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ABSTRACT
As feature sizes shrink, transient failures of on-chip network
links become a critical problem. At the same time, many ap-
plications require guarantees on both message arrival prob-
ability and response time. We address the problem of tran-
sient link failures by means of temporally and spatially re-
dundant transmission of messages, such that designer-imposed
message arrival probabilities are guaranteed. Response time
minimisation is achieved by a heuristic that statically assigns
multiple copies of each message to network links, intelli-
gently combining temporal and spatial redundancy. Con-
cerns regarding energy consumption are addressed in two
ways. Firstly, we reduce the total amount of transmitted
messages, and, secondly, we minimise the application re-
sponse time such that the resulted time slack can be ex-
ploited for energy savings through voltage reduction. The
advantages of the proposed approach are guaranteed mes-
sage arrival probability and guaranteed worst case applica-
tion response time.

Categories and Subject Descriptors
B.4.4 [Hardware Input/Output and Data Communi-
cations]: Performance Analysis and Design Aids—Worst-

Case Analysis; B.4.5 [Hardware Input/Output and Data
Communications]: Reliability, Testing, and Fault-Tolerance

General Terms
Algorithms, Performance
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Shrinking feature sizes make possible the integration of
millions and soon billions of transistors on multi-core chips.
At this integration level, effects such as capacitive cross-
talk, power supply noise, and neutron and alpha radiation
[13] lead to non-negligible rates of transient failures of in-
terconnects and/or devices, jeopardising the correctness of
applications.

Several authors [2, 5] have proposed network-on-chip (NoC)
architectures as replacements to bus-based designs in order
to reduce design, verification and test complexity and to ease
the power management problem. One of the main problems
for such highly integrated complex systems is the increasing
rate of failures of the communication lines. In this paper
we concentrate our discussion on how to handle transient
failures of on-chip network links in the context of time and
energy constrained applications implemented on NoC. The
reliability of network nodes is guaranteed by specific meth-
ods which are outside the scope of this paper.

In general, 100% reliable communication cannot be achieved
in the presence of transient failures, except under assump-
tions such as no multiple simultaneous faults or at most n bit
flips, which are unrealistic in the context of complex NoC.
Hence, we are forced to tolerate occasional errors, provided
that they occur with a rate below an imposed threshold.
With shrinking feature size, the on-chip interconnects have
become a performance bottleneck [4]. Thus, the selection of
message routes has a significant impact on the responsive-
ness of applications implemented on the NoC. The energy
consumption of wires has been reported to account for about
40% of the total energy consumed by the chip [9]. This is
a strong incentive to consider the communication energy in
addition to guaranteeing required levels of message trans-
mission reliability.

In this paper, we address all of the three stringent prob-
lems identified above: link reliability, latency, and energy
consumption. We propose a solution for the following prob-
lem: Given an NoC architecture with a specific fault model
for its network links and given an application with required
message arrival probabilities and imposed deadlines, find a
mapping of messages to network links such that the imposed
message arrival probability and deadline constraints are sat-
isfied at reduced energy costs.

In order to cope with the unreliability of on-chip network
links, we propose a way to combine spatially and temporally
redundant message transmission. Our approach to commu-
nication energy reduction is to minimise the application la-
tency at almost no energy overhead by intelligently mapping
the redundant message copies to network links. The result-



ing time slack is exploited for energy minimisation by means
of voltage reduction on network nodes and links.

At on-chip bus level, Bertozzi et al. [3] address the prob-
lem of energy-efficient reliable on-chip communication. They
analyse the trade-off between consumed energy, transmis-
sion latency and error codes, while considering the energy
and the chip area of the encoders/decoders. While Bertozzi
et al. address the problem at link level, in this paper we
address the problem at application level, considering time-
constrained multi-hop transmission of messages sharing the
links of an NoC.

At system level, Dumitraş and Mărculescu [6] have pro-
posed stochastic communication as a way to deal with per-
manent and transient faults of network links and nodes.
Their method has the advantage of simplicity, low imple-
mentation overhead, and high robustness w.r.t. faults. The
selection of links and of the number of redundant copies to
be sent on the links is stochastically done at runtime by
the network routers. Therefore, the transmission latency is
unpredictable and, hence, it cannot be guaranteed. More
importantly, stochastic communication is very wasteful in
terms of energy [10].

Pirretti et al. [12] report significant energy savings rel-
ative to Dumitraş’ and Mărculescu’s approach, while still
keeping the low implementation overhead of non-deterministic
routing. An incoming packet is forwarded to exactly one
outgoing link. This link is randomly chosen according to pre-
assigned probabilities that depend on the message source
and destination. However, due to the stochastic character
of transmission paths and link congestion, neither Dumitraş
and Mărculescu, nor Pirretti et al. can provide guarantees
on the transmission latency.

Our approach differs in the sense that we deterministically

select at design time the links to be used by each message
and the number of copies to be sent on each link. Thus, we
are able to guarantee not only message arrival probabilities,
but also worst-case message transmission times. Addition-
ally, by carefully balancing temporal and spatial communi-
cation redundancy, we are able to minimise the application
latency and, by this, also the consumed energy.

The rest of the paper is structured as follows. The next
section presents the models of architecture, communication
and application and gives the problem formulation. Sec-
tion 3 outlines our solution to the formulated problem, while
Sections 4, 5 and 6 address different aspects of our approach.
Section 7 presents experimental results and the last section
draws the conclusions.

2. SYSTEM MODEL AND PROBLEM FOR-
MULATION

2.1 Hardware model
The NoC is modelled as a 2D array of cores arranged

in rows and columns, numbered from 0 to W − 1 and to
H − 1 respectively. The core on the row x and column
y is identified as Px,y, where 0 ≤ x < W and 0 ≤ y < H.
Core Px,y is connected to cores Px,y+1 (north), Px+1,y (east),
Px,y−1 (south), and Px−1,y (west) if these cores exist. The
link connecting core Px,y to core Px,y+1 is denoted by Lx,y,N

or by Lx,y+1,S, where the first two indexes denote one end
of the link, while the third index shows the direction of the

link. Each link is characterised by the time and energy it
needs to transmit a bit of information.

2.2 Application model
The application is modelled as a set of task graphs. A

task graph is a directed acyclic graph (V, E ⊂ V ×V ), where
each vertex Vi corresponds to a task τi and each edge e =
(Vi, Vj) ∈ E models a data dependency between tasks τi and
τj . Each task is mapped on one core and different tasks may
be mapped on the same core. Let m(τi)denote the core task
τi is mapped onto.

Each task τi is characterised by its period πi and its worst-
case execution time ci when executed on core m(τi). Tasks
belonging to the same task graph have the same period.
Task τi is said to arrive every πi time units. Its response
time (a.k.a. latency) is given by the time interval between
its arrival and its completion.

Each task graph is characterised by a deadline. The task
graph deadline is met if all tasks belonging to the task graph
have completed their execution by the time of the graph
deadline. The task graph response time is given by the
maximum response time of its tasks, while the application
response time (or latency) is given by the largest response
time of the task graphs. In addition to task graph deadlines,
every task may have its own deadline δi.

Each edge e = (Vi, Vj) ∈ E is characterised by bi,j , the
largest amount of bits that is transmitted by task τi to task
τj each time they are instantiated. The transmission is as-
sumed to be ready to commence as soon as task τi has fin-
ished its execution. Task τj cannot start its execution before
receiving the data items sent by all its predecessor tasks τk.

The execution of tasks mapped on the same core is sched-
uled based on pre-assigned priorities. This execution is pre-
emptive.

2.3 Communication model
The time needed for the communication between two tasks

mapped on the same core is assumed to be part of the worst-
case execution time of the sender. Inter-core communication
is packet-based, i.e. the data sent by a task is chopped at
the source core in packets and then sent on the links along
a predetermined route. At the destination core, the packets
are assembled and the message is delivered to the receiving
task. Each message is characterised by its length (bits) bi,j ,
by the size of the packets it is chopped into, and by a priority
for solving link contention. The packet transmission on a
link is non-preemptive.

2.3.1 Fault model
Links may fail temporarily due to transient faults. If a

data packet is sent on the link during the time the link is
in the failed state, the data is scrambled. We assume that
the cores have the ability to detect if an incoming packet
is scrambled. Scrambled packets are dropped and are not
forwarded further. Several copies of the same packet may
be sent on the network links. In order for a message to be
successfully received, at least one copy of every packet of
the message has to reach the destination core unscrambled.
Otherwise, the message is said to be lost. The link failure
events are assumed mutually independent. The probability
that a packet of b bits is conveyed successfully by a link is
denoted αb.



Let us consider an arbitrary pair of communicating tasks,
τi → τj . The two tasks have the same period π, as they
belong to the same task graph. Let Si,j(t) denote the num-
ber of messages that were sent by task τi and were received
unscrambled by task τj in the time interval [0, t). The ex-
pected fraction of successfully transmitted messages for the
task pair τi → τj , called message arrival probability and
denoted MAPi,j , is given by

MAPi,j = lim
t→∞

Si,j(t)

dt/πe
. (1)

2.3.2 Message communication support
In order to introduce the notion of communication sup-

port we will use the example in Figure 6(a). The squares in
the figure represent cores and the thick undirected lines con-
necting them represent the network links. The circles inside
each square denote tasks that are mapped on the core repre-
sented by the square. The solid arrows connecting the circles
represent the data dependence among tasks. The dashed ar-
rows show how the data communication between the tasks is
mapped on the network links. Thus, the messages between
task τ1 and τ2 are conveyed on the link L0,0,E . The message
τ1 → τ3 is sent in multiple copies. Thus, one copy circulates
on the route P0,0 → P1,0 → P1,1 traversing the links L0,0,E

and L1,0,N , while two more copies (shown as the duplicate
arrow) circulate on the route P0,0 → P0,1 → P1,1 traversing
the links L0,0,N and L0,1,E .

In general, the mapping of the communication between
two tasks τi → τj can be formalised as a set of tuples Ci,j =
{(L, n) : L is a link, n ∈ N}, where n indicates how many
copies of the same packet are conveyed by the corresponding
link L. We will call the set Ci,j the communication support

(CS) of τi → τj . In our example, the two communication
supports are C1,2 = {(L0,0,E , 1)} and C1,3 = {(L0,0,E , 1),
(L1,0,N , 1), (L0,0,N , 2), (L0,1,E , 2)}.

Let us assume that a message of bi,j bits is supported by a
particular CS. The message arrival probability (MAP) and
the expected communication energy (ECE) for the message
can be computed as functions of αb, the probability that
a packet is successfully conveyed across a link, and of the
energy-per-bit values Ebit of the links of the CS, and the
number bi,j of transmitted bits. As opposed to the message
transmission time that can be affected by the interference
from other transmitted messages, the MAP and ECE can be
precisely computed for each message in isolation given the
CS supporting it. The MAP is computed from probabilities
to reach each core on the way. The latter are obtained using
simple probability theory as shown by us elsewhere [10]. The
ECE is a sum of expected energies consumed by each link
of the CS. This energy is proportional to the probability to
reach the start point of the link multiplied to the number of
times the message is conveyed on the link.

For illustration, Figure 1 depicts five possible CSs for a
message sent from core P0,0 to core P1,1. The thick arrows
denote the links belonging to the CS, while the numbers
that annotate them represent the number of copies to be
sent on each of them. The thinly drawn links are not used
by the communication. The value of α for this example is
0.97. For the CS in Figure 1(a), the probability to reach
core P0,1 is α, the MAP is α2, and the ECE is proportional
to 1 + α (1 because the message is sent once on L0,0,N and
α because the message is forwarded once on L0,1,E only if
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Figure 1: CSs for a 2 × 2 NoC

the message reaches P0,1 successfully). Similarly, the MAP
for the CS in Figures 1(b) and 1(c) is α · (1 − (1 − α)2),
and the ECE are proportional to 2 + (1 − (1 − α)2) and
1 + 2 · (1 − (1 − α)2) respectively. The MAP for the CS in
Figure 1(d) is (1 − (1 − α)2)2 and the ECE is proportional
to 2 +2 · (1− (1−α)2). The MAP for the CS in Figure 1(e)
is α2 · (2 − α2) and the ECE is proportional to 2 + 2 · α.

2.4 Problem formulation
The input to the problem consists of

• The hardware model, i.e. the size of the NoC, and, for
each link, the energy-per-bit, the bandwidth, and the
probability of a packet to be successfully conveyed by
the link;

• The application model, i.e. the task graphs, their
deadlines, the mapping of tasks to cores, the task pe-
riods, deadlines, worst-case execution times, priorities
and the amounts of data to be transmitted between
communicating tasks;

• The communication model, i.e. the packet size and
message priority for each message (alternatively, our
approach can automatically assign message priorities
according to the message criticality);

• The lower bounds Bi,j imposed on the message ar-
rival probability MAPi,j , which is the expected frac-
tion of successfully transmitted messages, for each pair
of communicating tasks τi → τj .

The problem is formulated as follows: Given the input de-
scribed above, find the communication support Ci,j for each
pair of communicating tasks τi → τj such that:

• all message arrival probabilities MAPi,j satisfy MAPi,j ≥
Bi,j ,

• the communication energy is minimised, and
• all deadlines are met

3. APPROACH OUTLINE
The outline of our approach to solve the problem is shown

in Figure 2. First, for each pair of communicating tasks
(message), we find a set of candidate communication sup-
ports (line 2, see Section 4), such that the lower bound
constraint on the message arrival probability is satisfied.
Second, the space of candidate communication supports is
explored in order to find sol, the selection of communica-
tion supports that result in the shortest application response
time min rt (line 4, see Section 6). The worst-case response
time of each explored solution is determined by the response
time calculation function that drives the design space ex-
ploration (line 5, see Section 5). If no solutions are found
that satisfy the response time constraint, the application is



(1) for each pair of communicating tasks τi → τj

(2) find a set of candidate CSs that
satisfy MAPi,j ≥ Bi,j (Sec. 4)

(3) end for
(4) (sol, min rt) =explore the space of candidate CSs (Sec. 6)
(5) using response time calculation (Sec. 5)

for driving the exploration
(6) if min rt > deadline then
(7) return “no solution”
(8) else
(9) sol′ =voltage freq reduction(sol) (according to [1])
(10) return sol′

(11) end if

Figure 2: Approach outline

deemed impossible to implement with the given resources
(line 7). Otherwise, the solution with the minimum appli-
cation response time among the found solutions is selected.
Voltage reduction is performed on the selected solution in or-
der to decrease the overall system energy consumption (line
9), and the modified solution is returned (line 10).

The next section discusses the construction of the set of
candidate communication supports for an arbitrary pair of
communicating tasks. Section 5 describes how the response
time calculation is performed, while Section 6 outlines how
the preferred communication supports representing the final
solution are selected.

4. COMMUNICATION SUPPORT CANDI-
DATES

This section describes how to construct a set of candidate
communication supports for a pair of communicating tasks.
First we introduce the notions of path, coverage, and spatial,
temporal, and general redundancy degree of a CS.

A path of length n connecting a source core with a desti-
nation core is an ordered sequence of n links, such that the
end point of the ith link in the sequence coincides with the
start point of the i+1th link, ∀1 ≤ i < n, and the start point
of the first link is the source core and the end point of the
last link is the destination core. We consider only loop-free
paths. A path belongs to a CS if all its links belong to the
CS. A link of a CS is covered by a path if it belongs to the
path.

The spatial redundancy degree (SRD) of a CS is given
by the minimum number of distinct paths belonging to the
CS that cover all the links of the CS. For the example in
Figure 6(a), the SRD of C1,2 is 1, as C1,2 contains only one
path, (L0,0,E). The SRD of C1,3 is 2, as the four links of
C1,3 can be covered only by the paths (L0,0,E , L1,0,N ) and
(L0,0,N , L0,1,E).

The temporal redundancy degree (TRD) of a link is given
by the number of redundant copies to be sent on the link.
The TRD of a CS is given by the maximum TRD of its links.
For the example in Figure 6(a), the TRD of C1,2 is 1 and
the TRD of C1,3 is 2 (because two redundant copies are sent
on links L0,0,N and L0,1,E).

The general redundancy degree (GRD) of a CS is given
by the sum of temporal redundancy degrees of all its links.
For the example in Figure 6(a), the GRD of C1,2 is 1 and
the GRD of C1,3 is 6.

(1) for each pair of communicating tasks τi → τj

(2) Determine N1 and N2, the minimum
general redundancy degrees of CSs of SRD 1 and 2
respectively, such that the MAP constraint on
τi → τj is satisfied

(3) Add all CSs with SRD 1 and with GRD N1 and
all CSs with SRD 2 and with GRD N2 to the
set of CS candidates of τi → τj

(4) end for

Figure 3: Construction of candidate CS set
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Figure 4: Selection of minimal GRD

It is important to use CSs of minimal GRD because the
ECE of a message is strongly dependent on the GRD of the
CS supporting it. To illustrate, we constructed all CSs of
SRD 2 and GRD 10–13 for a message sent from the lower-
left core to the upper-right core of a 4 × 4 NoC. We also
constructed all CSs of SRD 1 and GRD 10. For each of
the constructed CS, we computed their MAP and ECE. In
Figure 5, we plotted all resulting (MAP, ECE) pairs. Note
that several different CSs may have the same MAP and ECE
and therefore one dot in the figure may correspond to many
CSs. We observe that the ECE of CSs of the same GRD
do not differ significantly among them, while the ECE dif-
ference may account to more than 10% for CSs of different
GRD. The same conclusion is supported also by Figure 1.

The algorithm for the candidate set construction proceeds
as shown in Figure 3. Candidate CSs with SRD of only 1
and 2 are used. The justification for this choice is given later
in the section.

We illustrate how to find the minimal GRD for a message
based on the example depicted in Figure 4(a). We consider
a 4×4 NoC, and a message sent from core P0,0 to core P3,3.
The message consists of just one packet, the probability that
the packet successfully traverses any of the links is α = 0.99,
and the imposed lower bound on the MAP is B = 0.975.

We look first at CSs with SRD of 1, i.e. consisting of
a single path. We consider only shortest paths, that is of
length 6. Obviously, a lower bound on GRD is 6. If we
assign just one copy per link, the message arrival probability
would be α6 ≈ 0.941 < 0.975 = B. We try with a GRD
of 7, and regardless to which of the 6 links we assign the
redundant copy, we get a MAP of α5 · (1 − (1 − α)2) ≈
0.95 < 0.975 = B. Hence, we are forced to increase the
GRD once more. We observe that there are 5 links left with
a TRD of 1. The probability to traverse them is α5 ≈ 0.95,
less than the required lower bound. Therefore it is useless
to assign one more redundant copy to the link which now



has a TRD of 2 because anyway the resulting MAP would
not exceed α5. Thus, the new redundant copy has to be
assigned to a different link of the CS of GRD 8. In this
case, we get a MAP of α4 · (1 − (1 − α)2)2 ≈ 0.96, still
less than the required bound. We continue the procedure of
increasing the GRD and distributing the redundant copies
to different links until we satisfy the MAP constraint. In
our example, this happens after adding 4 redundant copies
(MAP = α2 · (1 − (1 − α2))4 ≈ 0.9797). The resulting CS
of SRD 1 and GRD 10 is shown in Figure 4(b), where the
double lines represent links that convey two copies of the
same packet. Thus, the minimal GRD for CSs of SRD 1
is N1 = 10. There are 20 distinct paths between core P0,0

and core P3,3 and there are 15 ways of distributing the 4
redundant copies to each path. Thus, 15 · 20 = 300 distinct
candidate CSs of SRD 1 and GRD 10 can be constructed
for the considered message.

Similarly, we obtain N2, the minimal GRD for CSs of SRD
2. In this case, it can be mathematically shown that larger
message arrival probabilities can be obtained with the same
GRD if the two paths of the CS intersect as often as pos-
sible and the distances between the intersection points are
as short as possible [10]. Intuitively, intersection points are
important because even if a copy is lost on one incoming
path, the arrival of another copy will trigger a regenera-
tion of two packets in the core where the two paths inter-
sect. The closer to each other the intersection points are, the
shorter the packet transmission time between the two points
is. Thus, the probability to lose a message between the two
intersection points is lower. Therefore, in order to obtain
N2, we will consider CSs with many intersection points that
are close to each other. For our example, the lowest GRD
that lets the CS satisfy the MAP constraint is N2 = 10
(MAP = α6 · (2−α2)2 ≈ 0.9793). This CS is shown in Fig-
ure 4(c). The minimum number of needed redundant copies
in order to satisfy the MAP constraint is strongly dependent
on α and the imposed lower bound on the MAP, and only
weakly dependent on the geometric configuration of the CS.
Therefore, typically N2 = N1 or it is very close to N1.

In conclusion, N1 and N2 are obtained by progressively in-
creasing the GRD until the CS satisfies the MAP constraint.
The redundant copies must be uniformly distributed over
the links of the CS. Additionally, in the case of CSs with
SRD 2, when increasing the GRD, links should be added to
the CS such that many path intersection points are obtained
and that they are close to each other.

The following reasoning lies behind the decision to use CSs
with SRD of only 1 and 2. First, we give the motivation for
using CSs with SRD larger than 1. While, given a GRD of
N , it is possible to obtain the maximum achievable message
arrival probability with CSs of SRD 1, concurrent transmis-
sion of redundant message copies would be impossible if we
used CSs with SRD of only 1. This could negatively affect
the message latency. CSs with SRD 2 are only marginally
more energy hungry, as can be seen from the cluster of points
in the lower-left corner of Figure 5. Usually, the same MAP
can be obtained by a CS of SRD 2 with only 1–2% more en-
ergy than a CS of SRD 1. This can be also observed when
comparing the CSs in Figures 1(d) and 1(e).

While the previous consideration supports the use of CSs
with SRD greater than 1, there is no reason to go with the
SRD beyond 2. Because of the two-dimensional structure of
the NoC, there are at most 2 different links which belong to
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Figure 6: Application modelling for response time
analysis

shortest paths between the source and the destination and
whose start points coincide with the source core. Thus, if
a CS consisted only of shortest paths, the message trans-
mission would be vulnerable to a double fault of the two
initial links. Therefore, CSs with SRD greater than 2, while
consuming more energy for communication, would still be
vulnerable to a double fault on the initial links and hence
can only marginally improve the MAP. If we did not restrict
the CS to shortest paths, while overcoming the limitation
on the MAP, we would consume extra energy because of the
longer paths. At the same time, latency would be negatively
affected. Thus, for two-dimensional NoC, we consider CSs
of SRD of only 1 and 2.

5. RESPONSE TIME CALCULATION
In order to guarantee that tasks meet their deadlines, in

case no message is lost, response times have to be determined
in the worst case.

Let us consider the example depicted in Figure 6(a) and
described in Section 2.3.2. The two CSs are C1,2 = {(L0,0,E , 1)}
and C1,3 = {(L0,0,E , 1), (L1,0,N , 1), (L0,0,N , 2), (L0,1,E , 2)}.
Packet sizes are such that message τ1 → τ2 is chopped into
2 packets, while message τ1 → τ3 fits into a single packet.

Based on the application graph, its mapping and the com-
munication supports, we construct a task graph as shown in
Figure 6(b). Each link L is regarded as a processor PL, and
each packet transmission on link L is regarded as a non-



preemptive task executed on processor PL. The shadings of
the circles denote the processors (links) on which the tasks
(packets) are mapped. Tasks τ4 and τ5 represent the first
and the second packet of the message τ1 → τ2. They are
both dependent on task τ1 as the two packets are generated
when task τ1 completes its execution, while task τ2 is de-
pendent on both task τ4 and τ5 as it can start only after
it has received the entire message, i.e. both packets, from
task τ1. Both tasks τ4 and τ5 are mapped on the “proces-
sor” corresponding to the link L0,0,E . Task τ6 represents
the packet of the message τ1 → τ3 that is sent on link L0,0,E

and task τ7 represents the same packet once it reaches link
L1,0,N . Tasks τ8 and τ9 are the two copies of the packet of
the message τ1 → τ3 that are sent on link L0,0,N .

We are interested in the worst-case scenario w.r.t. re-
sponse times. In the worst case, all copies of packets get
scrambled except the latest packet. Therefore, the copies to
be sent by a core on its outgoing links have to wait until the
last of the copies arriving on incoming links of the core has
reached the core. For example, tasks τ10 and τ11, modelling
the two copies of the message τ1 → τ3 that are sent on the
link L0,1,E , depend on both τ8 and τ9, the two copies on link
L0,0,N . Also, task τ3 depends on all three copies, τ7, arriving
on link L1,0,N , and τ10 and τ11, arriving on link L0,1,E .

The modified model, as shown in Figure 6(b), is analysed
using the dynamic offset based schedulability analysis pro-
posed by Palencia and Harbour [11]. The analysis calculates
the worst-case response times and jitters for all tasks.

6. SELECTION OF COMMUNICATION SUP-
PORTS

As shown in Section 4 (see also line 2 in Figure 2), we have
determined the most promising (low energy, low number of
messages) set of CSs for each transmitted message in the
application. All those CSs guarantee the requested MAP.
As the last step of our approach (line 4 in Figure 2) we
have to select one particular CS for each message, such that
the application response time is minimised. The response
time for each candidate solution is calculated as outlined in
Section 5 (line 5 in Figure 2).

The solution space is explored with a Tabu Search based
heuristic [7]. Given a certain solution alternative, a new one
is generated by performing a “move”. A move means picking
a pair of communicating tasks and selecting a new commu-
nication support for it. In order to select a move, classical
Tabu Search explores all solutions that can be reached by
one move from the current solution. For each candidate so-
lution, the application response time has to be calculated.
Such an approach would be too time consuming for our prob-
lem. Therefore, we only explore “promising” moves. Thus,

1. we look at messages with large jitters as they have a
higher chance to improve their transmission latency by
having assigned a new CS;

2. for a certain message τi → τj , we consider only those
candidate CSs that would decrease the amount of in-
terference of messages of higher priority than τi → τj .
(By this we remove message from overloaded links.)

During design space exploration, the reverse of a performed
move is marked as tabu, which means that it is forbidden for
a number of exploration steps [7]. Thus, the best available
solution at a certain step can be worse than the current best
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Figure 8: Application latency vs bound on MAP

one. This could be the case if there are no moves available
that improve the latency or all such moves are tabu. This
feature ensures that the heuristic does not get stuck at local
minima.

7. EXPERIMENTAL RESULTS
We report on three sets of experiments that we ran in or-

der to assess the quality of our approach. The first set inves-
tigates the application latency as a function of the number of
tasks. 340 applications of 16 to 80 tasks were randomly gen-
erated. The applications are executed by a 4 × 4 NoC. The
probability that a link successfully conveys a data packet
is 0.97, and the imposed lower bound on the message ar-
rival probability is 0.99. For each application, we ran our
communication mapping tool twice. In the first run, we con-
sider CSs of SRD 1, i.e. packets are retransmitted on the
same, unique path. In the second run, we consider CSs of
SRD 1 and 2, as described in Section 4. Figure 7 depicts
the averaged results. The approach that uses both spatially
and temporally redundant CSs leads to shorter application
latencies than the approach that just re-sends on the same
path.

The second experiment investigates the dependency of la-
tency on the imposed message arrival probability. 20 ap-
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Figure 9: Application latency vs NoC size and com-
munication load

plications, each of 40 tasks, were randomly generated. We
considered the same hardware platform as in the first experi-
ment. For each application, we considered 17 different lower
bounds on MAP, ranging from 0.94 to 0.9966. The averaged
results are shown in Figure 8. For low bounds on MAP, such
as 0.94, almost no transmission redundancy is required to
satisfy the MAP constraint. Therefore, the approach com-
bining spatially and temporally redundant communication
fares only marginally better than the approach that uses
only temporal redundancy. However, for higher bounds on
the MAP, the approach that combines spatially and tempo-
rally redundant transmission (as shown in Section 4) has the
edge. In the case of bounds on the MAP larger than 0.9992,
spatial redundancy cannot satisfy the constraint anymore,
and therefore the temporally redundant transmission be-
comes dominant and the approach combining spatial and
temporal redundancy does not lead to significant latency
reductions anymore.

The third experiment has a double purpose. First, it in-
vestigates the dependency of latency reduction on the size
of the NoC. Second, it investigates latency reduction as a
function of the communication load (bits/time unit). 20 ap-
plications of 40, 62 and 90 tasks were randomly generated.
The applications with 40 tasks run on a 4 × 4 NoC, those
with 62 tasks run on a 5×5 NoC and those with 90 tasks run
on a 6×6 NoC. For each application, we considered commu-
nication loads of 1–4 bits/time unit. The averaged latency
reductions when using the optimal combination of spatial
and temporal redundancy, compared to purely temporal re-
dundancy, are depicted in Figure 9. We observe that for low
communication loads, the latency reduction is similar for all
three architectures, around 22%. However, at loads higher
than 3.4 the relatively small number of links of the 4 × 4
NoC get congested and response times grow unboundedly.
This, however, is not the case with the larger NoCs. Latency
reduction for a load of 4 is 22% for a NoC of 6× 6 and 12%
for 5 × 5.

The presented experiments have shown that, using an op-
timal combination of temporal and spatial redundancy for
message mapping, significant reduction of latency can be
obtained while guaranteeing message arrival probability at
the same time. It is important to notice that the latency
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reduction is obtained without energy penalty, as shown in
Section 4. This means that for a class of applications us-
ing the proposed approach it will be possible to meet the
imposed deadlines, which otherwise would be not possible
without changing the underlying NoC architecture. How-
ever, the proposed approach gives also the opportunity to
further reduce the energy consumed by the application. If
the obtained application response time is smaller than the
imposed one, the resulting slack can be exploited by running
the application at reduced voltage. In order to illustrate
this, we have performed another set of experiments.

Applications of 16 to 60 tasks running on a 4 × 4 NoC
were randomly generated. For each application we ran our
message mapping approach twice, once using CSs with SRD
of only 1, and second using CSs with SRD of 1 and 2. The
slack that resulted in the second case was exploited for en-
ergy reduction. We have used the algorithm published in
[1] for calculating the voltage levels for which to run the
application. For our energy models, we considered a 70nm
CMOS fabrication process. The resulted energy consump-
tion is depicted in Figure 10. The energy reduction ranges
from 20% to 13%.

Finally, we applied our approach to a multimedia appli-
cation [8], namely an image encoder implementing the H263
algorithm. The application is composed of 24 tasks running
on a platform consisting of 6 DSPs, 2 CPUs, 4 ASICs, and
2 memory cores (organised as a 4 × 4 NoC with one unused
core). The approach combining spatially and temporally
redundant message transmission obtained a 25% response
time reduction relative to the approach deploying only tem-
poral redundancy. The energy savings after voltage reduc-
tion amounted to 20%.

8. CONCLUSIONS
This paper has presented an approach to reliable, low-

energy on-chip communication for time-constrained appli-
cations implemented on NoC. The contribution is manifold.
First, we show how to generate supports for message com-
munication in order to meet the message arrival probability
constraint and to minimise communication energy. Second,
we give a heuristic for selecting most promising communi-
cation supports with respect to application responsiveness
and energy. Third, we model the fault-tolerant application



for response time analysis. Finally, we present experiments
demonstrating the proposed approach.
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