
Abstract

This paper proposes a validation approach, based on
simulation, which addresses problems related to both state
space explosion of formal methods and low coverage of infor-
mal methods. Formal methods, in particular model checking,
are used to aid the simulation process in certain situations in
order to boost coverage. The invocation frequency of the
model checker is dynamically controlled by estimating certain
parameters, based on statistics collected previously during
the same validation session, in order to minimise verification
time and at the same time achieve reasonable coverage. The
approach has been demonstrated feasible by numerous ex-
perimental results.

1. Introduction
Designing IP blocks for embedded systems is a very com-

plex task, and consequently very error-prone. At the same time,
other designers using these blocks must be able to rely on their
correctness. For this reason, the IP providers must thoroughly
validate their blocks. This can be done either using formal
methods or informally by simulation.

Both methods, in principle, compare a model of the design
with a set of properties (assertions), and answers whether they
are satisfied or not. With formal methods, this answer is mathe-
matically proven to be guaranteed. However, using informal
methods, this is not the case. The reliability of the result is in-
dicated by a coverage metrics [1]. Unfortunately, formal meth-
ods such as, for example, model checking suffer from state
space explosion. Although there exist methods to relieve this
problem [2], [3], for very big systems simulation-based tech-
niques are needed as a complement in order to obtain any re-
sults at all. Simulation techniques, however, are also very time
consuming, especially if high degrees of coverage are required.

We propose a validation technique combining both simulation
and model checking. The basis of the approach is simulation,
but where model checking is added to reach uncovered parts of
the state space, thereby enhancing coverage.

Combining formal and informal techniques is however not a
new invention. One idea has been to use simulation as a way to
generate an abstraction of the simulated model [4]. This ab-
straction is then model checked. The output of the model
checker serves as an input to the simulator to guide the process
to uncovered areas of the state space. This will create a new ab-
straction to model check. If no abstraction can be generated, it
is concluded that the specification does not hold. As opposed
to this approach, our technique does not iteratively model
check a series of abstractions, but tries to maximise simulation
coverage given a single model. There is hence a difference in
emphasis. They speed up model checking using simulation,
whereas we improve simulation coverage using model checking.

Another approach uses simulation to find a “promising” ini-
tial state for model checking [5]. In this way, parts of the state
space, judged to be critical to the specification, are thoroughly
examined, whereas other parts are only skimmed. The ap-
proach is characterised by a series of partial model checking
runs where the initial states are obtained with simulation, as
opposed to our approach which is coverage driven in the sense
that model checking is used to enhance the coverage obtained
by the simulation.

As opposed to existing simulation-based methods, our ap-
proach is able to handle continuous time both in the model un-
der validation and in the assertions. We moreover are able to
automatically generate the continuous time “monitors”, which
are used to survey the validation process, from assertions ex-
pressed in temporal logic. In addition to this, we propose a
method to dynamically control the invocation frequency of the
model checker, with the aim of minimising validation time while
achieving reasonable coverage.

This paper continues in section 2 with an overview of the
proposed simulation technique. Sections 3, 4, 5 and 6 present
issues related to stimulus generation, assertion checking, cov-
erage enhancement and stop criterion respectively. Section 7
provides experimental results and section 8 concludes the paper.

2. Validation strategy overview
In both formal and informal methods, it is common to as-

sume that the model under validation (MUV) can be regarded
as a transition system. The basic principle of such methods, in
particular simulation based, is to fire one transition of the de-
sign at a time and check whether any assertions imposed on the
model have been violated. At the same time, the MUV must be
fed with inputs (stimuli) consistent with constraints imposed
by the model on its environment. We consequently impose the
following three assumptions:
• The MUV is modelled as a transition system. In this paper,

we assume PRES+, a formalism based on Petri-nets, suit-
able for describing embedded systems [6].

• Assertions, expressed in temporal logics, stating important
properties which the MUV must not violate, are provided.
In this paper, CTL [7] is used for this purpose.

• Assumptions, expressed in temporal logics (e.g. CTL), stat-
ing the conditions under which the MUV shall function
correctly according to its assertions, are provided.
The result of the validation is only valid to the extent ex-

pressed by the particular coverage metrics used (defined in sec-
tion 2.1). Therefore, certain measures are normally taken to im-
prove the quality of the results. This could involve finding cor-
ner cases which only rarely occur under normal conditions.
Simulation-based techniques consequently consist of the fol-
lowing three parts: assertion checking, stimulus generation and
coverage enhancement.

Validation of Embedded Systems Using Formal Method Aided Simulation

Daniel Karlsson, Petru Eles, Zebo Peng
Dept. of Computer and Information Science, Linköpings universitet, Sweden

{danka, petel, zebpe}@ida.liu.se

The proposed strategy consists of two phases, as indicated
in Figure 1: simulation and coverage enhancement. In the simu-
lation phase, transitions are repeatedly selected and fired at
random, while checking that they do not violate any assertions
(Line 3 to Line 5). This activity goes on until a certain stop cri-
terion is reached (Line 2). The stop criterion used in this work
is, in principle, when a certain number of transitions have fired
without any coverage improvement. This will be further elabo-
rated in section 6.

When the simulation phase has reached the stop criterion,
the algorithm enters the second phase where it tries to further
enhance coverage. An enhancement plan, consisting of a se-
quence of transitions, is then obtained and executed while at
each step checking that no assertions are violated (Line 7 to
Line 10).

The two phases, simulation and coverage enhancement, are
iteratively executed until coverage is considered unable to be
further enhanced (Line 1). This occurs when either 100% cov-
erage has been obtained or when the uncovered aspects, with
respect to the coverage metrics in use, have been targeted by
the coverage enhancement phase at least once, but failed.

Stimulus generation is not explicitly visible in this algo-
rithm, but is covered by the random selection of enabled transi-
tions (Line 3) or as part of the coverage enhancement plan
(Line 7). Subsequent sections will go into more details about
the different parts of the overall strategy.

2.1. Coverage Metrics
Coverage is an important issue in simulation-based meth-

ods. It provides a measure of how successful a particular vali-
dation is. A combination of two coverage metrics is used
throughout this paper: assertion coverage and transition cover-
age. The approach itself does, however, not impose any par-
ticular coverage metrics. It can easily be adjusted to any met-
rics of the designer's choice.

Assertion coverage is obtained by counting the number of
assertions which have been activated (explained in section 2.2)
during the validation process divided by the total number of as-
sertions. Transition coverage is similarly defined as the number
of fired distinct transitions divided by the total number of tran-
sitions. Combining these two metrics, the total coverage is
computed by dividing the sum of activated assertions and fired
transitions with the sum of the total number of assertions and
transitions.

Assuming, that for a particular validation session 3 out of 5
transitions have been fired and 1 out of 1 assertions have been
activated, the total coverage is computed as (3+1)/(5+1) = 67%.

2.2. Assertion Activation Sequence
In the definition of assertion coverage, the concept of asser-

tions being activated was introduced. Intuitively, an assertion
is, in principle, activated when all atomic propositions (inner-

most subformulas) have been satisfied at least once. In order to
efficiently determine when an assertion is activated, one or
more activation sequences are obtained for each assertion. A
sequence consists of states (or characteristics of states, for effi-
ciency) which are considered activating the corresponding as-
sertion. In the context of PRES+ and Petri-nets, a state is a
marking.

3. Stimulus generation
The task of stimulus generation is to provide the MUV with

input consistent with the assumptions given by the model on its
environment. In our strategy, the stimulus generator consists of
another model, expressed in the same design representation as
the MUV. The stimulus generator and the MUV are then con-
nected to each other during simulation. For this reason, the
stimulus generator is not explicitly visible in Figure 1. An en-
abled transition selected on Line 3 might belong to the MUV
as well as to the stimulus generator. However, in order to pro-
mote better assertion coverage already in the simulation phase,
transitions, which when fired lead to an increased assertion
coverage, are selected with a higher probability.

We have previously developed an algorithm and the corre-
sponding tool to automatically generate PRES+ models from
ATCTL formulas [8]. ATCTL is an important subset of TCTL
(Timed CTL).

4. Assertion checking
The objective of validation is to ensure that the MUV satis-

fies certain desired properties, called assertions. The part of the
simulation process handling this crucial issue is the assertion
checker, also called monitor.

In section 3, an algorithm generating a model from an A(T)
CTL formula was mentioned. The same type of models can
also be used for assertion checking as monitors.

Figure 2 illustrates the intuition behind assertion checking.
Both the input given by the stimulus generator and the output
from the MUV are fed into the assertion checker. The assertion
checker then compares its observations with the monitor model
generated from the assertion. For satisfiability, there must exist
a sequence of transitions in the monitor leading to the same
output as provided by the MUV, given the same input. This
method works based on the fact that the monitor model cap-
tures all possible behaviours satisfying the assertion, including
the behaviour of the MUV. The essence is to find out whether
the MUV behaviour is indeed included in that of the monitor.
This comparison is performed efficiently thanks to the regular
structure of the monitor models.

5. Coverage enhancement
Experiments have shown that it is well worth the effort to

take actions to enhance coverage. After the first simulation
phase, total coverage is in average 82% (in all experiments
made). After iteratively having applied our coverage enhance-
ment technique, this number increased to 99%.

1: while coverage can be further enhanced do
2: while not stop criterion reached do
3: select r randomly among the enabled transitions;
4: fire r;
5: Check that no assertion was violated;
6:
7: obtain a coverage enhancement plan P;
8: for each transition rP in order do
9: fire r;
10: Check that no assertion was violated;

Figure 1. Validation Strategy Overview

S
im

ul
at

io
n

C
ov

er
ag

e
E

nh
an

ce
m

en
t

Figure 2. Assertion checking overview

Assertion Checker

MUV
MUV input

Assertion diagnostics

MUV output

The basic idea behind coverage enhancement is to find a se-
quence of transitions leading to the enabling of a transition
which has not yet been fired, or leading to the activation of an
assertion.

In order to effectively find a firing sequence leading to the
activation of an unexercised part U, we apply model checking.
Checking a property of the form EFU (there exists a future where
U holds) provides a trace consisting of a sequence of transitions
leading to a marking where U is exercised. This trace constitutes
the coverage enhancement plan mentioned in section 2.

For enhancing transition coverage, the verified property is
EF fired(t), where t is a transition which has not been fired pre-
viously. In the case of assertion coverage, the property is EF e,
where e is the next event in the activation sequence of an assertion.

Once the enhancement plan is obtained, it can trivially be
executed by firing the transitions in it in order. After each tran-
sition fired, the assertion checker must be invoked to check for
any assertion violations. Enhancing coverage this way may
make so far uncovered parts of the state space more accessible.
These parts are then further explored in the subsequent simula-
tion phase.

Sometimes, it could happen that the model checking runs
out of resources, for instance time or memory. If this is the
case or if an enhancement plan does not exist, coverage cannot
be enhanced with respect to that particular transition or asser-
tion. That transition or assertion will not be subject to any cov-
erage enhancement again.

In order to perform model checking on PRES+ models, they
have to be translated into the input language of the particular
model checker used. We have discussed the problems related
to such a translation into timed automata for the UPPAAL
model checking environment [9] in [6].

6. Stop criterion
Line 2 in Figure 1 states that the simulation phase ends (and

the coverage enhancement phase starts) when a certain stop cri-
terion is satisfied. Section 2 stated that the stop criterion holds
when a certain number of transitions are fired without any im-
provement of the coverage. This number is called simulation
length. It can however be very difficult to statically determine
the simulation length which will result in the shortest possible
validation time. In this section, a dynamic heuristic approach,
where the simulation length is determined at run-time, is pre-
sented.

During each iteration in the simulation phase, coverage
keeps increasing until it reaches a certain threshold where it
becomes saturated. At this moment, the strategy in Figure 1
concludes that it does not pay off to continue simulating. As a
consequence, coverage enhancement is applied to reach uncov-
ered parts of the state space, before continuing in the next
simulation phase. The problem is to detect when a saturation

level has been reached. Figure 3 presents a diagram illustrating
how coverage grows during the course of one simulation phase.

During the simulation phase, gradually increasing simula-
tion lengths will be reached. In the very beginning, transitions
are repeatedly fired, as stated in Figure 1. In one moment, one
transition has been fired without increasing coverage. This mo-
ment is defined as simulation length 1. The coverage obtained
at this point (80%) is then marked in Figure 3. When two tran-
sitions have been fired in a row without increasing the cover-
age, simulation length 2 is considered reached and its coverage
is also marked in the diagram. The other points were obtained
by continuing this process until the final, predetermined, simu-
lation length was reached. The saturation level in this example
is 94% and was reached for simulation length 34.

If the coverage for a given simulation length cov(), aver-
age transition firing time tfir and average coverage enhancement
time tver can be predicted, it is possible to estimate the time
function and thereby the optimal simulation length.

Unfortunately, these parameters are not known beforehand.
Besides, it is too expensive in terms of time to obtain these
data prior to actual validation. For these reasons, they have to
be obtained during the validation process itself. As a conse-
quence, the predicted simulation length is adjusted during the
process as more and more data is collected and better and bet-
ter estimations can be made. Initially, the parameters are as-
signed values conformant with an average case. The following
paragraphs briefly describe the parameters necessary to esti-
mate the optimal simulation length.

Coverage has been shown by numerous experiments to be-
have according to the exponential function cov() in eq 1, with
respect to the simulation length . C and D are parameters de-
termining the steepness of the curve, and E is the parameter
which denotes the saturation level.

(eq 1) cov=E−C e−D

By repeatedly applying the linear algebraic Least Square
Method for different values of D, all parameters can be effi-
ciently obtained. The curve marked “Prediction” in Figure 3 re-
flects the cov() function obtained by applying this method on
the coverage points in the same figure.

The transition firing time, tfir, reflects the average time it
takes to perform one instance of the following three steps of
Figure 1: choosing one enabled transition (Line 3), the actual
firing of the transition (Line 4) and assertion checking (Line 5).
These steps are performed at every iteration in one simulation
phase (Line 2).

The average coverage enhancement time, tver, reflects the
time it takes to perform one instance of the following three
steps of Figure 1: obtaining a coverage enhancement plan (Line
7), executing the enhancement plan (Lines 8-9) and asserting
the plan (Line 10).

It can be shown in both theory and practice that the total
verification time conforms to eq 2.

(eq 2) 1−EC e−D∣T∪A∣tvert fir
Given eq 2, it is straight-forward to analytically compute

the optimal simulation length, eq 3.

(eq 3)
=

ln
t fir

CD∣T∪A∣tver

−DFigure 3. Simulation length vs Coverage

0 5 10 15 20 25 30 35

80%

85%

90%

95%

100%

Coverage

Prediction

Reached Simulation Length

C
ov

er
ag

e

7. Experimental results
This validation approach has been tested on a variety of

models and assertions. Part of the results are presented in Table
1. The table compares the time needed and coverage obtained
using the static and dynamic stop criteria respectively for sev-
eral example of different sizes. The values given are the aver-
age values of several runs on the same model and assertions.
The complexity of the models are given in terms of number of
transitions. Although this number is generally not enough to
characterise the complexity of a model, it still provides a hint
about the size of the model and is used in lack of a more accu-
rate, but still concise, metrics. Examles 1 through 27 consist of,
in principle, randomly generated models. Examples 28 through
33, however, model a control unit for a mobile telephone, traf-
fic light controller and a multiplier respectively.

It should be emphasised that the simulation length used for
the static stop criterion was obtained by empirically evaluating
several different values, finally choosing the one giving the
shortest validation time for comparison. The performance
given by this method can consequently not be achieved in prac-
tice, and only serves as a reference.

As can be seen, in most cases using the dynamic stop crite-
rion results in validation times close to those for the static stop
criterion. There exist however cases where there is a big differ-
ence. These cases fall into two categories:
• The models differ from the average case on which the esti-

mation of the initial simulation length is based.
• There is a difference in coverage. If one method did not

reach as high coverage as the other, that method had more

time-outs in its coverage enhancement phase, thus adding
to total time.
It can be deduced from the figures that, in average, the dy-

namic approach is 15% slower than using the static stop crite-
rion. However, in 30% of the cases, the dynamic approach was
actually faster. This situation is possible, since choosing the
simulation length for the static stop criterion is not a very accu-
rate process. It could happen that the dynamic stop criterion
finds a simulation length closer to the actual optimum. The loss
in coverage is, on the other hand, very small. In average, cover-
age is 0.12% lower using the dynamic approach.

Although the dynamic approach performs slightly worse on
both aspects, it should be remembered that it in practice is im-
possible to reach the values listed in the table with the static
approach. As mentioned previously, the values were obtained
by trying several values for the static simulation length, thus vali-
dating the system multiple times. It cannot be known in advance
which simulation length results in the shortest validation time.

All models and all assertions have also been validated with
pure model checking. In two cases the model checker did not
support the type of assertions checked, so no result could be
obtained for them. For a few examples with few transitions, the
model checker found a solution, but in one order of magnitude
longer time than the proposed approach. In all other cases the
model checker ran out of memory (2GB) before any result
could be delivered.

The models were also verified using pure simulation. The
simulation went on for as long time as was used by the dy-
namic stop criterion. The total coverage obtained by the simu-
lation process after this time, was always less than or, in some
cases, equal to our proposed mixed approach.

8. Conclusions
This paper has presented a validation approach, based on

simulation, where model checking is applied to increase cover-
age. The invokation of the model checker is dynamically con-
trolled in order to minimise validation time.

9. References
[1] A. Piziali, Functional Verification Coverage Measurement
and Analysis, Kluwer Academic Publishers, 2004
[2] F. Wang, A. Mok, E. A. Emerson, "Symbolic model-
checking for distributed real-time systems", Lecture Notes in
Computer Science, Vol. 670, 1993
[3] C. Daws, S. Yovine, "Reducing the number of clock variables
of timed automata", in , 1996, pp. 73-81
[4] S. Tasiran, Y. Yu, B. Batson, "Linking Simulation with
Formal Verification at a Higher Level", IEEE Design & Test of
Computers, Vol. 21:6, Nov-Dec 2004
[5] Synopsys whitepaper, "Hybrid RTL Formal Verification
Ensures Early Detection of Corner-Case Bugs", 2003
[6] L.A. Cortés, P. Eles, Z. Peng, "Verification of Embedded
Systems using a Petri Net based Representation", in Proc. ISSS,
2000, pp. 149-155
[7] E.M. Clarke, O. Grumberg, D.A. Peled, Model Checking,
MIT Press, 1999
[8] D. Karlsson, "Towards Formal Verification in a Component-
based Reuse Methodology", Licentiate Thesis No 1058, 2003,
http://www.ep.liu.se/lic/science_technology/10/58/
[9] UPPAAL hompage, http://www.uppaal.com/

Table 1. Experimental results
Time (s)

Example Trans. Dynamic Static
Time Diff.

(%)
Coverage (%)

Dynamic Static
1 28 22.67 24.54 -7.62 100 100
2 28 51.75 38.30 35.12 100 100
3 35 42.40 39.74 6.69 100 100
4 35 62.55 60.78 2.91 100 100
5 42 55.38 58.77 -5.77 100 100
6 42 82.67 78.71 5.03 100 100
7 49 70.45 80.42 -12.40 100 100
8 49 101.64 105.16 -3.35 100 100
9 56 93.60 378.28 -75.26 100 99
10 56 143.36 120.73 18.74 100 100
11 63 137.14 289.89 -52.69 100 99
12 63 157.23 161.75 -2.79 100 100
13 70 298.81 151.43 97.33 99.5 100
14 70 345.21 196.22 75.93 99.5 100
15 7 6.29 4.43 41.99 100 100
16 14 261.98 399.91 -34.49 95 95
17 14 270.23 277.01 -2.45 95 95
18 21 627.27 550.78 13.89 95 94
19 21 891.39 821.83 8.46 89 90
20 7 7.57 4.66 62.45 100 100
21 7 16.41 10.49 56.43 100 100
22 14 253.19 240.65 5.21 98 95
23 14 265.08 388.45 -31.76 93 95
24 30 15.27 10.42 46.55 100 100
25 75 119.37 93.06 28.27 100 100
26 150 564.54 504.37 11.93 100 100
27 225 1768.35 1604.84 10.19 100 100
28 31 1043.97 935.68 11.57 98 99
29 31 599.19 417.30 43.59 95 100
30 36 216.41 157.01 37.83 100 100
31 36 279.46 250.10 11.74 100 100
32 8 13.12 10.21 28.50 100 100
33 8 330.47 316.21 4.51 100 100

