
ABSTRACT
With the increasing complexity of today’s embedded sys-
tems, there is a need to formally verify such designs at
mixed abstraction levels. This is needed if some compo-
nents are described at high levels of abstraction, whereas
others are described at low levels. Components in single
abstraction level designs communicate through channels,
which capture essential features of the communication. If
the connected components communicate at different
abstraction levels, then these channels are replaced with
transactors that translate requests back and forth between
the abstraction levels. It is important that the transactor
still preserves the external characteristics, e.g. timing, of
the original channel. This paper proposes a technique to
generate such transactors. According to this technique,
transactors are specified in a single formal language, that
is capable of capturing timing aspects. The approach is
especially targeted to formal verification.
1. INTRODUCTION

Developers of embedded systems face an ever-increas-
ing complexity of their designs. At the same time, they
also face an ever-decreasing time-to-market. A common
way to deal with this challenge is to divide the design into
several components, each component with its own respon-
sibilities and functionality. These components can either
be reused from a repository or be developed in-house. In
the former case, the developers do not have to design the
whole system from scratch, but they can rely on partial
designs of some functionality developed previously. How-
ever, in some cases, it might be more efficient to develop
the desired, customised, functionality from scratch.

This divide-and-conquer technique is usually com-
bined with an iterative top-down approach, where the sys-
tem is initially defined at a high level of abstraction,
leaving out most low-level details. The design is then
gradually refined and more and more details are put into
place. During this process, some parts of the system will
be described at high-level, and other parts at low level.

This situation, together with the fact that verification
and test consume a significant part of the total develop-
ment cost, stresses the need for efficient verification meth-
ods that target systems described at mixed abstraction levels.

The above-mentioned problem is traditionally solved
in an unsystematic manner, where developers rewrite
properties and modify the system in an ad hoc manner in
order to match the mixed level model. Lately, a more sys-
tematic approach, involving transactors, has been pro-
posed [4], [5].

The key issue of the problem lies in the fact that two
(or more) components described at different abstraction
levels cannot communicate with each other, since they, in
principle, use different protocols. One component uses a
more high-level protocol than the other. A transactor is a
mechanism that bridges this gap by translating the high-
level requests into their low-level ditto and vice versa.
Moreover, evaluations have shown that using a transactor-
based verification approach is more effective than a tradi-
tional RTL verification flow with respect to both fault and

assertion coverage [1]. Using transactors moreover helps
in reusing testbenches as well as assertions in the refine-
ment process.

A few work have been performed in the area of auto-
matically generating this type of transactors, based on
protocol conversion techniques [2], [3]. Bombieri et al.
[4] start from a master-bus-slave communication frame-
work that contains information on how communication is
carried out at different abstraction levels on the specified
infrastructure (bus). From this framework, the authors
extract a master, bus or a slave transactor from a high to
low level or vice versa. Their extraction algorithm is
based on Extended Finite State Machines. It does, how-
ever, not handle timing aspects explicitly and is only
applicable on bus-based protocols.

Balarin et al. [5] use Sequential Extended Regular
Expressions (SERE) to specify the relation between the
two interfaces of the transactor and to automatically gen-
erate the corresponding transactor. The transactors are
generated in a programming language such as C++, Ver-
ilog or SCE-MI, in order to facilitate integration with
existing simulation tools. The approach supports to a
lesser extent formal methods, and it completely lacks the
support for time.

Protocols are often described using various kinds of
regular expression-like languages. Although SEREs [5] in
principle are sufficiently expressive, they do not support
the notion of time. Timed Regular Expressions [7], on the
other hand, lack several useful features, such as variables
and conditions.

The approach proposed in this paper combines SEREs
with timed regular expressions by adding a timing feature
on top of SEREs. We call the resulting language Timed
SERE (TSERE). By doing this, we are able to create
transactors suitable for formal verification in a compo-
nent-based real-time setting with mixed abstraction levels.
The approach moreover widens the scope of responsibil-
ity of transactors from a pure protocol converter to a semi-
refined communication channel.

The paper is organised into 7 sections. Section 1 intro-
duces and motivates transactor-based verification. Next,
Section 2 provides an overview of the proposed approach.
Section 3 presents the Petri-net based design representa-
tion that is used throughout the paper, and Section 4
defines the Timed Sequential Extended Regular Expres-
sion language that is used for specifying transactors. Sec-
tion 5 describes the mechanism to generate timed Petri-
nets from the formal description and Section 6 presents a
few case studies. Section 7 concludes the paper.

2. OVERVIEW
In the proposed approach, a system consists of several

communicating components, as indicated in Figure 1.
Each component implements a well-defined functionality,
and they interact with other components and the rest of
the system through ports, depicted in the figure with cir-
cles at the edges of the component.

Transactor-based Formal Verification of Real-time
Embedded Systems

D. Karlsson, P. Eles, Z. Peng
Department of Computer and Information Science, Linköpings universitet, Sweden

{danka, petel, zebpe}@ida.liu.se

Channels are inserted between communicating com-
ponents. The channels model the protocol, delays, noise
and other peculiarities that can occur in the communica-
tion. They are hence only an artefact for high-level models,
that will not occur or be synthesised in the final imple-
mentation. Channels can, from a modelling point of view, be
regarded as a special type of components, and are depicted
with dotted lines. Though not exemplified in the figure,
channels can connect an arbitrary number of components.

During the development phase, it is often desirable to
check if certain temporal logic properties are satisfied in
the system. Such analysis can be obtained by feeding a
model of the system into a model checking tool together
with properties to be verified. This procedure gives a for-
mal proof whether the properties are satisfied in the sys-
tem or not [8].

At the same time, the components are iteratively
refined and more and more details are added to the sys-
tem. This naturally leads to a situation where some parts
of the system are more refined than others. However, it is
still desirable to occasionally verify the system to ensure
that the recently performed refinement steps did not vio-
late any, possibly critical, properties.

When refining the components, the interfaces of those
components are simultaneously refined. However, the
interfaces are shared or connected with other components,
that are not yet refined. This creates an incompatibility of
interfaces between the involved components and chan-
nels. In order to overcome this problem, the channel is
replaced by a transactor between the incompatible inter-
faces, as demonstrated in Figure 2. A transactor can thus
be seen as a channel connecting components at different
levels of abstraction, or a semi-refined channel. The trans-
actor shall encapsulate the same external behaviour as the
channel it replaces with respect to delays, noise etc.

The transactor takes high-level requests and translates
them into low-level ones, and vice versa. It is described in
Timed Sequential Extended Regular Expressions
(TSERE), which is both intuitive and sufficiently expres-
sive for this purpose. The TSEREs (and thereby also the
transactors) are given either by the designer himself, or, in
a standardised context, by a third-party provider.

The example in Figure 3 will be used to explain the
approach in more detail. A sender repeatedly sends mes-
sages to a receiver over a channel. At a high level of abstrac-
tion (Figure 3(a)), it takes 2 time units for the message to
be transported between the two components. This delay is
implemented in the channel interconnecting the components.

At a low level of abstraction (Figure 3(b)), the mes-

sage is refined into two: address and data. The protocol
that the sender and receiver have agreed upon states that
these messages should be sent sequentially with 1 time
unit in between. It moreover takes 1 time unit for each
message to reach the receiver. The sender thus sends the
data at the same time as the address reaches the receiver.
It should be noted that the total timeframe for sending a
message in the two abstraction levels is the same. In both
cases, this takes 2 time units. Thus, the channel preserves
its external behaviour between abstraction levels.

At one moment, during the refinement phase, only one
of the components is refined. Assume that this component
is the receiver (Figure 3 (c)). At this stage, the sender and
receiver adhere to different protocols and cannot commu-
nicate with either of the high-level or low-level channels.
Instead, the channel is replaced with a transactor that
translates the high-level message into the stipulated
sequence of low-level ones. The transactor consequently
has to analyse the message from the sender and divide it
into two. The first message should contain the destination
address, whereas the second one should contain the data.
The transactor then forwards the two pieces to the
receiver with 1 time unit difference.

The transactor can be said to be a mix of the two ver-
sions of the channel. It, however, also contains additional
protocol information not explicit in the channels, e.g. how
to split the high-level message and the time separation
between the address and data transmission. Therefore, the
information captured in the channels is not sufficient for
formulating the TSEREs. In addition, the transactor
respects the external timing behaviour of the channels.

3. VERIFICATION FLOW AND DESIGN REP-
RESENTATION
This section introduces the verification flow and the

Petri-net based design representation used in this paper.
3.1 Verification Flow

Figure 4 presents the overall verification flow where
the work described in this paper is put into context. The
flow centers around a component-based verification meth-
odology [8], which accepts three entities as input: a
mixed-level model, transactor and Timed Computation

Comp. 1 Comp. 2 Comp. 3

Figure 1. Targeted System Topology

C
hannel 1

C
hannel 2

Figure 2. System at mixed abstraction level
with transactor

Comp. 1 Comp. 2 Comp. 3

C
hannel 1

T
ransactor

High level High level Low level

Sender

High level

Receiver

High level

Receiver

High level

send receive

High-level Channel

Delays message
2 time units

Figure 3. Explanatory example

Sender

Low level Low level

Receiver

sndaddr Low-level Channel

Delays respective

recaddr

recdata

Sender

High level Low level

Receiversend

Transactor

Divides the original
message, sends the

recaddr

recdata

snddata

(a) Both components at high level

(b) Both components at low level

(c) Sender at high level, Receiver at low level

message 1 time unit

pieces with 1 t.u.
difference

Tree Logic (TCTL) properties [9].
The mixed-level model is obtained from traditional

refinement steps of a high-level model. The designer then
writes TSEREs describing the communication discrepan-
cies arised from the mixed abstraction levels in the semi-
refined design and generates a transactor out of them (the
focus of this paper). The TCTL formulas express the real-
time properties to be verified.

In the verification methodology, an abstraction of the
model is first obtained with respect to the components and
channels referred to by the properties. The abstracted
model is then input to the UPPAAL model checker [10],
by first translating the Petri-net model [11] into Timed
Automata [12], the input language of UPPAAL. If the
result of the model checking was false, the model might
need to be refined (relative to the abstraction done in the
verification methodology, not the design itself) based on
diagnostic information obtained from the model checker.
In case the refinement of the abstraction fails, the proper-
ties are concluded not to be satisfied. If, on the other hand,
the model checking result was true, it can be concluded
that the properties hold in the model.
3.2 The Design Representation: PRES+

The components as well as the system as a whole are
assumed to be modelled in a design representation called
Petri-net based Representation for Embedded Systems
(PRES+) [11]. It is a Petri-net based representation with
the extensions listed below. Figure 5 shows an example of
a PRES+ model.
1. Each token has a value and a timestamp associated to it.
2. Each transition has a function and a time delay interval

associated to it. When a transition fires, the value of the
new token is computed by the function, using the val-
ues of the tokens which enabled the transition as argu-
ments. The timestamp is increased by an arbitrary value
from the time delay interval. If the time delay interval
is not explicitly stated, it is assumed to be [0..0]. In Fig-
ure 5, the functions are marked on the outgoing edges
from the transitions.

3. The PRES+ net is forced to be safe, i.e. one place can
at most accommodate one token. A token in an output
place of a transition disables the transition.

4. The transitions may have guards. A transition can only
be enabled if the value of its guard is true (transitions
t4 and t5).
Places without incoming arcs are called in-ports, and

places without outgoing arcs are called out-ports. A com-
mon name for in-ports and out-ports respectively, is ports.
Components are subnets of the whole model, delimited by
ports.

4. TIMED SEQUENTIAL EXTENDED REGU-
LAR EXPRESSIONS
The proposed approach introduces Timed Sequential

Extended Regular Expressions (TSEREs) for the specifi-
cation of transactors. TSEREs consist of three types of
entities: basic entities, terms and operators.
4.1 Basic Entities

Basic entities cannot be standalone TSEREs, but con-
stitute a part of terms. They are used as building blocks
for storage, communication and computation. The 3 cate-
gories of basic entities are shown below:
1. Variables: a, b, c

Variables are used to store and retrieve values. Varia-
bles are associated to a datatype. Unless explicitly
stated otherwise, the datatype used in all examples is
integer. The scope of a variable stretches from its first
occurrence to the end of the sequence (see the sequence
operator below) of that first occurrence.

2. Port labels: !send, ?rec
Port labels are used to define the interaction with other
components. ! denotes the sending of a (possibly empty)
message on the subsequent out-port, and ? denotes
receiving of a message from the specified in-port.

3. Arithmetic expressions:
Arithmetic expressions perform a computation on
other basic entities, following standard syntax. This
entity allows to express data processing.

4.2 Terms
Terms describe an action by combining basic entities.

There are 3 different types of terms, listed below:
1. Assignments: , ,

The variable or out-port on the left-hand side of the
arrow is updated to the value of the variable, in-port or
arithmetic expression on the right-hand side.

2. Guards: ,
Guards compare the value of a variable or in-port with
the evaluation of an arithmetic expression. If the guard
evaluates to true, nothing happens. Otherwise, the
TSERE fails (or, loosely speaking, reaches a dead end).

3. Delays: [0..0], [3..5]
Delays denote the passing of time. They are expressed
as intervals, with the connotation that an arbitrary
amount of time from the interval may elapse. This fea-
ture is crucial in the context of real-time systems.

4.3 Operators
In addition to terms, TSEREs can be recursively com-

bined to express more complex behaviour with the follow-
ing operators. Assume and being arbitrary TSEREs.
1. Sequence:

 occurs immediately before .
2. Choice:

Either or occurs.
3. Concurrency: ,

and occur concurrently. The concurrency opera-
tor is not considered to have occurred until both and

High-level model
PRES+

Mixed-level model
PRES+

Transactor specification
TSERE

Transactor
PRES+

Model checking

Properties
TCTL

Component-based verification
Abstraction/

Yes

No No

Figure 4. Verification flow

Refinement

x x
x

y

xy

x x

[x>2y]

[x<=3]in-port

out-ports

x-5

x+5

x
x

x

Figure 5. A simple PRES+ net

t1 t2

t3

t4

t5p1

p2

p3

p4

p5

p6

p7

[2..5]

[3..4]

[3..4]

[3..7]

[2..5]

a b+() 3⋅

a 3← !send 0← b ?rec←

a 4= ?rec 10>

α β
α β;

α β
α β+

α β
α β α |n

α β
α

have fully occurred. denotes concurrent cop-
ies of .

4. Iteration: , , ,
The iteration operators denote a sequence of recurring

. The length of that sequence depends on the type of
iteration. denotes a sequence of length and

signifies an infinitely long sequence. Such a
sequence can only be escaped if placed inside the
choice operator. denotes a sequence where is
arbitrarily chosen between , and in the case
of , is arbitrarily chosen from .

4.4 Example
Returning to the example introduced in Figure 3, the

high-level and low-level channels and the transactor can
be expressed with the following TSEREs:
1. High-level channel:
2. Low-level channel:

3. Transactor:

The infinite iteration on the whole expression is neces-
sary to enable the transactor to process several requests.
Without the iteration, the transactor and channels would
stop working after the first request.

As another example, consider a variant of the low-
level channel where either the address and data are sent
simultaneously, or we receive a reset request. (eq. 1)
shows the corresponding TSERE.

(eq. 1)
If statements can be expressed using guards together

with the choice operator. In combination with iteration,
this structure allows formulating bounded loops, as dem-
onstrated in (eq. 2).

(eq. 2)
5. TRANSACTOR GENERATION

To generate a transactor is a two-step process. First,
the behaviour of the transactor must be described with
TSEREs. This must be done in such a way that each high-
level request is mapped onto low-level ones, while pre-
serving the external behaviour, e.g. timing. Once a
TSERE for the transactor is developed, that TSERE is
automatically translated into an equivalent PRES+ model.
This section provides details on how this is done.

Regular expression based languages have a very
strong relation with finite automata (and therefore also
with PRES+), which makes such conversion relatively
straight-forward [13]. Each basic entity, term and operator
is mapped onto a PRES+ pattern, which directly reflects
the semantics of that entity. The patterns have one entry
place and one exit place, indicated in figures by a loose
incoming and outgoing arc respectively. A token arriving
in the entry place of a pattern enables the execution of that
pattern, i.e. the occurrence of its corresponding TSERE.
After executing the pattern/expression, a token should, by
convention, be put in the exit place to indicate its comple-
tion. Figure 6 presents the patterns corresponding to basic
entities, Figure 7 the patterns corresponding to the terms
and Figure 8 the patterns corresponding to the operators.
5.1 Patterns for Basic Entities

Variables are represented by a place (Figure 6(a)), ini-

tially without a token. When the variable is assigned a
value for the first time, and the variable enters its scope, a
token containing the initial value is put in the place. From
that point on, a token shall always reside in that place dur-
ing the whole lifetime of the variable. The last term in the
sequence, where the scope of possibly several variables
ends, should consume the tokens in the places corre-
sponding to those variables. This procedure reduces
statespace by not storing values when not needed, and
therefore mitigates the effects of statespace explosion.
This is particularly important when it comes to formal
verification and model checking.

Port labels are also modelled with a single place (Fig-
ure 6(b)). These places will serve as ports of the transac-
tor. ? labels serve as in-ports and ! labels as out-ports.
Therefore, the transactor can only consume tokens from ?
label ports, and analogously only put tokens in ! label ports.

Arithmetic expressions are modelled in two stages:
fetching variable values and computation (Figure 6(c)).
The value of each variable involved in the expression
must be explicitly fetched and stored in a temporary
place. This arrangement is due to the fact that PRES+
transitions only are associated to one function. Without
the fetching steps, the involved variables would change
values to the value of the expression, which is not the
desired behaviour.

The fetching of variable values is realised by transi-
tions t1 and t2 in Figure 6(c), for variables a and b respec-
tively. The transitions consume the token from the
variable place and immediately puts it back with the same
value. In the case of ? port labels, the token is never put
back. A copy of the value is moreover stored in a tempo-
rary place, a’ and b’ respectively. These tokens are then
used in the final computation stage, transition t3, instead
of directly accessing the variable places. The fetching
stages and the final computation stage are connected in a
sequence with the help of intermediate places, p1 to p4.
The result of the expression is located in the exit place of
the arithmetic expression.
5.2 Patterns for Terms

Assignments are realised in a similar way as variable
fetching, with the difference that the value of the token is
updated (Figure 7(a)). The new value is located in the
entry place in the case of arithmetic expression, or, in the
case of a constant, the transition function is set to that
constant. Attention must be paid to if the assignment
denotes the initial assignment to the variable in question
or not. If it is, there is no token in the variable place to be

β α |n
n

α
αn α∞ α* α+

α
αn

n
n ∞=

α*
n

0 n ∞≤ ≤
α+

n 1 n ∞≤ ≤

m ?send ; 2..2[] ;!rec m←←()∞

a ?sndaddr; 1..1[] ;!recaddr a;←←(
d ?snddata; 1..1[] ;!recdata d←←)∞

m ?send ; 1..1[] ;!recaddr m.addr← ;←(
1..1[] ;!recdata m.data←)∞

a ?sndaddr; 1..1[] ;!recaddr a←←(()|(
d ?snddata; 1..1[] ;!recdata d←←())

?reset)∞
+

αn
i 0 i n< α i i 1+←;;()∞

i n=()+();←⇔

(a) Variables: a

a

(b) Port labels: !send, ?rec

send rec

(c) Arithmetic expressions: a b+() 3⋅

a b

a’

b’

a

a

a
b

b b
a

(a+b)*3

Fetching variable values Computation

b

t1 t2

t3p1
p2

p3
p4

Figure 6. PRES+ patterns for TSERE basic entities

consumed and consequently there shall not be an arc from
the place to the transition. If the assignment is an update
of an already initialised variable, the token must, on the con-
trary, be consumed before the update is actuated. In the case
of ! port labels, tokens are never consumed from within
the transactor. As an optimization when the new value is
an arithmetic expression, the assignment can be merged
with the computation stage of the arithmetic expression.

Guards are implemented as variable fetching without cre-
ating a temporary copy, with the addition that the transition
guard is set to the TSERE guard expression (Figure 7(b)).

Delays are modelled with a transition with the time
delay interval stipulated by the TSERE delay expression
(Figure 7(c)). The modelling of delays is preferably opti-
mised by moving the time delay interval to the first transi-
tion of the subsequent TSERE, if such exists.
5.3 Patterns for Operators

The operator patterns combine several subpatterns to
form a more complex behaviour. In Figure 8, the subpat-
terns are drawn as clouds with arrows from/to its entry
and exit places. The resulting complex pattern is also
assigned entry and exit places, indicated in the figures in
the same way as with the terms.

Sequences are realised by merging the exit place of
the first subpattern with the entry place of the second (Fig-
ure 8(a)). The entry place of the first subpattern becomes
the entry place of the whole sequence, and the exit place
of the second subpattern becomes the exit place of the
whole sequence. In this way, when the first subpattern has
finished executing, a token is put in the shared middle
place, which enables the execution of the second subpattern.

In the pattern for the choice operator (Figure 8(b)), the
entry and exit places of the subpatterns are merged, so
that all subpatterns share the same entry place and the
same exit place. When a token appears in the entry place,
this leads to the enabling of all subpatterns, out of which
one is chosen randomly. If the first term of a subpattern is
a guard that evaluates to false, that subpattern can natu-
rally not be chosen.

When a token arrives in the entry place of the concur-
rency pattern (Figure 8(c)), the entry places of each sub-
pattern must also be marked to enable the execution of
each corresponding subpattern. This is achieved by intro-
ducing an additional transition (t1) with the entry places
of all subpatterns as output and the entry place of the
whole pattern as input. A similar, but contrary, construct
is also inserted at the exit places (t2), implementing the

synchronisation of the subpatterns upon their completion.
The concurrency operator is not considered completed
until all subexpressions are completed.

Iteration is accomplished by connecting the exit place
of the subpattern to its entry place via a transition (t1 in
Figure 8(d)). This procedure can, in the case of and

, be optimised by instead merging the entry and exit
places of the subpattern. The entry place of the subpattern
is also the entry place of the iteration. For iterations,
the exit place is the same as the entry place, whereas for

the exit place of the iteration is the exit place of the
subpattern. iterations do not have an exit place due to
their infinite nature.

Finite loops are implemented using a loop counter
(Figure 8(e)), which is initially set to 0 (t1) and increased
by one after each iteration (t2). Guards on transitions t2
and t3 ensure that the loop is broken when the loop coun-
ter has reached n, the specified number of iterations.

When a PRES+ model has been generated for the
whole TSERE, an initial token is put in the entry place of
the final model, to indicate the first term.
5.4 Examples

Let us continue the sender and receiver example intro-
duced in Figure 3, and where the TSEREs for the chan-
nels were listed in Section 4.4. Figure 9 provides the
PRES+ models resulting from the presented approach,
including certain optimizations.

The core of the transactor is a sequence of reading and
writing on ports combined with simple arithmetic expres-
sions (Figure 9(a)). Transitions t2 and t4 model the varia-
ble fetching stages of the arithmetic expressions, while
transitions t3 and t5 combine the computation stages with

(a) Assignments: ,a expr← !send 0←

a

expr

expr

send

0

(b) Guards: ,a 4= ?rec 10>

a

a

rec
a

[a=4]

r

[r>10]

(c) Delays: [3..5]

[3..5]

Figure 7. PRES+ patterns for TSERE terms

α β

(a) Sequence: α β;

α

β

(b) Choice: α β+

α

β

(c) Concurrency: α β

α

Only for α+

Only for α*

(d) Possibly infinite iteration: , ,α∞ α* α+

α

i

0

i

i+1

i[i<n]

[i=n]

(e) Finite iteration: αn

Figure 8. PRES+ patterns for TSERE operators

t1 t2

t1
t2

t3

t1

α∞

α*

α*

α+

α∞

the assignment on ports recaddr and recdata respectively
(optimization). The delays are moreover added to the first
transitions in the subsequent terms, in this case t2 and t4. It
should moreover be noted how the scope of variable m is
modelled. Transition t1 realises the first assignment to m,
therefore it only puts a token with the initial value in place
m. As transition t5 is the last transition in its scope, it con-
sumes the token, no matter it needs the value or not. Tran-
sition t6 models the infinite loop.

Figure 9(b) presents the PRES+ model corresponding
to (eq. 1). Inside the iteration, there is a choice between
either two concurrent statements or a single reading of
reset. If the reset is not immediately present, the two con-
current sequences are launched. If the reset is present,
there is a non-deterministic choice between the two
options. The loop is in this figure optimised in the sense
that the exit place of the choice operator is merged with its
entry place.

6. CASE STUDIES
The proposed approach has been applied on two

examples: the example from Figure 3 and an AMBA-
based protocol. The models were formally verified on
high, low and mixed levels of abstraction using a Linux
machine with an Intel Pentium 4, 2.8GHz processor and
2GB of memory. The AMBA example was moreover ver-
ified with different configurations on the number of mas-
ters (M) and slaves (S). Both examples were checked for
the same two properties: no deadlock and that sent mes-
sages will arrive at their destinations.

Table 1 and Table 2 present the verification times in
seconds for the respective example. The tables moreover
indicate the sizes of the TSEREs, which define the chan-
nels/transactors, as the number of terms and operators in
the expression. The size of the entire verified PRES+
model is indicated by the number of transitions. These
numbers only give a hint to the size of the examples and
are not directly related to verification time. These results
indicate the reasonableness of the proposed approach.

7. CONCLUSIONS
This paper has presented an approach to generate

transactors for real-time embedded systems, suitable for
formal verification. The approach assumes a design where
components communicate over channels, and that those
channels capture all the characteristics of the communica-
tion. During the development, more and more compo-
nents are refined leading to a model with mixed
abstraction levels. In such models, the components cannot
directly communicate due to protocol discrepancies. In
order to overcome these discrepancies, the channels inter-
facing components of different abstraction levels are
replaced with transactors. The behaviour of the transac-
tors, i.e. the mapping of requests between abstraction lev-
els, is described using TSEREs, which are automatically
converted into the design representation used, PRES+.
The resulting PRES+ model can then be analysed by a
formal verification tool.

8. REFERENCES
[1] N. Bombieri, F. Fummi, G. Pravadelli, “On the Evaluation of
Transactor-based Verification for Reusing TLM Assertions and Test-
benches at RTL”, in Proc. DATE, 2006
[2] J. Akella, K. McMillan, “Synthesizing Converters between Finite
State Protocols”, in Proc. ICCD, 1991, pp. 410-413
[3] R. Passerone, J.A. Rowson, “Automatic Synthesis of Interfaces
between Incompatible Protocols”, in Proc. DAC, 1998, pp. 8-13
[4] N. Bombieri, F. Fummi, G. Pravadelli, “A TLM Design for Verifi-
cation Methodology”, in Research in Microelectronics and Electronics,
2006, pp. 337-340
[5] F. Balarin, R. Passerone, “Functional Verification Methodology
Based on Formal Interface Specification and Transactor Generation”, in
Proc. DATE, 2006
[6] F. Plasil, S. Visnovsky, M. Besta, “Bounding Component Behav-
iour via Protocols”, in Proc. TOOLS, 1999, pp. 387-398
[7] E. Asarin, P. Caspi, O. Maler, “A Kleene Theorem for Timed
Automata”, in Proc. LICS, 1997, pp. 160-171
[8] D. Karlsson, P. Eles, Z. Peng, “Formal Verification of Component-
based Designs”, in Journal of Design Automation for Embedded Systems,
Vol. 11, No. 1, March 2007, pp. 49-90
[9] R. Alur, C. Courcoubetis, D.L. Dill, “Model Checking for Real-
time Systems”, in Theoretical Computer Science, 1990, pp. 414-425
[10] UPPAAL homepage: http://www.uppaal.com/
[11] L.A. Cortés, P. Eles, Z. Peng, “Verification of Embedded Systems
using a Petri Net based Representation”, in Proc. ISSS, 2000, pp. 149-155
[12] R. Alur, D.L. Dill, “A theory of timed automata”, in Theoretical
Computer Science, 1994, pp. 126:183-235
[13] D. C. Kozen, “Automata and Computability”, 1997, Springer Verlag.

m m

send m

m

m’

m.addr

recaddr

m
m

m”
m.data

recdata

m

m

t1 t2 t3 t4 t5

t6

(a) The generated transactor from Figure 3(c)

[1..1] [1..1]

a a

sndaddr a

a

recaddr

a

d d

snddata d

d

recdata

d

reset

(b) The PRES+ model corresponding to (eq. 1)

Figure 9. Examples of PRES+ models generated
from TSEREs

[1..1]

[1..1]

Table 1: Results from the example in Figure 3
Abstraction level TSERE PRES+ No d.lock Will arr.

High 4 8 0.12s 0.13s
Low 7 13 0.06s 0.09s

S High - R Low 6 11 0.11s 0.06s

Table 2: Results from the AMBA example
M-S Abstr. level TSERE PRES+ No dlock Will arr.
1 - 1 High 22 30 0.33s 0.12s

Low 25 52 0.19s 0.22s
M High-S Low 23 44 0.19s 0.17s
M Low-S High 36 53 0.30s 0.40s

1 - 2 High 35 48 0.50s 0.46s
Low 28 71 0.80s 1.68s

M High-S Low 26 62 0.24s 0.35s
M Low-S High 47 69 1.44s 3.57s

2 - 1 High 22 32 0.19s 0.43s
Low 32 68 0.48s 1.53s

M High-S Low 23 46 0.38s 0.84s
M Low-S High 42 69 1.43s 6.59s

2 - 2 High 36 50 5.01s 18.99s
Low 35 86 5.43s 22.57s

M High-S Low 26 64 5.39s 17.77s
M Low-S High 54 85 42.06s 200.5s

