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Abstract. In this paper, we introduce the LOPOCOS (Low Power Co-synthesis) system, a prototype CAD tool
for system level co-design. LOPOCOS targets the design of energy-efficient embedded systems implemented as
heterogeneous distributed architectures. In particular, it is designed to solve the specific problems involved in
architectures that include dynamic voltage scalable (DVS) processors. The aim of this paper is to demonstrate
how LOPOCOS can support the system designer in identifying energy-efficient hardware/software implementa-
tions for the desired embedded systems. Hence, highlighting the necessary optimization steps during design space
exploration for DVS enable architectures. The optimization steps carried out in LOPOCOS involve component
allocation and task/communication mapping as well as scheduling and dynamic voltage scaling. LOPOCOS has
the following key features, which contribute to this energy efficiency. During the voltage scaling valuable power
profile information of task execution is taken into account, hence, the accuracy of the energy estimation is
improved. A combined optimization for scheduling and communication mapping based on genetic algorithm,
optimizes simultaneously execution order and communication mapping towards the utilization of the DVS
processors and timing behaviour. Furthermore, a separation of task and communication mapping allows a more
effective implementation of both task and communication mapping optimization steps. Extensive experiments are
conducted to demonstrate the efficiency of LOPOCOS. We report up to 38% higher energy reductions compared
to previous co-synthesis techniques for DVS systems. The investigations include a real-life example of an optical
flow detection algorithm.

Keywords: Dynamic voltage scaling, heterogeneous distributed systems, power consumption, system-level
synthesis, real-time.

1. Introduction and Previous Work

Embedded systems have become omnipresent in wide variety of applications, such as
telecommunication systems, consumer electronics, and other mass products. These
computing sub-systems are responsible for control and data operations and are
commonly implemented as an architectural mix of several processing elements (PEs),
such as programmable microprocessors, ASIPs, ASICs, and FPGAs. The processing
elements are connected through communication links (CLs) and form a heterogeneous
distributed system. Today, the designers of these modern embedded systems are facing
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numerous challenges, mainly arising from two important facts. Firstly, the ever increasing
demand for functionality is continuously enlarging the product complexity. Secondly, the
intense burdens imposed by a highly competitive market, which has led to tight time-to-
market windows and put rigorous constraints on the production cost. To overcome such
difficulties, the automated design of these, mostly, mixed software and hardware systems
is an inevitable necessity. System level co-design is a methodology helping the system
designer to identify most suitable architectures by supporting a rapid design space
exploration. This is done without actually implementing the application but by means of
estimating the design quality and its properties, using a CAD tool. Co-synthesis can
therefore be viewed as the computer aided process to design embedded computing
systems which consist of software executing on an underlying hardware architecture. The
co-ordinated optimization of both system parts (hardware and software) is the primary
goal of this synthesis process. The optimization itself can be driven by important design
objectives, such as performance, cost, and power consumption. However, most previous
co-design approaches have neglected issues related to power [15], [19], [23], [34], [42] or
focused on distributed systems that exclude DVS processing elements [9], [13], [24], hence,
leaving a major source of power reduction unexploited.

Nevertheless, during the last decade power has become a main design issue of concern
due to the proliferation of battery powered embedded systems which demand a cautious
use of the available energy resources. One way to tackle the problem of reducing the energy
dissipation is the usage of system level power management techniques to trade-off system
performance against power dissipation. One of the most promising techniques is dynamic
voltage scaling (DVS). By conjointly reducing supply voltage and operational frequency,
DVS is able to reduce the energy consumption significantly. Since the reduction of the
operational frequency is equivalent to the reduction of the system performance, this
technique is applicable to applications where the system schedule shows periods of
idleness or periods where a reduced performance can be tolerated. The field of DVS finds
it roots in [41], where its usability was demonstrated considering a desktop computer
environment. The dynamical and conjoint adjustment of supply voltage and operational
frequency to satisfy the application needs was shown to lead to superior power savings
compared to dynamic power management (switching off of idle components), when both
techniques are applicable [20]. This fact explains why DVS is attracting considerable
attention from both academia and industry. Most major digital processor vendors have
recently introduced DVS enabled processor types [2], [3], [25]. Many research has focused
on the scheduling aspects for DVS, however, often making the assumption of single
processor systems [20], [22], [27], [38]. The trends towards co-design methodologies and
dynamic voltage scalable processors indicate the need for co-design techniques which
support the consideration of DVS processors to synthesize energy-efficient embedded
systems. Such a co-design framework will be presented in this paper.

Three research groups have addressed issues which have a close relationship to the
problems solved in the LOPOCOS system. Luo and Jha [29] have extended an existing
co-synthesis approach [11] to account for DVS processing elements. Their approach is
based on a DVS algorithm which keeps communication events fixed, i.e., they reduce the
global optimization problem to smaller local problems which can be solved easier and
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faster. Furthermore, they take battery characteristic into consideration [30] to increase the
battery life time of the system. The approach is very efficient in terms of optimization time
and achieved energy reduction, when the used processing elements show similar power
consumption. However, in the case that the architecture is built out of highly
heterogeneous PEs, this approach is likely to find sub-optimal solutions from the DVS
point of view, since the fixation of communication events neglects the different power
profiles during the schedule and mapping optimization.

Gruian and Kuchcinski [18] presented an approach based on an energy conscious list
scheduling technique. The dynamically re-calculated task priorities are based on the
energy gain inducted by scheduling decisions and the critical path of the task graph.
However, since task priorities based on energy gain might lead the list scheduler to
infeasible (timing violating) schedules, the task priorities are calculated as a weighted
sum of energy gain and critical path priorities. A good trade-off factor is found by
increasing the weight of the tasks on the critical path and re-scheduling the tasks until a
feasible schedule has been found.

Bambha et al. [5] introduced a hybrid global/local search strategy based on simulated
heating to find settings for the DVS processing elements. Their approach is split into two
optimizations. The global optimization is carried out using a genetic algorithm, while the
local optimization is based on a hill climbing and a Monte Carlo search. This work mainly
focuses on the management of computational resources when using hybrid algorithms,
and its iterative nature (up to 20 minutes for the voltage scaling of a task graph with 21
nodes) makes it too time consuming to be used in the innermost loop of a co-synthesis
system. As opposed to the presented LOPOCOS system, the approaches above are based
on constructive scheduling techniques and neglect the power profile information during
the optimization process.

One of the aims of this paper is to comprehensively introduce LOPOCOS, an
experimental low power co-synthesis system, and to show how it can be used by system
designers to synthesize energy-efficient distributed embedded systems containing DVS-
PEs. The energy reduction in LOPOCOS is based on the utilization of a generalized DVS
algorithm, which is used to guide the optimization of the system schedule and the task/
communication mapping. However, in this paper, we will particularly focus our attention
on an energy-efficient mapping approach for DVS. We demonstrate that significant energy
savings can be achieved by appropriately choosing the mapping for the task executions,
such that DVS can be exploited effectively. Additionally, it is shown that the component
allocation plays an important role during the optimization of DVS enabled systems, not
only in terms of performance and production cost, but also in terms of energy dissipation.
We conducted extensive experiments to demonstrate the ability of the proposed synthesis
approach to find solutions of high quality in terms of cost, feasibility, and energy
consumption.

The paper is organized as follows. Section 2 introduces our co-synthesis system
(LOPOCOS) and highlights the important synthesis steps. Experimental results, with
emphasis on the optimization of mapping and allocation, are presented in Section 3.
Finally, in Section 4, we draw the conclusions.
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In this section, we will introduce the co-design flow as used in LOPOCOS (see Figure 1).
We will mainly focus here on the mapping and component allocation steps (indicated as
Step 1, 2, and partly 3, in Figure 1), while detailed descriptions of the used algorithms for
voltage scaling and scheduling can be found elsewhere [35], [37].

2.1. System Specification and Target Architecture

The synthesis process starts from a system specification given as multi-rate hyper task
graph G,(7, C), a combination of several smaller task graphs, capturing all task
activations for the hyper-period (LCM of all graph periods). Such a task graph example



SYNTHESIZING ENERGY-EFFICIENT EMBEDDED SYSTEMS WITH LOPOCOS 405

DVS—PEO

2.0ms

PEI

p=

DVS-PE2

(a) (b)

Figure 2. Task graph and target architecture example.

is shown in Figure 2(a). Each node 7 € 7 in these graphs represents a task, an atomic unit
of functionality to be executed without preemption. A node might inherit an earliest
possible start time 7 which needs to be exceed before the task can be executed and a hard
deadline 6 which must be met at run-time in order to ensure correct functionality. Edges
~ € C in the task graph denote precedence constraints and data dependencies between
tasks. If two tasks, 7; and 7;, are connected by an edge, then the execution of task 7; must
be finished before task 7; can be started. Data dependencies inherit a data value, reflecting
the quantity of information to be exchanged by two tasks. Further, each task graph has a
specific period p, representing the time limit between two successive invocations. An
implementation is only feasible when all timing and precedence constraints are fulfilled.
Such a specification model is mostly suitable for data-flow intensive applications.

The architectures we consider here consist of heterogeneous processing elements (PEs),
like general purpose processors, ASIPs, FPGAs, and ASICs. These components include
state-of-the-art DVS-PEs. Furthermore, the PEs might employ lower level power
management techniques, like gated clocks [6], to avoid switching of unused circuitry
during periods of idleness. An infrastructure of communication links, like buses and
point-to-point connections, connects these PEs. In addition, DVS-PEs are connected
through communication interfaces (Cls), able to adapt to the different operational
frequencies caused by scaling the DVS-PEs. An example architecture is shown in Fig. 2
(b). The architecture is captured using a directed graph G 4(P, £) where nodes 7 € P
represent PEs and edges A € £ denote CLs.

Each task of the system specification might have multiple implementation alternatives,
therefore, it can be potentially mapped to several PEs able to execute this task. If two
communicating tasks are accommodated on different PEs, 7, and =, with n # m, then
the communication takes place over a CL, involving a communication time and power
overhead. For each possible task mapping certain implementation properties, e.g.,
execution time, dynamic power dissipation, memory, and area requirements, are given in
a technology library. These values are either based on previous design experience or on
estimation techniques, such as those presented in [7], [28], [40].



406 SCHMITZ ETAL.

2.2. Co-Synthesis Problem

The co-synthesis problem for heterogeneous distributed systems including DVS
components can be decomposed into five synthesis steps (see also Figure 1):

1. Allocation: This step determines the quantities and types of the used system
components (processing elements and communication links). In our particular
case this includes also PEs that employ DVS technology.

2. Mapping: This step defines the spatial assignment of computational tasks onto PEs
and communications onto CLs. Mapping implicitly decides if a task is implemented
as software running on a programmable processor (general purpose CPU or DSP),
or as hardware on an ASIC or FPGA.

3. Scheduling: According to the data dependencies and timing constraints, the
execution of the system tasks needs to be scheduled, hence, the start time of each
task and communication needs to be specified. Tasks executing on programmable
processors have to be sequentialized, while tasks implemented in hardware can be
performed in parallel.

4. Voltage scaling: In order to reduce the energy consumption, the tasks mapped to
DVS-PEs can be executed at a lower speed (lower supply voltage) whenever the
schedule allows such an extension of the execution time without violating any
precedence and timing constraints.

5. Evaluation: In order to judge the quality of the implementation alternative, which is
given by the first four steps, it is necessary to estimate certain implementation
properties, such as timing behavior, power consumption, production cost, etc.
According to these estimates, which should be as accurate as possible, it is possible
to guide an optimization process.

The system designer is interested in deriving the most suitable system implementation
for a given specification, i.e., he needs to find a system architecture, a mapping of tasks and
communications onto the architecture, a schedule for the mapped tasks, and a dynamic
voltage setting for the DVS-PEs. Of course, the most suitable implementation shows low
system cost, low energy dissipation, and must be feasible in terms of performance.

The combined scheduling and mapping problem for energy reduction and timing
feasibility can be formulated using the common triplet notation for scheduling problems
[33]. Our problem is then described by O, |prec|6;, f4, ZE]S, where Q,, specifies a
multiprocessor environment, prec refers to a task model with precedence constraints, 6;
and f, are objectives capturing the deadline and area constraints, respectively. > E;
denotes the additional objective to minimize the energy dissipation based on DVS.
Therefore, the synthesis problem for DVS is to find an arrangement of the task execution
order and mapping, such that the energy reduction through DVS-PEs is maximized and all
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specification constraints (timing, precedence, area, etc.) are met. A more detailed
description of the synthesis problem, including the DVS problem, can be found in [36].

In this work, we make the assumption that the specified tasks are of a coarse granularity
and that the PEs can continue operation during the voltage scaling (as is the case for the
DVS processor in [8]). This allows us to neglect the scaling overhead in terms of power
consumption and time.

2.3. Evaluation

This section corresponds to Step 5 in Figure 1. Each implementation candidate, resulting
after a sequence of allocation, mapping, scheduling, and voltage scaling steps, can be
characterised in terms of certain implementation properties, which reflect the design
quality. In order to guide the optimization process towards solutions of high quality, it is
necessary to find a mathematical formulation in terms of an objective functions. This is of
particular importance when using iterative improvement heuristics, such as genetic
algorithms, simulated annealing, or tabu search.

LOPOCOS targets primarily four objectives: (a) system cost, (b) area, (c) timing, and (d)
energy consumption. After each synthesis step one of these parameters can be derived. The
dynamic voltage scaling allows to calculate the energy dissipation based on the found
scaling voltages. The timing feasibility can be checked after the schedule has been
determined. The mapping is responsible for the used area in terms of bytes and gates
(whether implemented as software or hardware) and the allocation of components decides
upon the system cost. We will elaborate each of these parameters in the following sections.

2.4. Voltage Scaling

This section briefly introduces the dynamic voltage scaling technique used in LOPOCOS,
as carried out in Step 4 in Figure 1. Dynamic voltage scaling reduces the dynamic power
dissipation Py, of a digital circuit by reducing the supply voltage V4 during the run-time
of the application. Since the supply voltage influences the dynamic power quadratically, as
shown in Equation (1), voltage scaling provides a significant potential for power reduction.

Pan=Cr-No1-f V3, (1)

where C; denotes the load capacitance of the circuit, Ny_,i, represents the zero-to-one
switching activity, and f is the operational frequency. However, reducing the supply
voltage does not come without a penalty, it increases the circuit delay o, which, in turn,
necessitates the lowering of the operational frequency f to guarantee correct function of
the circuit:
2
d=k- % )
(Vdd - Vf)
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Figure 3. Voltage scaling: (a) system schedule at nominal supply voltage and (b) system schedule with
dynamically changing supply voltages.

where k is a circuit dependent constant and V, denotes the circuit threshold voltage.
Furthermore, the energy consumption Eg, is given as the integral of the power
dissipation Pgy, over time ¢, and since the time is inverse proportional to the operational
frequency f, the energy can be expressed using the following equation:

Egy = No_1-Cr- Vi, (3)

It isimportant to observe that the energy consumption solely depends on the switched load
capacitance Ny - Cr and the squared supply voltage. Therefore, considering the
switched load capacitance as given by technology and performed computation, and that
no switching occurs after the computation has been executed (gated clocks), the only way
to reduce the consumed energy is to lower the supply voltage.

In LOPOCOS, the voltage scaling is performed for each implementation alternative to
estimate its energy consumption for the DVS enabled architecture (Figure 1, Step 4). The
voltage scaling algorithm, called PV-DVS, utilises an energy gradient based method, which
is explained in [35]. The produced voltage settings are static, hence, no calculations have to
be performed at run-time in order to determine the voltage levels. This avoids both timing
and energy overhead due to such calculations. Of course, this makes the approach more
suitable for applications where the actual execution time do not vary widely from the
estimated worst case execution time, such as transformational computations on fixed size
data sets. By taking into account the particular power dissipated by each task (the power
profile of the tasks), this voltage scaling allows to increase the accuracy of the estimated
energy dissipation, leading to an improved accuracy of the co-synthesis process.

Figure 3 describes the functionality of the voltage scaler, considering the example task
graph and the target architecture in Figure 2. The voltage scaling algorithm gets as input a
mapped task graph and a schedule corresponding to the task executions at nominal supply
voltage V.« (Figure 3(a)). After passing this information through the voltage scaling
algorithm, the voltage settings for tasks 74 and 75 have been reduced to exploit the
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available slack. The schedule in Figure 3(b) therefore shows a reduced energy
consumption. Of course, the task executions can only be extended, which corresponds to
lowering the supply voltage, as long as deadlines (dashed lines in Figure 3) are met. For
clarity reasons we have disregarded the communications in this example, though
LOPOCOS considers them during the co-synthesis process.

After identifying an effective setting for the supply voltages we can calculate the total
energy consumption Ey of an implementation:

E=Y E@) )

ecA

where A = 7 UC defines the set of all activities including tasks and communications.
Based upon the type of activity, the energy dissipation E(¢) is calculated from:

Pmax(e) . tmin(5) . V;LL(Z)) if e € TDVS
E(E) - Pmax(g) : tmin(’f‘:) if e e T\TDVS
Pc(e) - te(e) ifeeC

where P, and t,,;, refer to the power dissipation and execution time at nominal supply
voltage, respectively, V4 1s the scaled supply voltage, 7 pys is the set of all tasks mapped to
DVS-PEs, and P¢ and ¢, denote the power dissipation and execution time of
communication activities. The total energy consumption is one of the objectives which
needs to be minimized, hence, the remaining optimization steps (scheduling, mapping,
allocation) will be partially based on this value. For example, the scheduling step
optimizes both timing feasibility and energy reduction.

2.5. Energy-Efficient Scheduling

This section will focus on the schedule optimization, indicated as Step 3 in Figure 1. In
traditional co-synthesis environments, scheduling optimization is solely carried out to
achieve timing feasibility. However, in the presence of system level power management
techniques (PM), e.g., dynamic power management (DPM) and dynamic voltage scaling
(DVS), scheduling becomes also important from the energy point of view, since it has an
influence on the system idle and slack times which are utilized by the PM.

The scheduling optimization in LOPOCOS is carried out by a genetic list scheduling
approach, similar to [10], [17], and it produces a static schedule. Unlike commonly used
list scheduling techniques [4] which rely on sophisticated algorithms to calculate the task
priorities, genetic list scheduling algorithms (GLSA) employ a genetic algorithm (GA) to
iteratively improve these priorities. Literature about the functionality of genetic algorithms
can be found in [16], [31]. The main advantage of such a strategy is the fact that the
optimization can be based on any arbitrary objectives, capturing different synthesis goals
(timing, area, power, etc.). Although the GLSA presented in [10], [17] provide a valuable
basis for our approach, they use list schedulers which are rather unsuitable for the specific
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problem we address here, namely reducing the energy consumption while, at the same
time, finding feasible schedules. Advanced LS algorithm, like the one in [17] use a so
called “hole filling” technique to minimize delays. Such an approach can lead to bad
quality solutions when applied in the context of DVS. The following example explains the
reason for this.

Consider the task set given in Figure 4 mapped onto an architecture build out of two
DVS-PEs. The task priorities are given on the right side of each task. According to these
priorities a feasible schedule, as shown in Figure 4, can be generated by a list scheduler. We
can observe that the tasks 7y, 71, and 7, can be scaled only a little until deadline 5 is met.
However, task 74 can utilize the idleness before task . starts execution, and task 73 can be
scaled until the deadline ds 4 is met. Let us consider now the employment of a hole filling
technique. In this case the list scheduler would try in its last scheduling step to place task 73
into the idle period between task 74 and task 7. This decision is fatally wrong from an
energy reduction point of view, since the only available slack for all tasks would be the
time between the execution of task 7 and the deadline d>. However, if the deadline ds 4
would be identical with deadline d, then the schedule displayed in Figure 4 would
become infeasible and the schedule produced with hole filling would be the better one. To
avoid such a dilemma our list scheduler solely makes scheduling decisions based on the
task priorities, which are iteratively optimized. Therefore, it is capable of producing both
schedule variants discussed above and evaluates their suitability.

The objective of the scheduling optimization is to yield low energy consumption, while,
at the same time, achieve timing feasibility. In order to calculate the objective that guides
the optimization towards timing feasibility, we employ the following penalty function:

> bz

TETJ

=1
pt + TI%IP

)

where 7 ; denotes the set of all deadline tasks, 77(7) and #;(7) represent the finishing time
and deadline of task 7, respectively. The deadline violations are captured by
DV, = max(0, tp(7) — t4(7)). The hyper task graph period Tpp is used to relate the
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deadline violations and squaring has been applied, in order to assign a higher penalty to
larger violations of imposed deadlines. The fitness of each schedule Fy is then simply
calculated by multiplying the energy dissipation Ey, (see Section 2.4, Equation (4)) with
the timing penalty p,. More details on our scheduling algorithm, called energy-efficient
genetic list scheduling (EE-GLSA), can be found in [37].

2.6. Task and Communication Mapping for Energy Reduction

The previously introduced DVS technique (Section 2.4) and the schedule optimization
(Section 2.5) are an incremental part of LOPOCOS and are carried out for each task
mapping candidate. This is shown in Figure 1. Nevertheless, task and communication
mapping are two separate optimization steps in our synthesis approach. For clarity
reasons we first show how the task mapping is optimized and then introduce the
communication mapping.

TASK MAPPING

The task mapping step determines which PE carries out which task. Thereby, it
determines the execution time and power dissipation at nominal supply voltage and
further the area requirement in terms of bytes or gates, depending on whether a task is
implemented as software or hardware. The goal of the mapping optimization step is to
distribute the tasks among the available PEs, including DVS enabled PEs, such that the
energy dissipation is minimized and a feasible design in terms of timing behavior and
area constraints is achieved. Since the schedule has a significant impact on the DVS
usability, also the mapping decisions influence how well DVS can exploit the idle times.
Clearly, different mappings result in different schedules due to the effects on task
execution times, inter task communication times, and exploration of task parallelism.
Simply spoken, scheduling and mapping are interrelated.

We have extended a GA based task mapping algorithm similar to the one given in [13],
such that it solves the specific problems identified in Step 2 of the design flow shown in
Figure 1. This extension is based on our PV-DVS and the GA list scheduling algorithm
[35], [37], which are used to calculate parts of the mapping fitness function. Thereby, it is
possible to integrate the proposed DVS optimized scheduling algorithm into the mapping
step of the design flow in order to guide the optimization.

In GA based mapping approaches, solution candidates are encoded into mapping
strings. Each gene in these strings describes a mapping of a task to a PE. A genetic
algorithm evolves an initial mapping population (several mapping candidates) by
imitating and applying the principles of natural selection. The evolution is based on
mating the fittest individuals of the current population through the usage of crossover
operations to generate offsprings with a potentially higher quality. Additionally, mutation
provides the opportunity to enter unexplored regions of the search space by applying
random changes to the genes of an individual. A description of the presented energy-
efficient genetic mapping algorithm (EE-GMA) is given in Figure 5.
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EE-GMA

Input: - task graph TG
- technology library (execution times, power dissipations)
- allocated architecture

QOutput: - timing, area, and energy optimized mapping

01: Initialization: Create random initial population pool P,, of
mapping strings.

02: Perform Mapping: Generates, for each member of
the solution pool a mapping based on the corresponding
mapping string. Specifices the task properties such as
execution time, power dissipation, etc.

03: Invoke EE-GLSA: Invoke the schedule and communication
mapping optimization to determine a suitable and energy
efficient schedule for the current task mapping, for each
individual of the population.

04: Assign Fitness: Compute fitness of each individual in the
population pool.

a) Calculate area penalty
b) Derive fitness based on area penalty and the schedule fitness.

05: Termination: If no improved individual (improve-
ment > 1%) has been produces for 10 generations, then
terminate. Otherwise, continue.

06: Ranking: Individuals are ranked according to their fitness.

07: Selection: According to the size of the generational overlap,
select individuals for mating. High ranked individuals have a
high probability to be selected.

08: Mating: Produce two-point crossover between a pair of
selected individuals.

09: Mutation: Randomly change genes of individuals using a
dynamic mutation probability scheme with exponential
decreasing probability during run-time.

10: Offspring insertion: Exchange low ranked individuals by
newly produced individuals with respect to the size of the
generational overlap.

11: Invoke step 02.

Figure 5. The proposed EE-GMA approach for energy-efficient task mappings.

The fitness F4 of mapping candidates (Equation (6)) is calculated with respect to an
additional objective, namely area. The fitness is expressed by:
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Fy=Fs- [ 4P: (6)
TeP
1 if A4, > SA,
APy = k- (jﬁ: — 1) +1 otherwise )

where Fj is the schedule fitness based on the DVS reduced energy dissipation including a
time penalty, as briefly outlined in Section 2.5, and A4 P, assigns an area penalty for each PE
exceeding its area constraints, as given in Equation (7). The used area is denoted as S4,
and the maximal available area is represented by 44, (cither as memory or silicon area
depending on the implementation in SW or HW). If the available area 44, is not
exceeded, we do not need to assign an area violation penalty for the particular processing
element 7, hence, F is multiplied by one. On the other hand, if the area constraint is
exceeded, the used area SA, and the available area A A, are related and multiplied by a
constant k. This constant allows to adjust the aggressiveness of the penalty. We set & to
0.02 (empirically found to be a good value) in our experiments, which was sufficiently
high to avoid infeasible results at the end of the mapping optimization. However, it is still
low enough to allow infeasible solutions to survive sometimes in order to increase the
population diversity and to avoid a premature convergence of the GA. In this way, it is
possible to stimulate the placement of functionality onto the distributed PEs such that
energy is minimized, while timing and area constraints are respected. The parameters of
the GA for the task mapping were set as follows: The population size was set to 50, the
minimal dynamic mutation probability was 5% the generational gap was 20% and the
initial population pool was filled with random mappings.

COMMUNICATION MAPPING

Communication issues have great impact on the timing behaviour of the application
and, therefore, should be considered carefully during the design space exploration [14],
[26]. One important decision we have taken in this regard, was to separate the mapping of
communication activities from the task mapping. The following example illustrates the
reasons behind this decision. The tasks and communications of the task graph shown in
Figure 6(a) need to be mapped onto a target architecture consisting of three PEs,
connected by four CLs. A possible mapping is shown in Figure 6(b). Let us consider a
certain genetic operation which transforms the mapping string shown in Figure 6(b) to
the one in Figure 6(c). A quick check upon this mapping indicates that this assignment of
activities represents in invalid solution. Consider for example the communication ~p_|
between task 7y and 7. Although the tasks are mapped onto PEO and PE2, which are
solely connected through CLO, the communication is mapped to CL1. Hence, this
mapping is invalid (if we consider that only direct communications are allowed without
routing over intermediate PEs).

Needless to say, a combined task and communication optimization would lead to a high
number of invalid solutions during the optimization, which, in turn, would have a negative
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Figure 6. Combined optimization of task and communication mapping.
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Figure 7. A combined priority and communication mapping string.

effect on the convergence of the population towards high quality solutions. To overcome
this problem we propose a combined optimization of scheduling and communication
mapping, which is carried out for each task mapping candidate. Or, in other words, the
communication mapping is carried out in Step 3 of the design flow shown in see Figure 1.
In this way it is possible to avoid invalid solutions, since all possible mappings of
communication activities onto the communication links are statically known for a
particular task mapping. If the tasks 7y and 71, for example, are mapped to PE1 and PE2,
respectively, then the communication vy—; can only be mapped onto CL2 or CL3. Our
communication optimization, described next, takes advantage of this information to
ensure that only valid solutions are produced.

The presented communication mapping optimization is carried out in parallel with the
schedule optimization. To explain this strategy consider the extended string
representation, shown in Figure 7, which encodes both a possible schedule and a
communication mapping candidate. It can be observed that this string is divided into
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priority and communication mapping genes. A list scheduler determines an execution
order based on the encoded priorities, while the mapping of communication activities
onto the communication links is given by the communication mapping genes. Here we
concentrate on the communication optimization, while details about the schedule
optimization can be found in [37]. This string representation allows the concurrent
optimization of priorities and communication mappings, using a single genetic
algorithm. However, it necessitates specialised genetic operators, like crossover and
mutation, which operate on the two string parts in parallel but without interference. This
is done to avoid a mixtures of genes that would result in invalid off-springs.

For each of the mapping genes only valid values, which result in feasible solutions, are
allowed. This is not hard to achieve due to the fact that the task mapping precedes the
communication mapping. Thereby, for every communicating pair of tasks the possible
CLs are unambiguously specified. Therefore, it is possible to generate random initial
chromosomes (random in the sense that a random choice is taken among the possible
CLs) that assure proper communication mappings. Similarly, the mutation operator
chooses randomly among the valid possibilities. This validity is further maintained by the
standard (single or two point mating) crossover operations, due to the fact that genes
maintain their spatial position in the chromosome of Figure 7.

In order to keep the optimization time low, the communication mapping string is
dynamically adapted to the particular task mapping, as the number of inter-PE
communications changes. Of course, the valid values of each gene change also
dynamically in accordance to the task mapping. Note that the presented communication
mapping optimization improves both the timing behavior as well as the power
consumption, due to the fitness calculation based on equations (4) and (5). The mapping
experiments, given in Section 3, indicate the importance of this optimization step to
achieve high quality solutions in terms of feasibility and energy savings.

2.7.  Component Allocation with DVS capability

The last step (outermost loop, shown in Figure 1 as Step 1) in the system design process is
the allocation of components, like processing elements and communication links, and
their interconnection. In LOPOCOS, this step is user driven and thereby based on the
knowledge and experience of the designer. We assume that the designer has predefined
an architecture and our LOPOCOS tool helps him to evaluate its quality in terms of
energy dissipation, cost, and feasibility. If an architecture does not prove to be
satisfactory, the designer makes the necessary changes and evaluates again. In this way it
is also possible to trade-off the different design goals and, hence, achieve multiple design
alternatives. Similarly to the scheduling and mapping steps, the allocation of components
has an influence on the usability of DVS. For example, it might be beneficial to reduce the
workload on the system PEs by introducing a new PE. Such a decision can lead to
increased deadline slacks in the system schedules. These slacks are exploited by DVS,
resulting in higher dynamic energy reductions, while, at the same time, increasing the
product cost and the static power consumption. Therefore, a specifically “over-designed”
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system might be the preferable choice of the designer. Clearly, this optimization is based on
the astuteness of the designer.

3. Experimental Results

LOPOCOS was tested on several benchmark examples to demonstrate its capability to
produce high quality solutions in terms of energy, timing, and area requirements.
Experimental results for the DVS algorithm and the genetic list scheduling can be found
in [35], [37]. In particular, we will focus here on the optimization of mapping and
allocation, as outlined in Sections 2.6 and 2.7. The design flow in Figure 1 has been
implemented on a PentiumlIIl/750MHz Linux PC with 128MB RAM. The benchmarks
consist of four sets: 1) We have used TGFF [12] to generate 25 hypothetical examples
(tgff1 — tgff25).! These specifications include power managed DVS-PEs and non-
DVS-PEs. Accordingly, the power dissipation varies among the executed tasks (with
maximal variations of 2.6 times). 2) The Hou examples are taken from [21]. The PEs of
these benchmarks are characterised by non uniform power profiles. Since the initial PEs
(taken from [21]) are not DVS enabled, we extended the same PEs with DVS capabilities,
suchthat V, = 0.8 Vand V,,, = 3.3 V. 3) Furthermore, we have taken 5 examples from [5].
These benchmarks represent two different implementations of Fast Fourier Transforms
(fft1 and ££t3), a Karplus—Strong music synthesis algorithm (Karp10), a quadrature
mirror filter bank (qmf4), and a measurement application (meas). The architectures are
composed out of 2 to 6 identical DVS-PEs, assuming constant power consumption. The
supply voltage of these processors can be dynamically varied between 0.8 and 7 volts. The
throughput constraints and initial average power are calculated at a reference voltage of 5
volts. 4) The final benchmarks represents a real-life example, a traffic monitoring system
based on an optical flow detection (OFD) algorithm. This application is a sub-system of an
autonomous model helicopter [1], [18], specified by 32 tasks.

The remainder of this section is split into experiments concerning the hypothetical
benchmarks (Section 3.1) and experiments carried out on the OFD real-life example
(Section 3.2).

3.1. Hypothetical Examples

To give insight into the energy efficiency achieved by LOPOCOS, we have conducted
several experiments. The first experiment shows an comparison between two different
mapping approaches. The first one is based on a constructive list scheduling technique
and a power profile neglecting DVS approach [29]. In the following we will refer to this
approach as EVEN-DVS. The second mapping approach corresponds to the technique
used in LOPOCOS. It is based on a genetic list scheduling algorithm (EE-GLSA, see
Section 2.5) and a DVS technique which considers the power profile information during
the voltage scaling (see Section 2.4).Table 1 shows this comparison for the benchmark sets
tgff and Hou. All presented results were obtained by running the optimization process
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Table 1. Comparison Between the Mapping Optimization for EVEN-DVS [29] and the Approach Used in
LOPOCOS (*The Architectures of These Benchmarks Consist of DVS-PEs Only)

NO-DVS EVEN-DVS approach [29] LOPOCOS
Example Energy CPU  Energy  CPU  Reduction Energy  CPU  Reduction Reduction
Dissip. time(s) Dissip. time(s) (%) Dissip.  time(s) (%) Factor

tgffl * 333 311 116 191 6523 92 1214 7241 L1
tgff2 709747 2410 625970 1334 11.80 445532 4786 3723 315
tgff3 298991 6946 225433 3968 24.60 109351 243798 6343 2.58
tgff4 63924 2415 15743 1215 7537 10817 290.10 8308 110
tgffat 49807 2293 20275 1183 59.29 18487 22693 62.88 1.06
teffdfixed 59294 2032 18860 1166 68.19 10621 29945 82.09 1.20
tgffs 568210 6442 426614  41.23 2492 233063 90499 5898 237
tgff6 24685 1997 7298 1166 7044 3799 22199 846l 12
tgff7 1491203 1029 1169258 5.55 21.59 1058346 4175 2903 134
tgff8 525250 1552 182894 849 6518 136057 4692 741 1.35
tgffo* 600428 901 358087 463 4036 323158 4528 4618 114
tgff10 9417 745 8531 398 941 7193 17.58 23.62 251
tgffll 2858919 2687 2400940 1448 1602 2229397 976 22.02 1.37
tgff12 174440 56.36 90087 3761 4836 58404 132852 6652 1.38
tgff13 927704 6097 51019 32.56 4492 328377 85342 646 144
tgff14 7723 2329 7578 1439 1.88 6693 69.01 13.34 711
tgff15 20017  86.85 17948  54.39 1034 16938 91698 15.38 149
tgff16 2984716 34.66 2177495  24.64 2705 2141352 19741 28.26 1.04
tgff17 16237 4197 11417 26.80 2969 8220 30854 4938 1.66
tgff18 1518517 417 1248236 2.80 17.80 1066350 971 2978 1.67
tgff19 3431 591 2176 412 36.59 1907 1831 4441 1.21
tgff20* 18621 1241 7286 718 60.87 4646 9224 7505 1.23
tgff2l 2182722 12195 1543090 5971 2930 1352422 166504 3804 13
tgff22 894765 30148 691269  172.38 2274 456021 224057  49.03 216
tgff23* 5519226 14733 3261600  87.85 4090 2129198 14050.26 6142 L5
tgff24 720861 151.80 302288  98.07 58.07 200328 219939 72.21 1.24
tgff25 3232360 7420 2555077 4436 2095 2328983  1664.63 2795 133
Hou* 11816  10.57 10704 1143 941 6708 16378 43.23 4.59
Houclustered* 12766 158 10145 197 20.53 7879 342 38.28 1.86

ten times and averaging the outcomes. It can be observed that the proposed mapping
technique was able to reduce the energy dissipation, when compared to the results of the
EVEN-DVS approach, with improvements of up to 38.8% (tgff3: 24.6% compared to
63.4%). The optimization times for the EVEN-DVS based task mapping varied between
1.915 and 172.38s for task graphs with up to 100 nodes. Our approach optimized the same
examples in 3.42s to 14050s. These increased execution times are due to two reasons: a)
The search space for EVEN-DVS is smaller, since it is based on a constructive list
scheduling, and b) the generalised DVS approach [35] shows a higher computational
complexity than the voltage scaling used in EVEN-DVS. This results in the classical
trade-off between optimization time and accuracy (solution quality).
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Tuble 2. Comparison Between Dynamic Level Scheduling [39] and the Proposed Approach

DLS

NO-DVS LOPOCOS Mapping

Example No. of Energy Energy CPU Reduction Reduction
Tasks/ Dissip. Dissip. time(s) (%) (%)

Comms.

fft1 28/32 29600 14019 591.2 52.63 38.66
fft3 28/32 48000 21452 11447 5531 2339
karp.10 21/20 594000 24055 7551 59.50 19.63
meas 12/12 28300 25732 83 907 907
qmf4 14/21 16000 11097 2023 30.64 20.38

The next experiment is concerned with the benchmark examples taken from [5]. We had
to re-calculate the throughput constraints at nominal supply voltage V;; = 5V for the
same scheduling and mapping as given in [5], since we employ a different
communication model (contention, requests for the bus, etc.). Unfortunately this makes a
direct comparison to the results given in [5] impossible. Nevertheless, the re-calculation of
the throughput was carried out for the same task mappings and execution orders as used
in [5], which are based on a dynamic level scheduling (DLS) approach [39]. Due to the
highly serialized structure of the meas example, we could further calculate the
theoretically optimal supply voltage settings, which resulted in an energy reduction of
13% with respect to a task execution at nominal supply voltage. Our synthesis approach
found a near optimal solution with an energy dissipation only 4% higher than the
theoretical bound in 8.3s (Table 2). For the remaining benchmarks given in Table 2, up to
39.9% (karpl0:19.6% compared to 59.5%) higher energy savings could be achieved when
compared to a constructive scheduling and mapping based on DLS.

In the next experiment, we illustrate an architecture refinement process carried out
under the supervision of the designer. Based on the feedback provided by the
optimization steps 1 to 3 (Figure 1), the designer allocates necessary and/or deallocates
unnecessary PEs and CLs, in order to achieve the intended trade-offs between system cost,
energy dissipation, and quality. To demonstrate this, we have carried out this optimization
step on the task graph example tgff17. The allocated architecture consists of three PEs
(PEO-PE2) including one DVS-PE (PE2). These components are connected via two buses
(CLO and CL1). A possible mapping and scheduling for this example is given Figure 8,
showing both the schedule at nominal voltage and at a dynamically changing voltage.
Using this allocation of components, the total energy dissipation E;q = Egiar + Egyn =
48870 is achieved when utilizing the presented PV-DVS mapping and schedule
optimization. The cost of this system is 1656. However, the budget for the system design
might be 1800 and so the designer can change the design in order to find a different
trade-off between energy dissipation and cost. For example, it seems to be a good idea to
exchange PE1 with a DVS enabled PE, since the system power profile of the current
allocation (as given in Figure 8(b)) shows a high power consumption for PE1 Certainly,
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Figure 8. Two identical execution orders of the tgff17 benchmark: (a) unscaled (NO-DVS) and using (b) the
DVS techniques used in LOPOCOS.

allocating a DVS enabled version of PE1 will increase the static power dissipation and the
cost of the system due to the hardware overhead of the dynamic supply voltage hardware,
but it might also enable a further reduction of the dynamic power consumption. To clarify
this, we have carried out the following experiment. For the DVS enabled version of PE1 it is
considered that its static power dissipation is 10% higher than for its no-DVS version (a
realistic assumption based on the system described in [32]) and that its cost is increased
by 100. The changed system configuration results in a total energy dissipation of 46798
and a implementation cost of 1756. Whether this energy reduction justifies the increased
system cost strongly depends on the application domain. For example, if the system is
going to be a unique implementation (e.g., satellite sub-system) higher cost might be
acceptable, while in the case of mass products, cost constraints could be more stringent.
In a similar manner, the additional allocation of components might relax the schedule and
introduce more available slack time to be used by the DVS technique. Again, it is necessary
to compromise between the achieved dynamic energy reduction, the increased static
power consumption, and the cost.
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Tuble 3. Increasing Architectural Parallelism to Allow Voltage Scaling of the OFD Algorithm

Architecture Static Power Dyn. Power Total Power CPU Time Reduction
(W) (W) (W) (s) (%)
2 DSPs 0.383 2137 2.520 n/a n/a
3 DVS-DSPs 0574 1.371 1.945 1483 22.8%
4 DVS-DSPs 0.736 1163 1.899 303.6 24.6%
5 DVS-DSPs 0.898 1132 2.030 3819 194%

3.2.  Real-Life Example: OFD Algorithm

The final experiments are concerned with an energy efficient implementation of an optical
flow detection (OFD) algorithm on board of an autonomous helicopter. In its current
implementation, the OFD algorithm runs on two ADSP-21061 L DSPs with an average
current of 760 mA at 33 V, hence, an average power dissipation of approximately 2.5 W.
Due to the stringent power budget on board of the helicopter, including application critical
sub-systems, it is necessary to keep the overall power dissipation under a certain limit. To
reduce the power consumption to a minimal amount, DVS seems predestined, since the
OFD algorithm shows an unnecessary high performance (12.5 frames of 78 x120 pixels per
second). However, a repetition rate of 6.25 frames per second is sufficient to ensure a
correct detection, allowing to relax the system specification. For experimental purpose
we consider a hypothetical extension of the DSPs towards DVS capability. We take into
account that such an extension has an influence on the static power dissipated by the
digital circuits and, therefore, increase the static current by 10% [32].

In the first part of this experiment we keep the application constraints fixed, i.e., the
OFD algorithm needs to perform with a repetition rate of 12.5 Hz (equivalent to the
current implementation). In order to increase the usage of the application parallelism, we
use three different architectures build out of three to five DVS-DSPs, connected via a
shared bus. In this way the OFD algorithm can be performed faster. Table 3 reports on
our findings. The first row represents the current implementation of the OFD algorithm,
i.e., running on an architecture without DVS technology. This implementation shows a
total power consumption of 2.52 W. Now, consider the DVS enabled architectures with
three to five DSPs. In accordance with the number of allocated PEs, the static power
consumption has increased as well. However, the PEs are capable to exploit the
application parallelism more effectively, which, in turn, allows a fast execution of the
OFD algorithm. This results in a slack time, usable by the DVS-PEs to lower the dynamic
power dissipation. As it can be observed from Table 3, all implementations using DVS-
DSPs show a reduced total power consumption (sum of static and dynamic power
consumption) of up to 24.6%. Please note that this reduction does not necessitate any
performance degradation, while the cost of the system increases.

As we have mentioned before, the current implementation of the OFD algorithm shows
an unnecessary high performance and it is therefore possible to relax the specified system
constraints. Hence, in the following experiment, we reduced to the repetition rate from 12.5
Hz to 6.25 Hz, i.e., an execution at half speed. This performance is still high enough to
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Tuble 4. Relaxing the Performance Constraints of the OFD Algorithm

Architecture Static Power Dyn. Power Total Power CPU Time Reduction
(W) (W) W) (s) (%)
2 DSPs 0.383 1.069 1452 n/a n/a
2 DVS-DSPs 0413 0394 0.807 7835 44.4%
3 DVS-DSPs 0.574 0.277 0.851 1107.2 414%
4 DVS-DSPs 0.736 0.253 0.989 13934 31.9%
5 DVS-DSPs 0.898 0.241 1139 16347 21.6%

allow a correct flow detection. The results of this investigation are shown in Table 4. We can
observe that for all given architectures the energy consumption can be significantly
reduced by up to 44.4% when compared to a non DVS implementation (first row in
Table 4). However, among all implementation alternatives the architecture composed out
of 2 DVS-PEs seems to be the favorite, since it achieves the highest energy savings at a low
cost. This is due to the fact that with each additionally allocated PE the static power
consumption increases, while the achievable dynamic energy reductions decrease
(caused by limited parallelism of the application). Again, this shows how important an
accurate design space exploration is, when synthesising DVS enabled embedded systems.

4. Conclusions and Future Work

In this paper, we have comprehensively introduced LOPOCOS, an experimental co-design
tool for distributed embedded architecture including DVS processors. Extensive
experiments, carried out on several hypothetical and real-life examples, show very
encouraging results in terms of energy efficiency and timing behavior. It was shown that
with the usage of a GA based synthesis approach for DVS enable architectures, it is
possible to find better solutions when compared to constructive scheduling and mapping
techniques, in reasonable amounts of time. The energy efficiency is achieved not only
through the schedule and mapping optimization towards DVS but under the additional
consideration of the PE power profiles during these optimization steps. Furthermore, it
was shown that a combined scheduling and communication mapping optimization can
help to overcome the specific problem of a combined task and communication mapping
optimization.

Current work extends the presented co-synthesis system towards conditional process
graphs, in order to increase its specification flexibility. This further necessitates the
consideration of on-line scheduling and voltage scaling techniques to increase the
possible energy savings by taking into consideration dynamic execution times.
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