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Abstract Embedded systems are becoming increasingly common in our everyday lives. As

technology progresses, these systems become more and more complex, and designers handle

this increasing complexity by reusing existing components (Intellectual Property blocks). At

the same time, the systems must fulfill strict requirements on reliability and correctness.

This paper proposes a formal verification methodology which smoothly integrates with

component-based system-level design using a divide and conquer approach. The methodol-

ogy assumes that the system consists of several reusable components, each of them already

formally verified by their designers. The components are considered correct given that the

environment satisfies certain properties imposed by the component. The methodology veri-

fies the correctness of the glue logic inserted between the components and the interaction of

the components through the glue logic. Each such glue logic is verified one at a time using

model checking techniques.

Experimental results have shown the efficiency of the proposed methodology and demon-

strated that it is feasible to apply such a verification methodology on real-life examples.

Keywords Formal verification . Petri-nets . Components . IP . Model checking . Embedded

systems . Real-time systems

1 Introduction

It is a well-known fact that we increasingly often interact with electronic devices in our

everyday lives. Such electronic devices are for instance cell phones, PDAs and portable
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music devices like Mp3-players. Moreover, other, traditionally mechanical, devices are

becoming more and more computerised. Examples of such devices are cars and wash-

ing machines. Many of them are also highly safety critical such as aeroplanes or medical

equipment.

It is both very error-prone and time-consuming to design such complex systems. At the

same time, there is a strong economical incentive to decrease the time-to-market.

In order to manage the design complexity and to decrease the development time, design-

ers usually resort to reusing existing components (so called IP blocks) so that they do not

have to develop certain functionality themselves from scratch. These components are either

developed in-house by the same company or acquired from specialised IP vendors [17, 19].

Not discovering a fault in the system in time can be very costly. Reusing predesigned IP

blocks introduces the additional challenge that the exact behaviour of the block is unfamiliar

to the designer, which can lead to design errors that are difficult to detect. Discovering such

faults only after the fabrication of the chip can easily cause unexpected costs of US$500K–

$1 M per fault [31]. This suggests the importance of a structured design methodology based on

a formal design representation, and, in particular, it suggests the need for formal verification.

Formal verification tools analyse the system model, captured in a particular design repre-

sentation, to find out whether it satisfies certain properties. In this way, the verification tool

can trap many design mistakes at early stages in the design.

As the trend of building complex systems from reusable components is steadily grow-

ing, it is becoming increasingly important to develop verification methodologies which can

effectively cope with this situation and take advantage of it.

There are several aspects which make this task difficult. One is the complexity of the

systems, which makes simulation based techniques very time consuming but still only covers

a fraction of the statespace. On the other hand, formal verification of such systems suffers

from state explosion. However, it can often be assumed that the design of each individual

component has been verified [33] and can be considered to be correct. What is still needed

to be verified is the glue logic and the interaction between components over the glue logics.

Such an approach can handle both the complexity aspects (by a divide and conquer strategy)

and the lack of information concerning the internals of predefined components.

To formally verify the glue logic, it is also necessary to model the environment with which

it is supposed to interact. In general, the part of the system with most influence on the glue

logic to be verified is the components surrounding this logic. We assume that we have some

high-level models of these components. However, due to several reasons, such as the fact

that the components also need to interact with other glue logics, those high-level models

cannot provide a complete specification of the environment. Therefore, it might be necessary

to add assumptions about the unspecified part of the environment, namely the part which

is connected to other interfaces of the components surrounding the logic under verification.

The assumptions may be expressed in the same logic language as the verified properties. A

model corresponding to the maximum set of behaviours still satisfying these assumptions

can be built and included in the verification process.

In this paper we propose a formal verification approach which smoothly integrates with

a component based system-level design methodology for embedded systems. The approach

is based on a timed Petri-net notation. Once the model corresponding to the glue logic has

been produced, the correctness of the system can be formally verified. The verification is

based on the interface properties of the interconnected components and on abstract mod-

els of their functionality. Our approach represents a contribution towards increasing both

design and verification efficiency in the context of a methodology based on component

reuse.
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2 Related work

There exists a lot of work on issues related to reuse design methodologies [17], such as

documentation, quality assurance [24], standardisation, integrity issues [9, 20], integration

[28, 35], etc. The same is true for formal verification techniques such as equivalence checking

[15], model checking [12] and theorem proving [30]. However, less effort has been put

on combining the two, formal verification of systems built with reusable components. In

particular, little work has been done on verification of the interconnect between two or more

known components, which is the problem addressed in our work. However, there exists more

work on the complementary problem, namely to verify that a component is correct given

certain assumptions related to its environment.

The work by Cheung and Kramer [10] attacks a similar problem to ours in the sense that

they use constraints on the environment in order to improve the verification of a component.

The motivation for the work is that state explosion is still a problem even though modu-

larity has been achieved. The modularisation may even make the problem worse, since the

components are verified out of context. The context may restrict the possible behaviours of

the component, therefore, without a context, many behaviours are unnecessarily examined.

By adding constraints on the interfaces, this problem may be avoided. The constraints are

automatically generated from the surrounding components and summarised in an interface

process. Their work does, however, neither discuss the iterative refinement of interfaces

(contexts), nor do they discuss timing aspects.

Xie and Browne [36] take a bottom-up approach to the verification of component-based

systems. They divide components into two categories: composed and primitive. Composed

components contain subcomponents as part of themselves, whereas primitive components

generally are small and cannot be further divided into subcomponents. Due to the small size of

primitive components, they can straight-forwardly be verified, e.g. by model checking, with

conventional methods. The verification of composed components, on the other hand, relies on

abstractions of the previously verified subcomponents. These abstractions might need to be

iteratively refined in order to obtain a valid verification result. With this approach, the whole

(possibly big) system must be simultaneously taken into consideration in the verification.

Our approach focuses on each component interconnection at a time, considering at a moment

only an as small part of the overall system as possible.

Interface automata have been proposed by de Alfaro and Henzinger [16] as a mech-

anism to check that the interfaces of two components are compatible. Each interface on

each component has an associated automaton describing the legal behaviour on that in-

terface. By composing the interface automata of two interconnected components, a new

interface automaton describing the interface of the composed component is obtained. If

this composition fails, the two interfaces are concluded incompatible. The approach con-

cludes that two interfaces are compatible if there exists at least one environment that can

make them work together. There is, however, no guarantee that the design at hand is

such an environment. Properties other than interface compatibility cannot be addressed

by this approach. The proposed interface automata can, moreover, not handle real-time

aspects.

Barringer et al. [8] use learning to iteratively refine initially maximally abstract environ-

ment assumptions. During each iteration, model checking is performed to assert that certain

properties are satisfied. If not, the environments are refined with the help of the diagnostic

trace obtained from the verification, using a learning algorithm. If a contradiction is encoun-

tered, it is concluded that the property is not satisfied in the model. Our approach uses the same

overall idea, but instead of learning, it exploits the structure of the connected components,
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thus reducing the number of necessary iterations. In addition, their approach does not handle

timing aspects.

Grumberg and Long [18] devise another approach based on abstraction and refinement

of the component under verification, given a preorder (hierarchy) of such abstractions. They

verify, with the help of model checking and an inference mechanism based on the preorder,

that the component satisfies a certain property in all systems which can be built using that

component. Our approach is also based on utilising a hierarchy of abstractions in the veri-

fication process. However, as opposed to Grumberg and Long’s approach, the components

involved are already verified and assumed to be correct. Our objective is to verify the inter-

connection of the components in a design, not the components themselves. Abstract models

of the components can, therefore, be used to model the environment in the verification. The

hierarchy of the abstract component models, in our case, is defined with respect to the in-

terfaces of the components. This makes it relatively intuitive for designers to understand the

behaviour of the particular abstraction in use. Grumberg and Long verify that components

will work correctly in all environments, while we verify that the interconnection of several

components will work correctly in the design at hand.

A common technique is to base abstraction and refinement, also in the context of model

checking, on the simulation relation [6]. Clarke et al. [13] have proposed such an approach,

where an abstraction of a design is refined by examining the diagnostic trace obtained from

the model checker in case the verified property was unsatisfied. The diagnostic trace pinpoints

which part of the abstracted model failed. If the failure is caused by a too abstracted model,

the model is refined and the refined model is iteratively model checked. However, if the

failure exists even in the unabstracted model, the result of the verification is returned to the

designer. Our approach bears strong similarities with this work in the sense of the iterative

diagnostic trace-guided refinement of abstract models of the system. However, our work takes

the component-based nature of the designs into consideration and focuses on the abstraction

and refinement of the interfaces between two or more components in such a framework.

Section 6.4 describes this refinement approach in detail.

Schneider [32] proposes a formalisation of execution monitors. Such monitors watch that

certain properties on the interfaces of a component are not violated. If violated, the monitor

halts the execution. Ball and Rajamani have provided a realisation of this in SLIC, with which

interface properties can be attached to C functions [7]. This approach, however, only investi-

gates one particular execution trace, and hence cannot guarantee complete correctness. Our

approach relies on formal techniques, which investigates the whole statespace and therefore

can give such guarantee.

A slightly different, but related, issue is that of component matching described by Roop

et al. [26]. The designer has a specification stating what functionality is needed at a certain

place in the design. This specification has to be compared with the components in the repos-

itory. The problem amounts to determining if a certain component is able to implement the

specification. The component may be able to do more than is required by the specification,

but the specification must be a subset of what the component is able to perform. The pro-

posed algorithm is based on the forced simulation relation [26], possibly augmented with a

particular timing feature [27]. If the component is able to implement the desired behaviour,

it is possible to automatically obtain a driver process which does the actual adaptation of

the component. Consequently, we know by construction that this part of the system satisfied

the specified set of properties. This is very different from our approach where component

selection and interface generation are not performed automatically, and, consequently, the

system is not assumed to be correct by construction. Our main concern is to check if the

components and the designed glue logics are interconnected according to the requirements.
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Assume-guarantee reasoning [12, 25] is not a methodology in the sense that properties

are not explicitly verified. It is rather a method of combining the results from the verifica-

tion of individual components to draw a conclusion about the whole system. This has the

advantage of avoiding the state explosion problem by not having to actually compose the

components, but each component is verified separately. However, this approach may easily

lead to circular reasoning, in which case faulty conclusions might be drawn. Abadi et al. [1,

2] have furthermore developed a similar approach where the system is described as a set of

temporal logic formulas, and composition is handled as conjunction. Our work can be used

to perform the underlying verification task in these inference mechanisms. It does, however,

not replace the inference mechanisms themselves.

In the component-based framework, which we assume, components may be designed

by different providers. This situation might easily lead to a mismatch or incompatibility in

their interfaces so that several such components cannot communicate with each other as

intended. Therefore, glue logics have to be introduced between the components to adapt

their interfaces in a way that they are able to properly communicate with each other. Such

glue logic is too often designed and introduced ad hoc. Spitznagel and Garlan [34] present

a systematic approach for designing glue logics which facilitates analysis of certain crucial

issues, such as soundness, transparency and compositionality. Our work does not depend on

whether the glue logics have been created using Spitznagel and Garlan’s technique or with

an ad hoc approach.

3 Methodology overview

In this paper, we consider systems which are built using predesigned components (IP blocks).

Figure 1 illustrates such a system. In the figures throughout this paper, each component is

depicted as a box with circles on its edge. The circles represent the ports of the component,

which it uses for communication with other components. This notation conforms well with

our design representation, introduced in Section 4.

The glue logic inserted between communicating components is depicted in Fig. 1 as

clouds. For example, the interfaces of two or components connecting to each other may use

different incompatible communication protocols. Thus, they cannot communicate directly

with each other. For that reason, it is necessary to insert an adaptation mechanism between

the components in order to bridge this gap. This adaptation mechanism would then, in this

case, be the glue logic.

Component 1 Component 2

Component 3

Component 4 Component 5 Component 6

Port

Glue Logic

Fig. 1 Targeted system topology
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3.1 Objective and assumptions

The objective of the proposed methodology is the following: verify the glue logic so that it

satisfies the requirements imposed by the connected components.

The methodology is based on the following two assumptions:� The components themselves are already verified.� The components have some requirements on their environment associated to them, ex-

pressed in a formal notation.

The first assumption states that the components themselves are already verified by their

providers, so they are considered to be correct. What is still needed to be verified is the glue

logic and the interaction between the components through the glue logic.

According to the second assumption, the components impose certain requirements on

their environment. These requirements have to be satisfied in order for the component to

function correctly. The requirements are expressed by formulas in a formal temporal logic,

in terms of the ports in a specific interface. It is important to note that these formulas do not

describe the behaviour of the component itself, but they describe how the component requires

the rest of the system (its surrounding) to behave in order to work correctly. In this work,

we use (timed) Computation Tree Logic, (T)CTL [4, 11] for expressing these requirements.

However, other similar logics may be used as well.

CTL is a branching time temporal logic. This means that it can be used for reasoning

about the several different futures (computation paths) that the system can enter during its

operation, depending on which actions it takes. CTL formulas consist of path quantifiers

(A, E), temporal quantifiers (X, G, F, U, R) and state expressions. Path quantifiers express

whether the subsequent formula must hold in all possible futures (A), no matter which action

is taken, or whether there must exist at least one possible future where the subformula holds

(E). Temporal quantifiers express the future behaviour along a certain computation path

(future), such as whether a property holds in the next computation step (X), in all subsequent

steps (G), or in some step in the future (F). p U q expresses that p must hold in all computation

steps until q holds. q must moreover hold some time in the future. q R p on the other hand

expresses that p must hold in every computation step until q, or if q never holds, p holds

indefinitely. State expressions may either be a boolean expression or recursively a CTL

formula.

In TCTL, relations on time may be added as subscripts on the temporal operators (except

the X operator). For instance, AF≤5 p means that p must hold before 5 time units and AG≤5 p
means that p holds all the time during at least 5 time units.

AG ((status = disconnected ∨ init) →
A [status = connected R ¬ in = 〈send, 〉]) (1)

Equation (1) provides an example of a CTL formula capturing a constraint imposed by a

component. This example, also shown in Fig. 2, is taken from a design using a connection-

based protocol for communication. It consists of a component wanting to send a message

to another component at regular time intervals. The sending component is not aware of

the connection-based protocol and consequently all its messages must pass through a third

component called Protocol Adapter. The protocol adapter implements the chosen protocol

and was supplied and verified by a provider.

However, the protocol adapter needs an explicit command to connect to the receiving

component, and messages to be sent must be preceded by a particular send command. Such
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msgout

Sender
in

out

status

send

rec

Protocol
Adapter

Glue

Logic

Fig. 2 A concrete example of a situation where the methodology can be applied

commands are received through port in. The adapter moreover provides the glue logic with

information about the connection status through port status. Messages received by the proto-

col adapter are forwarded to the glue logic through port out. It is the task of the glue logic to

supply the adapter with the appropriate commands and to take care of the messages forwarded

by it.

Equation (1) is associated to the protocol adapter stating that it must always be true that

if there either is a message in port status with the value “disconnected” or the system is in

the initial state, then a message with value “send” may never occur in port in as long as there

has not yet arrived a message in port status with value “connected”. Intuitively, the formula

states that it is forbidden to send any message unless first connected.

A set of such formulas is, as mentioned previously, associated to each interface of every

component.

3.2 The verification process

The glue logic inserted between two components is to be verified so that it satisfies the

requirements imposed by the connected components. Figure 3 illustrates the basic procedure.

Model checking is used as the underlying verification technique. The model of the glue

logic together with models corresponding to the interface behaviour of the interconnected

components (called stubs) are given to the model checker together with the (T)CTL formulas

describing the properties to be verified.

Glue

Logic
Stub Stub

S
urrounding

TCTL formulas

Model checker

TCTL formulas

Satisfied

Unsatisfied
Diagnostic trace⎩

⎪
⎨
⎪
⎧

Surrounding

Component 5Component 4

Fig. 3 Overview of the proposed methodology
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A stub is a model which behaves in the same way as the component with respect to the

interface consisting of ports connected to the glue logic under verification.

As a result of the verification, the model checker replies whether the properties are satisfied

in the model or not. If they are not, the model checker provides a diagnostic trace in order to

tell the designer what caused the properties to be unsatisfied.

As shown in Fig. 3, the part of the system not included in the verification of the particular

glue logic is called the surrounding of the glue logic.

There are two main questions which must be answered:� Where do stubs come from, and who models them?� How can we incorporate the surrounding into the verification process?

These questions will be answered in detail in the subsequent sections. In general, it can

however be said that stubs can originate from two different types of sources. Either they

are given by the component provider, or they are generated by the designer, provided that a

high-level model of the component is available. Section 6 assumes the situation where the

stubs are given by the component provider. An important point to be made here is that, in

this case, known properties of the surrounding are also included in this type of stubs. On

the other hand, Section 7 presents an algorithm which automatically generates stubs from

a model of a component. No aspects of the surrounding are, however, included in the stubs

resulting from this procedure. If such aspects are needed to be considered for the verification

of the glue logic, techniques outlined in Section 8 have to be applied.

4 The design representation: PRES+

In the discussion throughout this paper, as well as in the toolset we have implemented, the

glue logic, the stubs and the components are assumed to be modelled in a design repre-

sentation called Petri-net based Representation for Embedded Systems (PRES+) [14]. This

representation is chosen over other representations, such as timed automata [5], due to its

intuitivity in capturing important design features of embedded systems, such as concur-

rency and real-time aspects. Moreover, it clearly captures and exposes both the data and

the control flow of the system, which is very important in the context of this work. The

representation also induces graphically clear-cut interfaces between different components in

the system. Together with the intuitively captured data and control flow, the dynamic be-

haviour on these interfaces can easily be followed and analysed. The representation is based

on Petri-nets with some extensions as defined below. Figure 4 shows an example of a PRES+
model.

x x
x

y

xy

x x

[x > 2y]

[x ≤ 3]

in-port

out-ports

x-5

x+5

x

x

x
t1 t2

t3

t4

t5

p1 p2

p3

p4

p5

p6

p7

[2..5]

[3..4]

[3..4]

[3..7]

[2..5]4 0,〈 〉

Fig. 4 A simple PRES+ net
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Definition 1. PRES+ model. A PRES+ model is a 5-tuple � = 〈P, T, I, O, M0〉 where P
is a finite non-empty set of places, T is a finite non-empty set of transitions, I ⊆ P × T is a

finite non-empty set of input arcs which define the flow relation from places to transitions,

O ⊆ T × P is a finite non-empty set of output arcs which define the flow relation from

transitions to places, and M0 is the initial marking of the net (see Item 2 in the list below).

We denote the set of places of a PRES+ model � as P(�), and the set of transitions as

T(�). The following notions of classical Petri-nets and extensions typical to PRES+ are the

most important in the context of this work.

1. A token k has values and timestamps, k = 〈v, r〉 where v is the value and r is the timestamp.

In Fig. 4, the token in place p1 has the value 4 and the timestamp 0. When the timestamp

is of no significance in a certain context, it will often be omitted from the figures.

2. A marking M is an assignment of tokens to places of the net. The marking of a place P is

denoted M(p). A place p is said to be marked iff M(p) 	= ∅.

3. A transition t has a function ( ft ) and a time delay interval ([d−
t . . d+

t ]) associated to it.

When a transition fires, the value of the new token is computed by the function, using the

values of the tokens which enabled the transition as arguments. The timestamp of the new

tokens is the maximum timestamp of the enabling tokens increased by an arbitrary value

from the time delay interval. The transition must fire at a time before the one indicated

by the upper bound of its time delay interval (d+
t ), but not earlier than what is indicated

by the lower bound (d−
t ). The time is counted from the moment the transition became

enabled. In Fig. 4, the functions are marked on the outgoing edges from the transitions

and the time interval is indicated in connection with each transition.

4. The PRES+ net is forced to be safe, i.e. one place can at most accommodate one token.

A token in an output place of a transition disables the transition.

5. The transitions may have guards (gt ). A transition can only be enabled if the value of its

guard is true (see transitions t4 and t5).

6. The preset ◦t (postset t◦) of a transition t is the set of all places from which there are arcs to

(from) transition t. Similar definitions can be formulated for the preset (postset) of places.

In Fig. 4, ◦t4 = {p4, p5} and t◦
4 = {p6}.

7. A transition t is enabled (may fire) iff there is one token in each input place of t, no token

in any output place of t and the guard of t is satisfied.

We will now define a few concepts related to the component-based nature of our method-

ology, in the context of the PRES+ notation.

Definition 2. Union. The union of two PRES+ models �1 = 〈P1, T1, I1, O1, M01〉 and �2 =
〈P2, T2, I2, O2, M02〉 is defined as �1 ∪ �2 = 〈P1 ∪ P2, T1 ∪ T2, ∪I1 ∪ I2, O1 ∪ O2, M01 ∪
M02〉.

Other set theoretic operations, such as intersection and the subset relation, are defined in

a similar manner.

Definition 3. Component. A component C is a subgraph of the graph of the whole system �

such that:

1. Two components C1, C2 ⊆ �, C1 	= C2, may only overlap with their ports (Definition

4), P(C1 ∩ C2) = Pconnect , where Pconnect = {p ∈ P(�)|(p◦ ⊆ T (C2) ∧◦ p ⊆ T (C1)) ∨
(p◦ ⊆ T (C2))}.
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in1

in2

out

(a) (b)

Fig. 5 Component substitution

2. The pre- and postsets (◦t and t◦) of all transitions t ∈ T (C) must be entirely contained

within the component C, ◦t, t◦ ⊆ P(C).

Following Definition 3, a glue logic is formally also a “component”. The reason that we

call them differently is the way they are handled by the designer. A component acquired from

a provider is, for instance, thoroughly verified and documented, whereas the glue logic is

constructed by the designer himself and has to go through the verification process to see if it

satisfies the imposed requirements.

Definition 4. Port. A place p is an out-port of component C if (p◦ ∩ T (C) = ∅) ∧ (◦ p ⊆
T (C)) or an in-port of C if (◦ p ∩ T (C) = ∅) ∧ (p◦ ⊆ T (C)). p is a port of C if it is either

an in-port or an out-port of C.

Definition 5. Interface. An interface of component C is a set of ports I = {p1, p2, . . .} where

pi ∈ P (C).

PRES+ can model the behaviour of a component at different levels of granularity. A

component is generally drawn as a box surrounded by its ports, as illustrated in Fig. 5(a).

Modelled in this way, it can be replaced with a PRES+ net as indicated by Fig. 5(b) without

change in functionality.

The PRES+ representation is not required by the verification methodology itself, although

the algorithms presented in this paper have been developed using PRES+. However, if another

design representation is found more suitable, similar algorithms can be developed for that

design representation.

In the context of PRES+, two forms of boolean state expressions are used within (T)CTL

formulas: p and p�v. The expression p refers to a state where a token is present in place p.

Expressions of the form p�v, on the other hand, describe states where also the value of a

token is constrained. The value of the token in place p (there must exist such a token) must

relate to the value v as indicated by relation �. For example, the expression p = 10 states

that there is a token in place p, and that the value of that token is equal to 10.

In order to perform the model checking, the PRES+ model, as well as the (T)CTL proper-

ties, have to be translated into the input language of the particular model checker used. For the

work in this paper, the models are translated into timed automata [5] for the UPPAAL model

checking environment (http://www.uppaal.com/), using the algorithms described in [14]. The

properties are also modified to refer to timed automata elements, rather than PRES+.

5 Glue logics

An example of a glue logic is provided in Fig. 6. The glue logic connects a component Radar
to a component which implements a connection-based communication protocol. Component

Radar emits a token containing radar information with an even time interval.
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s

[s=connected]
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[s=disconnected]

[s=rejected]
[s=others]

s

<con, <MCC:radar_in, MCC>>

<sd, <MCC, m>>

m

n

[n<5] n

n+1n0

Radar
Protocol

target

in

out

status

send

rec

0

update

Fig. 6 A glue logic interconnecting two components

Since we use a connection-based protocol, a fact which component Radar is not aware of,

the functionality related to establishing and maintaining a connection has to be implemented

by the glue logic. In this and the following examples, the time delay intervals on the transitions

are not shown for the sake of readability of figures. The transition connected to both the port

target update and the port in cannot be enabled until the protocol reported that it successfully

has been connected. In this case, the token value 〈sd, 〈MCC, m〉〉 will be passed to the protocol

component. The first element of the tuple is a command to the protocol (“sd” is a shorthand

for “send”) and the second element is an argument to the command. Here the argument is a

tuple of the destination and the message itself. If, however, the connection failed, the glue

logic will continue to attempt to connect, at most five times.

6 Verification of component-based designs

In this section, the theoretical framework underlying the verification methodology is pre-

sented. It gives formal definitions and presents important properties and relations, as well as

some experiments. It is furthermore assumed in this section that the stubs are given by the

component provider [21, 23].

6.1 Stubs

In Section 3.2, we concluded that some description mechanism of the components is neces-

sary in the verification process. We have previously called components describing another

component “stub”. In this section, a mathematical definition of what a stub exactly is will be

given. Before defining a stub, some auxiliary concepts have to be defined.

Definition 6. Event. An appearing event is a tuple e+ = 〈p, k〉, where p is a place and

k = 〈vk, rk〉 is a token. Appearing events represent the fact that a token k with value vk is

put in place p at time moment rk . A disappearing event is a tuple e− = 〈p, r〉 where p is a

place and r is a timestamp. Disappearing events represent the fact that a token in place p is

removed at time r. Observe that for disappearing events we are not interested in the token

value. An event e is either an appearing event or a disappearing event.

Springer



60 D. Karlsson et al.

o p 2 1,〈 〉,〈 〉 q 5 3,〈 〉,〈 〉 p 4,〈 〉 p 3 8,〈 〉,〈 〉 p 9,〈 〉 q 9,〈 〉, , , , ,{ }=

p

q

t 0=

p

q

t 1=

2 1,〈 〉
p

q

t 3=

2 1,〈 〉

5 3,〈 〉
p

q

t 4=

5 3,〈 〉
p

q

t 8=

5 3,〈 〉

3 8,〈 〉
p

q

t 9=

Fig. 7 Illustration of observations

Definition 7. Observation. An observation o is a set of events o = {e1, e2, . . .}. Given obser-

vation o and an interface I, the restricted observation o|I = {〈p, k〉 ∈ o|p ∈ I } ∪ {〈p, r〉 ∈
o|p ∈ I }. An input observation in is an observation which only contains appearing events

defined on in-ports and disappearing events defined on out-ports. An output observation out
is an observation which only contains appearing events defined on out-ports and disappearing

events defined on in-ports.

An observation is intuitively a sequence of events over time, where tokens appear and

disappear in the places of the system. Exactly how and why the tokens appear and disappear

is of no interest from the point of view of an observation. The events in an observation can be

regarded as implicitly sorted with respect to their timestamps. Figure 7 illustrates the concept

of observations according to Definition 7. The figure shows the flow of events as described

by observation o, defined in the figure. Initially, at time t = 0, the ports do not contain any

token. The observation states that a token with value 2 appears in port p at time moment 1.

At time t = 3 another token appears in q and, at time t = 4, p disappears. A token with value

3 then appears in port p at t = 8 and at time t = 9 both tokens in p and q disappear.

The restricted operation of o with respect to interface {p} is o | {p} = {〈p, 〈2, 1〉〉, 〈p, 4〉,
〈p, 〈3, 8〉〉, 〈p, 9〉} and the one restricted with respect to {q} is o | {q} = {〈q, 〈5, 3〉〉, 〈q, 9〉}.
Moreover, in this particular case, o | {p,q} = o.

Assuming that p is an in-port and q is an out-port, then the observation in =
{〈p, 〈2, 1〉〉, 〈p, 〈3, 8〉〉, 〈q, 9〉} is an input observation and out = {〈q, 〈5, 3〉〉, 〈p, 4〉, 〈p, 9〉}
is an output observation.

When discussing about input and output observations, the interest is concentrated on what

a user of a component inputs to it or receives as output from it. Since the user is also affected

by the time when tokens are consumed by the component, the disappearing events on in-ports

have also been included in output observations. A similar argument holds for disappearing

events on out-ports in the case of input observations.

Definition 8. Operation. Consider an arbitrary input observation in of component C. If events

occur in the way described by in, we can obtain the output observation out by executing the

PRES+ net of C. For each in, several different observations out are possible due to non-

determinism. The set of all possible output observations out of C being the result of applying

the input observation in to component C, is called the operation of component C from in
and is labelled OpC (in). Given an operation OpC (in) = {o1, o2, . . .} and an interface I of

component C, the restricted operation OpC (in)|I = {o1|I , o2|I , . . .}.

Intuitively, the operation of a component describes all possible behaviours (outputs) of

that component, given a certain input pattern.
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We are now ready to define what a stub is. In Section 3.2, stubs were described as a model

of the behaviour of a component with respect to a specific interface. Ports belonging to other

interfaces should be abstracted away.

Definition 9. Stub. Let us consider two components, S and C. IS is the interface of S containing

all ports of S. IC is any interface of C. S is a stub of C with respect to interface IC if and only

if:

1. IS = IC .

2. For any valid input observation in of component C, OpC (in) | IC = OpS(in | IS ).

The meaning of the expression on the left-hand side is the set of all possible output

behaviours occurring in ports of IC obtained by firing the PRES+ net of C given any possible

valid input.

By applying the same input to S, restricted to the particular interface IS , the set of be-

haviours denoted on the right-hand side of the equality sign is obtained from the output of S.

The output does not need to be restricted since only output compatible with IC is produced.

However, the input must be restricted so that only events corresponding to ports existing in

IS are considered.

The definition of stubs does not specify exactly how a stub with respect to a certain

interface must be implemented. It only specifies its behaviour on that interface. Therefore,

an interface might have several different stubs. Which of these stubs is chosen in a certain

situation is of no theoretical importance as the interface behaviours are the same. From here

on, for reasons of simplicity, an interface is considered to only have one stub.

The notion of valid input in Definition 9 is crucial. A valid input is an input satisfying

all requirements which the component has on its environment. If these requirements are not

satisfied, the component is not guaranteed to work correctly according to the discussion in

Section 3.1. The definition only considers such input. Consequently, stubs obeying Defini-

tion 9 behave exactly like the corresponding component would have done when placed in a

correctly designed system. In Section 7, this point will be relaxed.

Consider the Protocol Adapter component in Fig. 6. The glue logic is connected to the

interface I = {in, out, status}, but the component has more ports than those in this interface,

namely the ports send and rec. The behaviour of the ports in I depends actually also on

the token exchange through these other ports. Consequently, a mechanism to abstract away

unattached ports, in this case send and rec, is needed.

Figure 8 shows how a stub for interface I of the Protocol Adapter might look like. Place

isconnected contains a token with a boolean value indicating whether a connection is estab-

lished or not. The value is initially false, which indicates that there is no connection. When

the Protocol Adapter receives a connect (con) or listen (lis) command in port in, transition

s1 becomes enabled. In the real component, the response to such a request is the result of

a token exchange on the ignored ports. However, since those ports are abstracted away in

the stub, the result of this exchange is considered non-deterministic from the point of view

of I. This non-determinism is modelled in Fig. 8 with the conflicting transitions s4 and s5.

The response can either be “rejected” or “connected”. When connected, messages can be

received from the party to which the component is currently connected. Transition s8 mod-

els the receive behaviour, by emitting tokens to port out. It is, however, only able to do so

when the component is connected. Analogously, send commands (sd) are simply consumed

(transition s3). Disconnection commands (disc) are taken care of similarly by transitions s9
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and s10, depending on whether the Protocol was previously connected or not. Transition s7

implements the case where the other party disconnects.

The introduced non-determinism naturally has some impact on the results of the verifi-

cation process. A solution to this problem will be presented in Section 6.4 and Section 7. In

addition, if the behaviour on the ignored ports needs to be constrained, techniques outlined

in Section 8 have to be used.

6.2 Relationship between stubs

Components generally have several different interfaces. Since stubs are defined with respect

to an interface, a component may have several different stubs as well. The stub in Fig. 8 is

built with respect to the interface {in, out, status}, but the Protocol Adapter may also have, for

instance, other stubs with respect to {in, out}, {in, status} or the single port interface {status}.
Stubs can even be built for the interface {in, status, send}.

All potential stubs of a component may be hierarchically organised as a partial order

(lattice) based on the subset relation of their interfaces. Such hierarchy has shown to be

useful, as will be demonstrated in Section 6.4, in iteratively guiding the designer to choosing

an appropriate stub. Figure 9(a) depicts two components with a glue logic in between. In Fig.

9(b), the relationships between the stubs of the two components are shown respectively.

Let us first look at the lattice of component 1. The lattice induces distinct levels of

generality of the stubs. The top-level stub (the stub for the interface containing all ports of

the component), with interface Imax = {i1, o1}, exhibits exactly the same behaviour as its

corresponding component. However, the implementation is not bound to be the same. In the

bottom of the lattice, we have the empty interface, for which there does not exist any stub and

∅

{i1} {o1}

{i1,o1}

o1

i1

(a) Components and glue logic

(b) Interface lattices

Component 1

Component 1 Component 2

i2

Component 2

∅IN ∅OUT

{i2}

∅

∅IN

Level 0

Level 1

Level 2

Level 0

Level 1

Fig. 9 Components and corresponding interfaces
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(a) ∅IN

random

(b) ∅OUT

0..∞[ ] 0..∞[ ]

Fig. 10 The models of the empty stubs

which is only of theoretical interest. If, for a certain verification, no stubs situated at level 1

or higher are applied at a certain port, then a so called empty stub is connected to that port.

In the case of in-ports, the empty stub, ∅IN , denotes the stub that consumes any token at any

point in time. Similarly, the empty stub, ∅OUT , denotes the stub that generates tokens with

random values at any point in time. The models of these stubs are presented in Fig. 10. It is

useful to introduce the notation ∅p to denote the empty stub at port p. Whether ∅p is equal

to ∅IN or to ∅OUT depends on whether p is an in-port or an out-port.

Between Imax and ∅, stubs of different levels of generality can be found. For each level up

in the lattice, as more and more ports are included in the interfaces, more specialised stubs

can be found which introduce causality between in-ports and out-ports of the respective

interfaces.

On level 1, stubs for one-port interfaces are situated. If the interface only contains an in-

port, the functionality of the stub is to consume the token at random times which, however,

correspond to times when the full component could be able to consume the token, if it would

be consumed at all. If it only contains an out-port, the functionality is to issue a new token

with random value at random occasions. The value and time are random to the extent that

the issued values could, in some circumstance, be issued by the full component at the time in

question. Note the difference between these stubs and ∅IN and ∅OUT , respectively. The empty

stubs produce/consume tokens with random values and times with no regard to the possible

behaviour of the actual component.

If higher level (level > 1) stubs contain both in-ports and out-ports, a certain degree of

causality is introduced. The out-ports can no longer produce any arbitrary value on the tokens,

but rather any value still consistent with the token values arriving at the in-ports given the

behaviour of the full component. Hence, for instance, in Fig. 8 no token on port out can be

issued unless the stub has received a connection or listen request at port in and accepted it.

If there are other in-ports of the component, not represented in the interface of the stub, the

output is considered non-deterministic from the point of view of the absent in-port, as in the

case with the non-deterministic issuing of rejected and connected as an answer to a connect
request described previously in Fig. 8.

6.3 Verification environment

When a particular verification is going to take place, stubs must be selected from the lattices

of the involved components. Each port connected to the glue logic must be covered by exactly

one stub. Such a set of stubs is called environment. An environment, E, can be described by

a set of interfaces, called interface partition, where each interface corresponds to a stub. If a

port, p, does not exist in any interface of E, then the empty stub ∅p is added to p.

Definition 10. Interface partition. An interface partition P is a set of non-empty interfaces

P = {P1, P2, . . .} such that Pi ∩ Pj = ∅ for any i and j, i 	= j .
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It should be pointed out that each port can, at most, belong to one interface in every

partition. As a consequence of Definition 5, all ports in the same interface must belong to the

same component. For convenience, the set of all ports belonging to the interfaces in partition

P is denoted Ports(P) = ⋃
i∈P i .

S = {{i1}, {i2}}, T = {{i1, o1}} and U = {{i1, o1}, {i2}} are all examples of interface par-

titions with respect to the components in Fig. 9. On the other hand, V = {{o1, i2}} is not an

interface partition, since the ports in the “interface” {o1, i2} do not belong to the same com-

ponent. Similarly, W = {{i1}, {i1, o1}} is not an interface partition either, since the included

interfaces are not disjoint.

Definition 11. Environment. The environment corresponding to a partition P = {I1, I2, . . .}
with respect to a set of ports J, where Ports(P) ⊆ J , is defined as Env(P, J ) = (∪i∈P Si ) ∪
(∪p∈J−Ports(P)∅p) where each Si is the stub for interface i, and ∅p is the empty stub attached

to port p.

Let us consider the example in Fig. 9 and the partitions S, T and U again as defined above.

For J = {i1, o1, i2}, the environment corresponding to partition S, as defined above, (Env(S,

J)) contains the stubs corresponding to the interfaces {i1}, {i2} and the empty stub ∅o1
. Env(T,

J) similarly contains the stub for {i1, o1} and the empty stub ∅i2
. Env(U, J) does not contain

any empty stub, since the interfaces in U cover all ports in J.

If all the individual stubs in Env(P, J ) together are viewed as one single component, we

obtain the environment corresponding to partition P with respect to the set of ports J. The

name stems from the fact that such a component acts as the environment of the glue logic,

connected to the ports in J, in the verification process. A synonymous name is Verification
Bench.

Environments can be organised hierarchically in a lattice, in a similar way as interfaces

and stubs. This organisation is based on the precedence relation defined below. Figure 11

depicts the corresponding partition (environment) lattice.

Definition 12. Partition precedence. Partition P precedes partition Q, P ∝ Q, iff ∀ p ∈
P ∃ q ∈ Q : p ⊆ q.

For every p ∈ P , there exists at most one q ∈ Q that satisfies the subset relation. This is

due to the fact that every port can at most belong to one interface in the partition. Intuitively,

a partition P precedes partition Q if the interfaces in P are smaller, fewer and/or more

fragmented than the corresponding interfaces in Q.

Considering the partitions S, T and U defined before, both S ∝ U and T ∝ U , since every

interface in S and T respectively is a subset of one interface in U. It is however not true that

S ∝ T , since {i2} is not a subset of any interface in T.

6.4 Formal verification with stubs

Having shown that there are many possibilities for choosing the stubs, i.e. the verification

environment, for the verification problem at hand, a mechanism for helping the verifier

making this choice is presented in this section, based on Theorem 1. A similar approach was

also proposed by Clarke et al. [13]. The theorem is only valid for (T)ACTL formulas. Such

formulas are (T)CTL formulas, which only have universal path quantifiers and negation may
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Fig. 11 Partition (environment) lattice of the situation in Fig. 9
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Fig. 12 Illustration of Theorem 1

only occur in front of atomic propositions. (T)ACTL formulas express requirements in the

sense that a certain condition must always hold or it must never hold.

Theorem 1. Assume the partitions P1 and P2, P1 ∝ P2, a set of ports J where Ports(P1),

Ports(P2) ⊆ J , an initial marking M0 on the ports in J and a (T)ACTL formula, e.g. AF φ,
also expressed only on the ports in J. If M0 |= AF φ for component Env(P1, J) Env(P1, J ),
then it is also true that M0 |= AF φ for component Env(P2, J).

The intuition behind this theorem is that when verifying a property expressed as (T)ACTL,

if it is satisfied when using a verification environment at a low level in the lattice, it is

guaranteed to be satisfied also in higher levels, according to the precedence relation in

Definition 12.

Figure 12 illustrates the intuition behind the proof of the theorem. The area inside the

outer circle corresponds to the set of behaviours (OpEnv(P1,J )) of Env(P1, J). According to

Definition 11, this operation is produced by the union of all stubs corresponding to the in-

terfaces in P1. The area inside the inner circle similarly corresponds to the set of behaviours

(OpEnv(P2,1)) of Env(P2, J). This set is a subset of the first one since P1 ∝ P2 by assump-

tion. If a certain (T)ACTL formula holds for all behaviours in the bigger set, it does also

hold for all behaviours in the subset. Seen in this way, the restriction to (T)ACTL formulas,
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as opposed to an arbitrary (T)CTL formula, becomes obvious, since (T)ACTL formulas

express properties which must always hold. This is due to the fact that they only contain

universal path quantifiers. An arbitrary (T)CTL formula cannot guarantee that the property

holds for all behaviours, only that there is at least one behaviour satisfying it. In contrast

to (T)ACTL, arbitrary (T)CTL formulas are able to express possibility, e.g. it must be pos-

sible for p to occur in the future (EF p). A formal proof of the theorem is presented in

Appendix A.

As a consequence of Theorem 1, the designer can start the verification process using stubs

at low level. If the design satisfies the properties using this environment, the property is

also satisfied for the complete design according to Theorem 1. However, if the property was

unsatisfied, this does not mean that the property necessarily is unsatisfied in the complete

design. The reason could be that the environment was able to produce to many excess

behaviours. In this case, the verification has to be continued using higher level stubs. The

diagnostic trace may help the designer in finding an appropriate stub. If the property is

unsatisfied even with top-level stubs, it is not satisfied in the particular system.

As indicated by the experimental results presented in the next section, using low-level stubs

leads to shorter verification times. For this reason, it is a good idea to start the verification with

such stubs. The theorem also provides a means of verification in the case that top-level stubs,

of which the behaviour is identical to the behaviour of the full component on the specified

interface, are not given by the component provider and consequently are not available.

6.5 Experimental results

The following example demonstrates the use of alternative sets of stubs for verification of a

split transaction bus (STB) in a multiprocessor DSP [3]. An overview of the system is shown

in Fig. 13. Each processing element contains one 32-b V8 SPARC RISC Core with a co-

processor and reconfigurable L-1 cache memory. The STB consists of two buses, the address

bus and the data bus. When the protocol wants to send data, on request from the processing

element, it must first request access to the address bus. After acknowledgment of the address

bus, the protocol suggests an identifier for the message transfer and associates it with the

address of the recipient. This identifier is broadcast to all protocol components connected to

the bus in order to notify them about used identifiers. The next step is to request access to the

data bus. When the data bus has acknowledged the request, the identifier is sent followed by

some portion (restricted in size by the bus) of the data. Then, the data bus is again requested

128-b Split trans. bus
I/O
Interface
and
memory
controller

Processing
Element

Processing
Element

Processing
Element

Processing
Element

Verified
glue logic

STB Address Bus

STB Data Bus

Protocol

Processing
Element

Fig. 13 Schematic view of the STB example

Springer



68 D. Karlsson et al.

Table 1 Experimental results for the STB example

Partition

Property 1 2 3 4 5 6 7 8 9 10 11 12

A F 0.41 F 3.28 F 0.34 F 162 T 156 F 345 F 330 F 68.2 T 17.7 F 636 T 30.4 T 12.6

B T 0.14 T 0.41 T 0.16 T 17.6 T 24.8 T 16.9 T 23.6 T 1.69 T 1.38 T 26.9 T 1.54 T 1.29

C F 0.23 F 0.74 F 0.23 F 19.7 F 29.7 F 18.6 F 28.8 F 3.25 F 3.27 F 32.7 F 4.09 F 4.01

D F 0.38 F 0.89 F 0.37 F 129 F 45.9 F 97.7 F 313 F 20.1 T 3.32 F 292 T 10.2 T 7.04

E T 0.20 T 0.58 T 0.21 T 28.1 T 54.2 T 29.2 T 48.9 T 2.80 T 1.20 T 53.3 T 4.48 T 4.39

F F 0.34 F 0.68 F 0.31 T 18.7 T 26.2 T 16.5 T 25.2 F 6.51 F 2.85 T 28.8 T 1.76 T 1.36

G F 0.41 T 0.43 F 0.44 T 18.5 T 26.3 T 17.0 T 26.7 T 2.47 T 0.94 T 30.0 T 2.36 T 1.94

H T 0.21 T 1.30 T 0.22 F 167 F 438 F 344 F 325 F 66.4 F 11.9 F 689 F 87.2 F 38.0

F = property is unsatisfied, T = property is satisfied. Verification times are given in seconds.

1

2 3

4

5 67

8

9

1011

12
Fig. 14 Partition lattice in the

STB example

and the same procedure continues until the whole block of data has been transmitted. One

functionality of the glue logic being verified, see Fig. 13, is to deliver messages from the

protocol to the correct bus. Another aspect is to process the results and acknowledgments so

that they can correctly be treated by the protocol. For instance, in the case of an identifier

broadcast, the protocol component expects two different commands from the address bus,

depending on which of the following two situations occurred: (1) the protocol component

currently in hold of the address bus is the component connected to this particular glue logic

or (2) the broadcast is the result of another component proposing an identifier.

Table 1 shows the verification results with the STB example. The high number of ports in

the components yields a large lattice of environments. The one depicted in Fig. 14 is not the

full lattice but only those environments which are involved in this particular experiment are

included. Environment 12 consists of the top-level stubs for all three connected components,

i.e. Address bus, Data bus and Protocol. Environment 1 consists of only level 1 stubs on

out-ports. Verification results marked with T mean that the verified property was satisfied,

and conversely verification results marked with F mean that the property was unsatisfied in

the particular environment. The numbers indicate the verification time in seconds.

In order to give a better understanding of the properties, we will have a closer look at

two of them. Property B, for instance, is concerned with the fact that the glue logic must

issue different commands to the protocol component when the address bus broadcasts the

identifiers, depending on the source causing this event to happen. It is hence formulated
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as AG (rec → rec 	= 〈TRAN, a〉 ∧ a 	= this component) where TRAN (transaction) is the

command to be received by the protocol component when the source causing the event

is the one connected to the glue logic under verification. It should not be possible to re-

ceive such an event where the address is different from the one of the current compo-

nent. Another property, D, AG ((addr.out = ACK) → AF addr.in = drive addr), states that

when the bus has acknowledged a request, it expects that the address and identifier are

passed.

Properties A to G are expressed as ACTL formulas, while property H is not. It can be

noticed that property C is not satisfied at all in the system. That is why the verification result

for that property is false, no matter which environment is used. On the other extreme we find

properties B and E which are satisfied even with the lowest level environment. Hence, being

expressed as an ACTL formula, the property is satisfied with any environment. Property H

is not an ACTL formula and can hence not be expected to behave according to the same

pattern. It is satisfied when verified with low-level stubs, but is not satisfied with high-level

stubs. Property G, also expressed as an ACTL formula, is also satisfied. This can be verified

by using the top-level environment, but also by verifying with environment 2. According to

Theorem 1, the verification performed with environment 2 also guarantees that the property

is satisfied with environments 4, 5, 6, 7, 8, 9, 10, 11 and 12, which means the complete

system. This is, of course, not the case with property H which is expressed by a non-ACTL

formula. Verification with environments 1 to 11 are not valid. The only verification which

makes sense is using the top-level environment.

Let us have a look at verification times. The verification time with different environments

is in the range 0.14–689 s. For a given property the verification times are small for the very

low-level stubs and for the top-level stubs. This is due to the simplicity of the low-level

stubs, on the one side, and the high degree of determinism of the top-level stubs (which

reduces the state space) on the other side. Between these two limits we can observe a,

sometimes very sharp, increase of verification times for the stubs which are at a level close

to the top. If a complete set of stubs is available, one can perform the verification using the

top-level stubs. For non-(T)ACTL formulas, this is the only alternative. However, (T)ACTL

formulas could be verified even if the top-level stubs are not at hand. In this case, a good

strategy could be to start with the lowest level stubs, going upwards until the property is

satisfied.

7 Automatic stub generation

Section 6 introduced a verification methodology where the stubs are provided by the designer

of the reusable components. If stubs of the desired level are not available, and the property

to be verified is expressed as a (T)ACTL formula, other stubs at lower level can be used

instead. An alternative situation is that a PRES+ model of the component is available, but

no particular stubs. In this section, algorithms for automatically generating stubs, given the

model of the component and the interface, are presented together with a methodology which

explains how to use such stubs. According to the discussion in Section 3.2, here, we assume

that we do not know anything about the surrounding environment, as opposed to Section 8

where we will add explicit knowledge about the surrounding, where needed.

The example component in Fig. 15 will be used to explain and analyse the stub generation

algorithms in this section. In all cases, a stub for the marked interface {p1, p2} will be

generated.
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Fig. 15 Example of a component for stub generation

7.1 Pessimistic stubs

The stub definition presented in Section 6.1 (Definition 9) is quite strict, requiring equality

between the operations of the component and stub. That strictness makes it very difficult to

automatically create stubs. Definition 13, relaxes that definition:

Definition 13. Pessimistic stub. Let us consider two components, S and C. IS is the interface

of S containing all ports of S. IC is any interface of C. S is a pessimistic stub of C with respect

to interface IC iff:

1. IC = IS

2. For any possible input in of component C, OpC (in)|IC ⊆ OpS(in|I S ).

A pessimistic stub is consequently a stub which can generate more observations than

its corresponding component and hence has a more “pessimistic” view of the component

behaviour. Of course, this might influence the accuracy of the verifications in which they are

involved. However, for properties expressed as (T)ACTL formulas this does not necessarily

lead to uncertain results. Stubs following Definition 9 are in this section called exact stubs
to differentiate between the two types.

The following theorem helps us to evaluate the result of a verification with pessimistic

stubs.

Theorem 2. Assume two environments E1 and E2 of the same set of components and OpE1
⊆

OpE2
, an initial marking M0 and a (T)ACTL formula, e.g. AF φ expressed only on the ports of

the stubs in E1 and E2. If M0 |= AF φ for component E2, then it is also true that M0 |= AF φ

for component E1.

The intuition behind this theorem is the same as in the case of Theorem 1. The set of

behaviours of E2 includes all the behaviours of E1 according to the assumption. Hence, if a

certain property is true for all behaviours of E2, it must also be true for all behaviours of E1.

A formal proof is presented in Appendix B.

Theorem 2 allows us to use pessimistic stubs when verifying (T)ACTL formulas. The

behaviours of the exact stub (see Definition 9) are also produced by the pessimistic one
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which, however, produces additional behaviours. This fulfils the assumptions of the theorem.

So, if a property is satisfied using the pessimistic stubs, we can confidently deduce that the

property would also have held if exact stubs had been used instead. However, if the property

is not satisfied, no conclusion can be drawn at all. In this case, the stubs must be made less

pessimistic in order to exclude the undesired behaviour, which caused the property to be

unsatisfied, from the operation of the stub.

7.2 The naı̈ve approach

The straight-forward way to create a stub of a component, is to keep the original model of

the component and add transitions with completely random time intervals and, in the case of

an in-port, a random function, on all other ports than those given in the interface of the stub.

This will clearly fulfill the requirements of a stub, according to Definition 13, since it is able

to produce the same events as the component is able to. The difference between the naı̈ve

stub and the exact top-level stub is that the naı̈ve stub assumes the most hostile surrounding

possible whereas the exact stub complies with the assumptions on the other interfaces (see

discussion around Definition 9). The resulting stub is shown in Fig. 16.

To verify a design using naı̈ve stubs could be quite time consuming, as shown by experi-

ments. For this reason, an algorithm generating smaller stubs reducing verification time has

been developed and is presented in the following sections.

7.3 Stub generation algorithm

The basic idea of the stub generation algorithm is to identify the parts of the given component

which have an influence on the interface for which a stub should be generated. This is done by

analysing the dataflow in the component. Once these parts have been identified and selected

to be included in the stub, the parts of the model which were excluded must be compensated

for. Apart from the pessimistic assumptions about the surrounding, this is an additional point

where pessimism is introduced in the stub.

Hence, the stub generation algorithm consists of the following three parts:

1. Dataflow analysis

2. Identification of stub nodes
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Fig. 16 A naı̈ve stub of the component in Fig. 15
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3. Compensation for the excluded parts of the component

Each of these three parts is discussed below. A more detailed description of these algo-

rithms can be found in [22].

7.3.1 Dataflow analysis

The first step when identifying the parts to be included in the stub is to investigate the dataflow.

This is a very simple procedure based on depth-first search on graphs. The procedure is called

once for each port in the interface of the stub. For in-ports, the search is performed along

the dataflow, whereas for out-ports it is performed against the dataflow. During the search

through the graph, each node (place or transition) is marked with the node previously visited

so that it is possible to obtain the path from an arbitrary node in the component to a port in

the interface. The dataflow marking, obtained from the search, must consequently not only

be able to distinguish the paths but also indicate the ports to which they lead. The dataflow

marking is stored in a data structure for later use. The data structure associates a place or

transition together with the original port from which the particular depth-first search started,

to a set of neighbouring places or transitions which were visited immediately before the node

just being visited.

Figure 17 reveals the dataflow marking for the example component. Every node is anno-

tated with a set of arrows, solid and hollow. The type of the arrow reflects towards which port

it points. In the figure, solid arrows point towards p1 and hollow ones point towards p2. Place

q3 is visited both starting from p1 and p2. This means that both ports can be reached from q3.

As indicated by the figure, the path from q3 to p1 goes through t2, and the path from q3 to

p2 through either t6 or t7. There is no path to p1 from q4, since q4 was never reached in the

dataflow search from p1. A dataflow marking is, intuitively, the set of arrows (maintaining

their types) associated to a node obtained from the search.

7.3.2 Identification of stub nodes

The parts of the component to be included in the stub are identified using the dataflow

marking. The identification procedure is based on a depth-first search, starting from each port

not belonging to the specified interface. The search continues until a so called separation
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Fig. 17 The dataflow marking of the component in Fig. 15
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Fig. 18 The places and transitions in the automatically generated stub

point is found. A separation point is a node (place or transition), which denotes the border

between the parts of the component to be included in the stub and the part not to be included.

In principle, a separation node is the first node encountered which has dataflow arrows of

several different types pointing in different directions. Such a node indicates influence from

several different ports. For example in Fig. 17, transition t2 is such a separation point. More

details regarding the exact definitions and algorithms can be found in [22].

Once a separation point is found, a new depth-first search is started from that point,

following the dataflow marking. Every node visited by the algorithm is added to the final

stub. Figure 18 shows the stub resulting from this procedure.

7.3.3 Compensation

As can be seen in Fig. 18, some transitions in the stub do not have all their input or output

places any more, as compared to the full component (Fig. 15). This means that they will not

deliver (receive) all needed output (input). Similarly, some places do not have all input or

output transitions. Consequently, some mechanism has to be developed in order to compensate

for these missing places and transitions. This is done by introducing non-determinism. Four

cases can be identified along two dimensions: place without input transition (join place),

place without output transition (fork place), transition without input place (join transition)

and transition without output place (fork transition). Their different compensation methods

are described below:

1. Join places lack one or more input transitions in comparison with the full component.

These transitions are compensated by adding them to the stub and further handle them as

join transitions. For efficiency, all these transitions can be merged into one.

2. Fork places are processed analogously by adding the missing output transitions to the stub,

and then handle them as fork transitions. For efficiency, these transitions can be merged

into one.

3. Join transitions lack one or more input places. To compensate for this, the transition

function is modified so that it may produce any random value still consistent with both

its existing input values and its guard. Assume, for example, that the function of a certain

join transition is 2x and that the place corresponding to x is missing. Assume further

that the transition has a guard stating that x must be an even value. After compensation,

the transition will have a random function only producing values divisible by 4. Besides
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Fig. 19 An automatically generated stub

modifying the transition function, the upper bound of the time delay interval must be

changed to infinity, to reflect the fact that the enabling time of the transition is unknown.

4. Fork transitions, on the other hand, lack one or more output places. Similar to join transi-

tions, the enabling time of fork transitions is unknown, due to the forced safe property of

PRES+. Tokens in an output place of a transition may consequently disable the transition.

For this reason, the upper bound of the time delay interval is set to infinity. Both guard

and function are kept intact.

In Fig. 18, transition t2 has one output place not included in the stub. It is consequently

a fork transition. According to the discussion above, there might be a token in the missing

output place disabling t2 forever. The upper bound of the time delay interval of that transition

is therefore changed to infinity as indicated in Fig. 19. Similarly, place q4 is a join place

since it lacks its input transition, t5. Hence, it is never able to receive any tokens. Thus,

all transitions with q4 as an output place are also added to the stub. The functions of these

(join) transitions, t5 in our example, are the same as in the full component, except that all

missing arguments are considered random. The upper bound of the time delay interval of the

transition is moreover set to infinity, since there is no guarantee that the transition will ever

become enabled. Figure 19 shows the final result of the automatic stub generation algorithm.

7.4 Pessimism reduction

If a certain property was not satisfied using the generated stubs, it is necessary to consider

the possibility that this is due to the pessimistic nature of the stub and not to a design error.

The problem could be that the operation of the generated stub contains more observations

than the corresponding component.

The operation of the stub must consequently be refined, i.e. pessimism must be reduced.

The solution to this problem is to add some parts of the component which were excluded

in the stub generation to the stub. However, in the general case, the designer does not have

any detailed knowledge about the internals of the component and its stubs, so this procedure

cannot be done by hand. This leads to the necessity of automating the pessimism reduction

procedure. Such an automatic procedure is possible assuming that all transition functions

are invertible in the sense that, given a value, it is possible to obtain which set of arguments
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result in the given value. The inverted function can itself be a function, which is the most

general approach, or defined by a stored table.

What the designer must know in order to use the component is, normally, not more than

what is stated in the user documentation of the component, i.e. information regarding the

events occurring on the ports. By following the diagnostic trace, obtained as a result from

the verification, the designer can identify an unwanted behaviour on one of the ports of the

component. The unwanted behaviour falls into one of the following three categories:

1. The unwanted behaviour is causal. The value itself is allowed at the particular port, but not

in that particular ordering compared to other values. This case is not a matter of reducing

pessimism, but it is a sign that the interface for which the stub was generated does not

cover enough ports. The solution to this problem is, consequently, to generate another

stub, using the algorithm described in Section 7.3, so that all relevant ports are included

in the interface of the stub. If at least one such port connects to the surrounding, and not to

the glue logic under verification, this solution may be combined with techniques described

in Section 8 which allow the inclusion of certain assumptions on the surrounding into the

verification process.

2. Late arrival or absence of tokens. Firing delays are overestimated with infinity in the

stub generation algorithm. The reason for this was that there is no guarantee that those

transitions will ever become enabled. However, assuming the most hostile surrounding

possible, this can never be guaranteed in the full component either. Consequently, no

pessimism reduction algorithm may ever be able to reduce this type of pessimism given

these assumptions. However, this problem can be solved by including certain assumptions

on the surrounding into the verification process, as discussed in Section 8.

3. Incorrect values in a port. A value which appears in a port is not allowed to appear in that

port in the complete component. This is a situation which is due to the pessimistic nature

of the stub. The reason for the unwanted value is that there might be a transition in the part

of the component not included in the stub, whose transition function cannot produce the

particular value in question. But, since the excluded part was compensated with a random

function, that value might still appear in the resulted stub.

Thus, pessimism reduction of stubs is applied in case 3, when there is a value in a port of

the interface which cannot occur in that port in the full component. The pessimism is reduced

by iteratively adding transitions and places, which were removed by the stub generation

algorithm, until the unwanted value is eliminated. The value will be eliminated when the

transition whose function cannot produce the particular value is added. It might happen that

the unwanted value cannot be eliminated. The reason for this might either be a design error

in the component, or that a too general surrounding was assumed, that feeds the component

with values with which the component is not guaranteed to work correctly. In the latter case,

it is necessary to make an assumption about the surrounding so that such unwanted values

do not occur as an input. As a by-product of the pessimism reduction algorithm, the port on

which the assumption has to be made is identified, and the specification of the component

provides enough information as to which values to exclude from that particular port. The

complete algorithm is presented in [22].

8 Inclusion of the surrounding into the verification process

Sometimes, it might be the case that the information captured by the models of the components

or stubs is not sufficient to perform the verification. These are cases in which the correct
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Fig. 20 Including the assumptions on the surrounding into the verification process

functionality of the involved components depends on certain assumptions relative to those

inputs which are connected to the surrounding and, thus, have been ignored in the verification

process so far. Hence, only considering models of the components may not be sufficient. We

have to consider the constraints on the other interfaces. These constraints are also expressed

as ACTL formulas. In order to solve this problem, we generate an “assumption Petri-net”

which is connected to the component as demonstrated in Fig. 20. In this way, the additional

constraints are incorporated into the verification process together with the component.

An algorithm which generates a model that is able to produce all possible events consistent

with a particular ACTL formula, has been developed [22]. A model, consistent with the

properties on the interfaces connecting to the surrounding, is thus created using this algorithm

and attached to the model under verification, as indicated in Fig. 20.

The fundamental idea behind this algorithm is to find the maximum set of behaviours

or states which do not violate the particular ACTL formula at hand [18]. A PRES+ model

corresponding to this set of behaviours is then constructed. Let us outline the algorithm

considering the example ACTL formula in Eq. (2). It states that if there is a token in port p,

the value of that token must be less than 2.

AG (p → p < 2) (2)

It is found that there are two states which satisfy the example formula. They are described

by Eqs. (3) and (4) respectively. Either there is no token in p and the property continues to

hold (Eq. (3)), or there is a token in p with a value less than 2 and the property continues to

hold (Eq. (4)).

¬p ∧ AXAG (p → p < 2) (3)

p < 2 ∧ AXAG (p → p < 2) (4)

In this simple example, there is only one way in which the property may continue to hold

(AXAG (p → p < 2)). Except for the port p, the resulting model only has one place, corre-

sponding to this future behaviour. In general, there is one place per such future behaviour.

Cases with multiple possibilities of future behaviour arise, for instance, when several tem-

poral operators occur in the formula.

Figure 21 shows the resulting model. It contains one place corresponding to the port p
and another place (s1) corresponding to AXAG (p → p < 2).

For each place (possible future behaviour), transitions must be added for each possible

state. There are two such states in the example, Eqs. (3) and (4). For Eq. (3), no transition

needs to be added since it says that p should not have any token. The only action to take would
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Fig. 21 The PRES+ model corresponding to the example formula in Eq. (2)

be to stay in the same place. For Eq. (4), a token must be put in place p with a random value

less than 2, as performed by transition t1. A token must also be put in the place corresponding

to the continuation, in this case the same place. There is no time requirement on this action.

Consequently, the transition may fire at any time, as reflected by time delay interval [0 . . ∞].

An initial token is finally added to the place.

9 Example and verification results

The presented verification methodology gives a powerful means to verify large systems

using a divide and conquer approach. This section provides an example to demonstrate how

a system can be verified using the methodology.

9.1 The mobile telephone system

The model used as an example is a mobile telephone. Figure 22 shows an overview picture

of the model and how the components forming the model are connected. It consists of seven

components communicating via an AMBA bus [23].

1. Microphone. The microphone sends digital voice data to the transmitter.

2. Buttons. When dialling, the buttons component sends to the controller information about

which buttons were pressed.

3. Speaker. The speaker receives voice digital signals from the receiver and converts them

to sound.

4. Display. The display shows on a small screen information sent to it by the controller.

ControllerTransmitterReceiver

Arbiter

Microphone Buttons Speaker Display

AMBA bus

(master) (slave) (master/slave)

(master) (master) (slave) (slave)

Fig. 22 Overview model of the example system, a mobile telephone
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Fig. 23 Models of the components Buttons and Display

5. Receiver. The receiver receives data from the base-station of the mobile telephone network

and passes it on to the designated component.

6. Transmitter. The transmitter receives data from other components in the telephone and

passes it on to the base-station.

7. Controller. The controller coordinates the tasks of the other components.

As mentioned previously, these components are supposed to communicate over an AMBA

bus. However, since the AMBA bus requires a certain protocol and the components are not

designed for that protocol, glue logics adapting the components to this protocol are inserted.

Each component itself has previously been verified.

The components which are directly involved in the example are explained in more detail

in the following sections.

9.1.1 Buttons and display

The peripheral components, such as Buttons and Display, which are used to interact with the

end user, are modelled in a simplistic way as shown in Fig. 23.

In this example, we assume that the telephone has eleven buttons: the numbers 0 to 9 plus

the button “enter”. When the end user wants to dial a number, he enters the number, presses

the button “enter”, after which the telephone tries to satisfy the request. From the point of

view of Buttons, the buttons can be pressed in any order at any time. This is modelled by

a transition with time delay interval [0 . . ∞] and the function “random value from the set

{0 . . . 9, enter}”. The Buttons component has no idea about the semantics of each button being

pressed. It is the task of the controller to determine what should happen when a particular

button is pressed.

The situation is similar but reverse for Display. Display receives commands about what

to show on its screen. In Petri-net terms, this means that tokens in its port are consumed as

they appear. The time delay interval depends on how fast the information is processed by the

component. In this example, it is assumed that the information is immediately taken care of,

i.e. the time delay interval is [0 . . 0].

9.1.2 Controller

The controller component keeps track of what is happening in the system and acts accordingly.

Figure 24 shows a model of the component.

Places accbutton and noaccbutton are marked when the controller is able or is not able

to process button data respectively. The data is simply discarded if it is not immediately

accepted. Transitions ct1 to ct4 take care of this functionality. The transitions have guards

so that different actions can be taken depending on which button was pressed. This model

only distinguishes between pressing a number, b ∈ {0 . . . 9}, and pressing “enter”, b = enter.
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Fig. 24 Model of the Controller component

When dialling a number, signals (tokens) are also sent to update the display. Having pressed

“enter” the telephone number is sent to the transmitter.

Places calling and nocall record whether a phone call is going on or not. Transition ct5
therefore updates these places when a phone call is to be made. Transition ct7 takes care of

incoming phone calls and ct8 and ct9 handle the end of a call.

9.1.3 AMBA Bus

All components communicate through an AMBA bus [29]. The AMBA bus consists of two

parts, Arbiter and Bus. The components communicating over the bus are furthermore divided

into two categories, master and slave. Figure 22 indicates to which category each component

in the example belongs. Components sending messages are masters and components receiving

messages are slaves.

Any master wanting to send data on the bus must first request access to it from Arbiter

by putting a token in the port HREQBUS. The arbiter will eventually grant access (token in

port HGRANT) to any master requesting it, and at the same time, avoid starvation. Once a

master is granted access it may send one bunch of data every clock cycle (time unit, in terms

of PRES+). All bunches do not necessarily have to address the same slave. When sending

the last bunch, the master notifies this by putting a token in HTRANS.

If a slave is not ready to receive, it is able to put the transaction on hold, or in AMBA

bus terms split (token in port HRESP), until it eventually becomes ready (token in port

HREADY). During the time period when it is not yet ready to receive, the arbiter might give

the access of the bus to another requesting master. When the slave declares itself ready to

receive again, the master on hold is automatically granted access to the bus again. When a

master sends a bunch of data on the bus, it sends the address of the receiving slave on the

address bus and the data on the data bus.
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Fig. 25 Model of the Arbiter component

Figure 25 shows a part of the model of the arbiter corresponding to one particular master.

The part in the figure is copied once for each master. Places masterx represent which master

currently holds the token in the round-robin schedule. The master holding the token has

the opportunity to get access to the bus. If a request has not arrived, transition at6 (or at7,

depending on which master currently holds the token) fires and the next master gets a chance

to be granted access to the bus. Place mask is marked when a slave has split the transaction

of that master. nomask is marked otherwise.

The bus itself just distributes tokens sent to it to all components connected to it. Figure 26

shows a model of the Bus component. All transitions have time delay interval [0..0], since we

assume that all message passing on the bus is instantaneous. If another assumption is made,

the transitions in the Bus component may be changed to another time interval. The transition

function is identity, since the bus should only forward messages without altering them.

Port HRESP is directly connected to the arbiter through the port with the same name.

9.1.4 Glue logics

As has been shown, the components do not contain any functionality to communicate with

and over the bus. For this reason, it is necessary to adapt the components and insert a glue

logic (sometimes called wrapper) between the component and the bus.

Master functionality. A model of the glue logic which is active during the master functionality

of the controller is shown in Fig. 27. The main problem to be solved by the glue logic is

in case of a slave splitting a transaction initiated by the current master. For this reason, the

glue logic must always remember the last transaction. The address is stored during one clock
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Fig. 26 Model of the Bus component

cycle in cmp7 and the data in cmp9. After one clock cycle the stored items are removed by

cmt11 and cmt14 respectively. When the master is regranted access to the bus, transitions cmt12

and cmt15 become enabled and resend the data. The tokens, however, stay in their respective

places in case the resent data is again split.

Meanwhile a transaction is split, no new data can be sent by the component. Presence or

absence of tokens in cmanosplit1 and cmdnosplit1 regulate this behaviour.

The glue logic may receive tokens from HRESP even though its master did not send

anything. This can be the result of a transaction of another master being split. Remember

that the bus distributes split requests to all connected components. In order to keep track of

whether such a split request is intended for the current master or not the structure consisting

of places cmp10 to cmp12 is created. A token in cmp12 means that the current master has just

sent a message and if the receiving slave issues a split request, it is consequently intended for

this particular master. Before the next clock cycle the token is however moved back to cmp11

through transition cmt19. With a token in cmp11, incoming split requests are immediately

consumed leading to no further action since they are not intended for this master.

Slave functionality The main function of the glue logics handling the slave functionality is

to split a transaction in case the component is not ready to receive. Afterwards, when the

component is ready to receive a message again, the glue logic must notify the arbiter by placing

a token in the port HREADY. A model of the glue logic handling the slave functionality of

the controller is shown in Fig. 28.

When the slave is ready to receive data, a token is located in place ready. Otherwise, there

are tokens in both places notreadyx . Meanwhile, if the slave is not ready and data is sent to

it, a token is placed in HRESPout to indicate that the transaction is split, (transition cst7).

Furthermore, the address and data received at the same time, must also be removed. This is

also true when the transaction of another master was split, (transition cst10).

In this example, it is assumed that the controller is ready to receive data again 2 clock

cycles after a previous reception (cst5). After these two cycles the slave indicates to the arbiter

that it is ready again (cst6).
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Fig. 27 A model of the glue logic for the master functionality of the controller

9.2 Verification of the model

Interesting properties to verify can be found in the specification of the system. In our example,

a subset consisting of the following three properties, was verified:

1. The controller only receives legal values for button.

AG (button → button ∈ {0..9, enter})
2. When a slave has split a transaction, it will be ready again in the future.

AG (HRESP → AF HREADY)
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Fig. 28 A model of the glue logic for the slave functionality of the controller

3. When a master has been granted access to the bus, it must eventually close the transaction.

AG (HGRANT → AF HTRANS)

9.2.1 Property 1

The first property to be verified states that the controller must only receive legal values for

button. The components included in the verification of this property were the controller,
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Table 2 Verification results of property 1

Step Environment Res Time

Initial All empty stubs, except bus generated False 1.32 s

Add assumption on HDATA All empty stubs, except bus, assumption True 125.33 s

Verify assumption Buttons top-level stub, other stubs empty True 7.58 s

arbiter, bus and the slave functionality glue logic. Table 2 presents the result of the different

stages in the verification process.

The property was first verified using empty stubs on all components, except the bus for

which a stub was generated. The property was not satisfied using this environment since any

data could arrive on the HDATA port of the bus, as indicated by the diagnostic trace. It took

about 1 s to obtain this result.

Since the property was not satisfied, pessimism must be reduced in the stubs. According

to the diagnostic trace, the bus produced a value on port HDATAsx which is not allowed.

However, the pessimism reduction algorithm failed to extinguish the value. Although, the pes-

simism reduction algorithm failed, it was able to trace the undesired value to port HDATAmx .

An assumption was made on that port stating that only data in the set {0 . . . 9, enter} can occur.

The property is formally given in Eq. (5).

AG (HDATA mx → HDATA mx ∈ {0 . . . 9, enter}) (5)

A Petri-net for this formula was created together with a new version of the bus stub, now

also including port HDATAmx . Using this new stub, the property was satisfied using approx-

imately 2 min verification time.

The positive verification result was obtained by making an assumption about the sur-

rounding. In order to finally conclude the positive result, the correctness of the assumption

in Eq. (5) must first be established.

The components involved in verifying the assumption were the buttons, arbiter, bus and

master functionality glue logic. A top-level stub for buttons and empty stubs for the other

components was enough for obtaining a result within 7.58 s.

9.2.2 Property 2

The second property states that when a slave has split a transaction, it must become ready again

in the future. The components included in the verification of this property were Controller,

Arbiter, Bus and the slave functionality glue logic. Table 3 presents the result of the different

stages in the verification process.

Table 3 Verification results of property 2

Step Environment Res Time

Initial All empty stubs, except {HRESPin, HRESPout, HRESP} False 2.47 s

Use higher level stubs Initial except Level 1 stubs for HADDR, HDATA False 28.39 s

Correct design error Initial except Level 1 stubs for HADDR, HDATA False 87.57 s

Use higher level stubs Empty stubs for controller and top-level stub for the bus True 246.14 s
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Table 4 Verification results of property 3

Step Environment Res Time

Initial All empty stubs False 0.14 s

Use higher level stubs Initial except arbiter stub False 0.52 s

Add property 2 as assumption Arbiter stub given, button stub empty, False 2.58 s

bus with assumption

Correct design error Arbiter stub given, button stub empty, True 2467.42 s

bus with assumption

At first, the property was verified using empty stubs on all components, except that the

bus had one generated stub corresponding to interface {HRESPinsx , HRESPoutsx , HRESP}.

The property was however not satisfied in this environment. The diagnostic trace indicated

that messages were sent too quickly on port HADDR and HDATA. In other words, an infinite

amount of data was sent in the same clock cycle. In the real system, only one bunch of data

can be sent in the same clock cycle. The problem was solved by increasing the level of the

stubs on ports HADDR and HDATA from empty to level one stubs. These stubs were given

(created manually).

The property was again verified in the updated environment, but it was still not satisfied.

The diagnostic trace led to a situation where there were tokens in all of notready2, csp4, csp5

and csp2. Both transitions cst6 and cst7 were consequently enabled. Following the trace, cst7
was fired, thereby falsely splitting the transmission. The desired behaviour would have been

to fire cst6. Consequently, a design error in the glue logic was found. This fault was finally

fixed, after detection, by changing the time delay interval of transition cst6. After fixing the

error, the property was reverified using the very same environment, but still with a negative

verification result.

The problem this time was transition ut3 in Fig. 26 which had an infinite upper bound

on the time delay interval. This caused the fact that no token would ever be placed in port

HREADY. The situation is due to the pessimism of generated stubs. For this reason the

generated stub was exchanged with a given one.1 After additional 4 minutes of verification

time, the property was finally satisfied.

9.2.3 Property 3

The third property states that when a master has been granted access to the bus, it must

eventually close the transaction. The components included in the verification of this property

were the buttons, arbiter, bus and master functionality glue logic. Table 4 presents the result

of the different stages in the verification process.

As with the verification of the previous properties, the first environment used consisted

of empty stubs. In this environment, Arbiter may grant access to the bus without it even

being requested. Consequently, after such an unrequested grant, data will not be sent and in

particular the transaction will not be closed. Thus, the property is not satisfied.

To avoid this problem revealed by the diagnostic trace, the empty stubs of the arbiter

were replaced with a given stub, such as the one shown in Fig. 25. After half a second’s

verification time, the property proved again unsatisfied. The diagnostic trace shows that

1 Another way to continue the verification would have been to continue with less pessimistic stubs generated

automatically and, if needed, with added PRES+ models corresponding to assumptions on the surrounding.
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the reason was that a transaction can be split, but the slave will never signal after a while

that it is ready to receive data again. It is however a requirement on the slaves to even-

tually signal that they are again ready after a split. Therefore, a Petri-net corresponding

to the formula AG (HRESP → AF≤5HREADY) was generated and attached to Bus. Note

that it is not necessary to verify this assumption as it is a requirement of the arbiter and

the bus in order to work properly. Putting this fact aside, the property was already veri-

fied in the previous section anyway. Even with this extra assumption the property proved

unsatisfied.

The diagnostic trace indicated an error in the glue logic. The fault consisted in that the

glue logic could not differentiate whether a particular split request was a result of its own

attempts to send or not. The fault was fixed, after detection during verification, by adding

places cmp10, cmp11 and cmp12, and the transitions cmt17, cmt18 and cmt19 as indicated in

Fig. 27. The glue logic did not record whether the split requests were a result of its own

attempts to send or not. A mechanism for this was added (places cmp10 to cmp12 together

with neighbouring transitions) and the property was reverified with the same environment.

A positive result was obtained after 41 min.

10 Conclusions

This paper has presented a verification methodology which takes advantage of the fact that

designs are built using reusable components. The methodology assumes that these compo-

nents are already verified, and concentrates on the glue interconnecting the components. Each

component has a number of associated properties which it requires the system to satisfy in

order to work correctly.

The glue logics interconnecting the components are verified one at a time for the properties

associated to the attached components. To verify the glue logic, high-level models of the

connected components must also be included in the verification. For this reason, so called

stubs are introduced into the verification process. Stubs are models of the components with

respect to a certain interface. From the point of view of this interface, it is not possible to

distinguish between the stub and the full component.

An interface is a set of ports of a component. Since each component has several different

interfaces, and stubs are defined with respect to an interface, there also exist several stubs to

choose from for verification. This fact can be exploited for properties expressed in (T)ACTL,

in order to reduce verification time. Using stubs with interfaces containing few ports, i.e.

lower-level stubs, generally leads to shorter verification times. The methodology iterates

until a positive verification result is obtained or top-level stubs are used.

In case no stubs have been provided by the designer of the component, it is possible

to generate the stub automatically given a model of the component and an interface. The

proposed algorithms generate pessimistic stubs which actually produce more events than the

full component does. This enforces an iterative approach where the pessimism in the stubs is

reduced as long as the ACTL properties are not satisfied. An algorithm for such a pessimism

reduction has also been outlined.

The generated stubs might be too pessimistic to be used in verification, due to the fact that

they assume that their surrounding is as hostile as possible. They assume that tokens may

appear at those ports of the component not belonging to the stub interface at any time with

any value. Such an assumption regarding the surrounding is usually too pessimistic. There is

consequently a need to be able to express properties about the surrounding and incorporate

them into the verification process.
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Properties regarding the surrounding can also be expressed as (T)ACTL formulas. An

algorithm to generate a PRES+ model which produces all possible events still satisfying an

ACTL formula has been outlined. The generated Petri-net can then be attached to one of the

components involved in the current verification.

Most of the activities in this verification methodology can be automatically performed

and the corresponding tools have been implemented. The only activity which cannot be

automated, and hence needs interaction with a human designer, is the examination of the

diagnostic trace. The diagnostic trace guides the designer to either the design fault in the

verified glue logic, or to the stub needed to be refined.

Appendix A

This appendix gives a formal proof of Theorem 1, on which the proposed methodology is

based. Before presenting the proof, it is necessary to introduce a few auxiliary theorems and

concepts.

Theorem 1A. Given an input observation in, two partitions P1 and P2, P1 ∝ P2, and a set
of ports J where Ports(P1), Ports(P2) ⊆ J , then OpEnv(P1,J )(in) ⊇ OpEnv(P2,J )(in).

Proof: Assume an observation o ∈ OpEnv(P2,J )(in). This means that o is a possible output

observation given the input observation in. By definition of partition precedence, ∀ p1 ∈
P1 ∃ p2 ∈ P2 : p1 ⊆ p2. Hence the restriction operator in OpC (in) | IC = OpS(in | IS ) (see

Definition 9) filters out more elements from the unrestricted operation when IS = IC = p2

than when IS = IC = p1. Consequently o must also pass the filter of p1 and can be an output

of Env(P1, J), i.e. o ∈ OpEnv(P1,J )(in). �

Definition 14. Generalised operation. The generalised operation OpC for component C is the

union of all operations for every possible input observation, OpC = ∪in OpC (in).

According to Definition 8, an operation is the set of all possible outputs given a certain

input. The generalised operation is the set of all possible outputs no matter what the input is.

The generalised operation allows us to generalise Theorem 1 into the following corollary.

Corollary 1A. Given partitions P1 and P2, P1 ∝ P2, and a set of ports J where Ports(P1),

Ports(P2) ⊆ J , then OpEnv(P1,J ) ⊇ OpEnv(P2,J ).

Proof: Follows directly from Theorem 1A and Definition 14. �

Definition 15. State sequence generator. A state, in this context, is a marking of ports. A

state sequence generator is a function σ (o, M0), where o is an observation and M0 is an initial

state. The observation o may only contain appearing events and disappearing events on ports.

The result of the function is a sequence of states obtained by iteratively applying the events

in o to the previously obtained state (initially M0) in the order indicated by their timestamps.

Let re denote the timestamp of an event e ∈ o. Assume e = 〈p, 〈v, re〉〉 or e = 〈p, re〉,
depending on whether it is an appearing or disappearing event, and E = {e | ¬ ∃ e′ ∈ o :

(re′ < re)}, i.e. the set of events with the lowest timestamp in o. Then Definition 15 can

be recursively reformulated as σ (o, M0) = [M0 : σ (o − E, M0(E))], where [h : T ] denotes
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the head, h, and the tail, T, of a sequence, and M0(E) denotes the resulting state (marking)

after applying all events in E on the initial state (marking) M0. The basis of the recursion is

σ (∅, M0) = [M0].

Figure 7 has illustrated the result of applying the state sequence generator on the given

observation with an empty initial marking. Describing the contents of the ports in each time

step mathematically, Eq. (6) gives the solution.

σ (o, ∅) = [∅, {〈p, 〈2, 1〉〉}, {〈p, 〈2, 1〉〉, 〈q, 〈5, 3〉〉}, {q, 〈5, 3〉〉}, {p, 〈3, 8〉〉, 〈q, 〈5, 3〉〉}, ∅]

(6)

The definitions given so far provide the necessary means to express the semantics of CTL

formulas in the context of the theoretical framework we have introduced. First, recall the

classical definitions [12] for the two example formulas AF φ and EG φ for any CTL formula

φ (s |= φ means that formula φ holds in state s, and φ ⇔ ψ denotes equivalence between

two formulas):

s |= AF φ ⇔ ∀σ ∈ PM (s) ∃ j ≥ 0 : σ [ j] |= φ (7)

s |= EG φ ⇔ ∃σ ∈ PM (s) ∀ j ≥ 0 : σ [ j] |= φ (8)

PM (s) denotes the set of all possible sequences of states in model M where the first state is

s. It should be noted that σ in these equations does not refer to the state sequence generator

introduced in Definition 15, but is a variable quantified over a set of sequences of states.

From these sample equations it is possible to extract how the state path quantifiers (A, E)

and the time quantifiers (G, F) translate into the semantics of our theoretical framework.

The difference between this model and ours, is that all definitions in our model are based

on events, not states. The link between these two views of the world is based on the state

sequence generator in Definition 15. Equations (9) and (10), where IN is the set of all possible

input observations of component C, express the same semantics as Eqs. (7) and (8) in terms

of observations and operations

M0 |= AF φ ⇔ ∀o ∈ OpC∀i ∈ I N∃ j ≥ 0 : σ (o ∪ i, M0)[ j] |= φ (9)

M0 |= EG φ ⇔ ∃o ∈ OpC∃i ∈ I N∀ j ≥ 0 : σ (o ∪ i, M0)[ j] |= φ (10)

The union is taken of both all possible input observations, i ∈ I N , and all possible output

observations, o ∈ OpC , and passed to the state sequence generator to be used as in the

classical definitions. The observations are quantified in the same way as the state sequences

would have been done in Eqs. (7) and (8).

The work by Alur et al. [4] provides equivalent formulas to Eqs. (7) and (8) for TCTL.

Based on the discussion above, they can be trivially extended to formulas similar to Eqs. (9)

and (10).

Theorem 1. Assume the partitions P1 and P2, P1 ∝ P2, a set of ports J where Ports(P1),

Ports(P2) ⊆ J , an initial marking M0 on the ports in J and a (T)ACTL formula, e.g. AF φ,
also expressed only on the ports in J. If M0 |= AF φ for component Env(P1, J), then it is also
true that M0 |= AF φ for component Env(P2, J).
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Proof: M0 |= AF φ ⇔ ∀o ∈ OpEnv(P1,J)∀i ∈ I N∃ j ≥ 0 : σ (o ∪ i, M0)[ j] |= φ, where IN is

the set of all input observations on ports in the partitions, according to Eq. (9). As a conse-

quence of Corollary 1A and the fact that o and i are universally quantified, it is possible to

conclude ∀o ∈ OpEnv(P2,J )∀i ∈ I N ∃ j ≥ 0 : σ (o ∪ i, M0)[ j] |= φ. �

Appendix B

This appendix gives a formal proof of Theorem 2, on which the stub generation and pessimism

reduction algorithms are based.

Theorem 2. Assume two environments E1 and E2 of the same set of components and OpE1
⊆

OpE2
, an initial marking M0 and a (T)ACTL formula, e.g. AF φ expressed only on the ports of

the stubs in E1 and E2. If M0 |= AF φ for component E2, then it is also true that M0 |= AF φ

for component E1.

Proof: M0 |= AF φ ⇔ ∀o ∈ OpE2
∀i ∈ I N∃ j ≥ 0 : σ (o ∪ i, M0)[ j] |= φ, where IN is the

set of all input observations on ports in the partitions, according to Eq. (9). As a consequence

of the fact that o and i are universally quantified, it is straight-forward to conclude that

∀o ∈ OpE1
∀i ∈ I N ∃ j ≥ 0 : σ (o ∪ i, M0)[ j] |= φ. �
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