A Dynamic Voltage Scaled Microprocessor System.IEEE J.
Solid-State Circuits, 35(11):1571–1580, November 2000.

[6] M. K. Dhodhi, I. Ahmad, and R. Storer. SHEMUS: Synthesis of
Heterogeneous Multiprocessor Systems.J. Microprocessors and
Microsystems, 19(6):311–319, August 1995.

[7] R. Dick, D. Rhodes, and W. Wolf. TGFF: Task Graphs for free.
In Proc. CODES, pages 97–101, March 1998.

[8] R. P. Dick and N. K. Jha. MOGAC: A Multiobjective Ge-
netic Algorithm for Hardware-Software Co-Synthesis of Dis-
tributed Embedded Systems.IEEE Trans. Computer-Aided De-
sign, 17(10):920–935, Oct 1998.

[9] D. E. Goldberg.Genetic Algorithms in Search, Optimization &
Machine Learning. Addison-Wesley Publishing Company, 1989.

[10] M. Grajcar. Genetic List Scheduling Algorithm for Scheduling
and Allocation on a Loosely Coupled Heterogeneous Multipro-
cessor System. InProc. DAC, pages 280–285, 1999.

[11] F. Gruian and K. Kuchcinski. LEneS: Task Scheduling for Low-
Energy Systems Using Variable Supply Voltage Processors. In
Proc. ASP-DAC, pages 449–455, Jan 2001.

[12] I. Hong, D. Kirovski, G. Qu, M. Potkonjak, and M. B. Srivastava.
Power Optimization of Variable-Voltage Core-Based Systems.
IEEE Trans. Computer-Aided Design, 18(12):1702–1714, 1999.

[13] J. Hou and W. Wolf. Process Partitioning for Distributed Embed-
ded Systems. InProc. CODES, pages 70 – 76, March 1996.

[14] T. Ishihara and H. Yasuura. Voltage Scheduling Problem for
Dynamically Variable Voltage Processors. InProc. ISLPED,
pages 197–202, 1998.

[15] A. Kalavade and E. A. Lee. A Global Criticality/Local Phase
Driven Algorithm for the Constrained Hardware/Software Parti-
tioning Problem. InProc. CODES, pages 42–48, Sept. 1994.

[16] D. Kirovski and M. Potkonjak. System-level Synthesis of Low-
Power Hard Real-Time Systems. InProc. DAC, pages 697–702,
1997.

[17] Y.-T. S. Li, S. Malik, and A. Wolfe. Performance Estimation of
Embedded Software with Instruction Cache Modeling. InProc.
ICCAD, pages 380–387, Nov. 1995.

[18] J. Luo and N. K. Jha. Power-conscious Joint Scheduling of Peri-
odic Task Graphs and Aperiodic Tasks in Distributed Real-time
Embedded Systems. InProc. ICCAD, pages 357–364, Nov 2000.

[19] A. Manzak and C. Chakrabarti. Variable Voltage Task Schedul-
ing for Minimizing Energy or Minimizing Power. InProc.
ICASSP, pages 3239–3242, 2000.

[20] S. Prakash and A. Parker. SOS: Synthesis of Application-
Specific Heterogeneous Multiprocessor Systems.J. Parallel &
Distributed Computing, pages 338–351, Dec 1992.

[21] G. Quan and X. S. Hu. Energy Efficient Fixed-Priority Schedul-
ing for Real-Time Systems on Variable Voltage Processors. In
Proc. DAC, pages 828–833, 2001.

[22] A. Rae and S. Parameswaran. Voltage Reduction of Application-
Specific Heterogeneous Multiprocessor Systems for Power Min-
imisation. InProc. ASP-DAC, pages 147–152, 2000.

[23] M. T. Schmitz and B. M. Al-Hashimi. Considering Power Vari-
ations of DVS Processing Elements for Energy Minimisation in
Distributed Systems. InProc. ISSS, pages 250–255, Oct 2001.

[24] M. T. Schmitz, B. M. Al-Hashimi, and P. Eles. Co-Synthesis
with Energy Minimisation for Heterogeneous Distributed Sys-
tems containing Power Managed Processing Elements. Tech. Re-
port UOS-TR-MTS01, University of Southampton, Sept. 2001.

[25] V. Tiwari, S. Malik, and A. Wolfe. Power Analysis of Embedded
Software: A First Step Towards Software Power Minimization.
IEEE Trans. VLSI Systems, Dec 1994.

[26] W. H. Wolf. An Architectural Co-Synthesis Algorithm for Dis-
tributed, Embedded Computing Systems.IEEE Trans. VLSI Sys-
tems, 5(2):218–229, June 1997.

