
Quasi-Static Assignment of Voltages and
Optional Cycles for Maximizing Rewards in

Real-Time Systems with Energy Constraints
Luis Alejandro Cortés 1,2

alejandro.cortes@volvo.com
Petru Eles 2

petel@ida.liu.se
Zebo Peng 2

zebpe@ida.liu.se

1 Volvo Truck Corporation
Gothenburg, Sweden

2 Linköping University
Linköping, Sweden

ABSTRACT
There exist real-time systems for which it is possible to trade
off precision for timeliness. In these cases, a function assigns
reward to the application depending on the amount of com-
putation allotted to it. At the same time, many such appli-
cations run on battery-powered devices with stringent energy
constraints. This paper addresses the problem of maximizing
rewards subject to time and energy constraints. We propose
a quasi-static approach where the problem is solved in two
steps: first, at design-time, a number of solutions are com-
puted and stored (off-line phase); second, one of the precom-
puted solutions is selected at run-time based on actual values
of time and energy (on-line phase). Thus our approach is
able to exploit, with low on-line overhead, the dynamic slack
caused by tasks executing less number of cycles than in the
worst case. We conduct numerous experiments in order to
show the advantages of our approach.

Categories & Subject Descriptors: C.3 [Special-Purpose
and Application-Based Systems]: Real-Time and Embedded.
General Terms: Algorithms, Design.
Keywords: Quasi-Static, Dynamic Voltage Scaling.

1. INTRODUCTION
The trade-off between energy consumption and performance
has extensively been studied under the framework of Dynamic
Voltage Scaling (DVS) [8], [5].

There exist real-time applications, such as image process-
ing and multimedia, in which approximate but timely results
are acceptable. Fuzzy images in time are often preferable to
perfect images too late. Thus it is possible to trade off pre-
cision for timeliness. Such systems have been studied under
the Imprecise Computation (IC) model [4], where tasks are
composed of mandatory and optional parts: both parts must
be finished by the deadline but the optional part can be left
incomplete at the expense of the quality of results. A function
associated with each task assigns reward as a function of the
amount of computation allotted to it: the more the optional
part executes, the more reward it produces.

While DVS techniques have mostly been studied in the con-
text of hard real-time systems, IC approaches have until now
disregarded the power/energy aspects. Rusu et al. [9] pro-
posed recently the first approach in which energy, reward, and
deadlines are considered under a unified framework. Their
goal is to maximize the total reward without exceeding dead-
lines or the available energy. This approach solves the op-
timization problem statically, at compile-time, and therefore

Proc. Design Automation Conference 2005, pp. 889-894.
June 13–17, 2005, Anaheim, California, USA.
.

considers only worst cases. Such an approach can only ex-
ploit the static slack, which is due to the fact that at nominal
voltage the processor runs faster than needed.

Dynamic approaches have been used for hard real-time sys-
tems in order to exploit the dynamic slack, which is caused
by tasks executing less cycles than in the worst case. In this
paper we consider tasks composed of mandatory and optional
parts and we aim at finding a Voltage/Optional-cycles (V/O)
assignment (actually a set of assignments as explained later),
such that the total reward is maximal while guaranteeing the
deadlines and the energy budget. We exploit the dynamic
time and energy slack caused by variations in the actual num-
ber of execution cycles. Furthermore, we consider the time
and energy overhead incurred during voltage transitions.

Static V/O assignment refers to finding at design-time one
assignment of voltages and optional cycles that makes the re-
ward maximal while guaranteeing the time and the energy
constraints (this is the problem addressed by [9]). Dynamic
V/O assignment refers to finding at run-time, every time
a task completes, a new V/O assignment for tasks not yet
started, but considering the actual execution times and en-
ergy values. Static V/O assignment causes no on-line over-
head, but it is pessimistic because actual execution times are
typically far off from worst-case values. Dynamic V/O assign-
ment exploits information known only after tasks complete
and accordingly computes new assignments aiming at improv-
ing the reward, but the energy and time overhead for on-line
computations is high, even if polynomial-time algorithms can
be used. We propose a Quasi-Static (QS) approach that is
able to exploit, with low on-line overhead, the dynamic slack:
first, at design-time, a set of V/O assignments are computed
and stored (off-line phase); second, the selection among the
precomputed assignments is left for run-time, based on actual
completion times and consumed energy (on-line phase).

QS scheduling for maximizing utility in hard/soft real-time
systems was recently discussed [1], but without any energy
consideration. To our knowledge, this is the first work that
considers reward, energy, and deadlines in a QS framework.

2. PRELIMINARIES
2.1 Task and Architectural Models
The functionality of the system is captured by a directed
acyclic graph G=(T,E) where the nodes T={T1, T2, . . . , Tn}
correspond to tasks and the edges E indicate the data depen-
dencies between tasks. Each task Ti has a mandatory and an
optional part, characterized in terms of the number of CPU
cycles Mi and Oi respectively. The actual number of manda-
tory cycles Mi of a task Ti at a certain activation of the system
is unknown beforehand but lies in the interval bounded by the
best-case number of cycles Mbc

i and the worst-case number of
cycles Mwc

i (Mbc
i ≤Mi ≤Mwc

i). The optional part of a task
executes immediately after its corresponding mandatory part
completes. For each task Ti, there is a deadline di by which
both mandatory and optional parts must be completed.

For each task Ti, there is a reward function Ri(Oi) that
takes as argument the number of optional cycles Oi assigned

to Ti. We consider non-decreasing concave reward functions,
as they capture the particularities of most real-life applica-
tions [9]. We assume there is a value Omax

i , for each Ti, after
which no extra reward is achieved, that is, Ri(Oi) = Rmax

i if
Oi ≥Omax

i . The total reward is denoted R=
P

Ti∈T
Ri(Oi).

We consider that tasks are non-preemtable and have equal
release time (ri = 0, 1≤ i≤n). All tasks are mapped onto a
single processor and executed in a fixed order, determined off-
line according to an EDF (Earliest Deadline First) policy. For
non-preemptable tasks with equal release time and running on
a single processor, EDF gives the optimal execution order [2].
Ti denotes the i-th task in this sequence. The target processor
supports voltage scaling and we assume that the voltage levels
can be varied in a continuous way in the interval [V min, V max].

In our QS approach we compute a number of V/O assign-
ments. This set of assignments is stored in a dedicated mem-
ory in the form of lookup tables, one table LUTi for each task
Ti. The maximum number of V/O assignments that can be
stored is a parameter Nmax fixed by the designer.

2.2 Energy and Delay Models
For the sake of clarity, we consider only the dynamic en-
ergy consumption. Nonetheless, the leakage energy as well
as Adaptive Body Biasing (ABB) techniques [5] can easily be
incorporated into the formulation without changing our gen-
eral approach. The dynamic energy consumed by task Ti is
given by [5]

Ei = CiV
2

i (Mi + Oi) (1)
where Ci is the effective switched capacitance, Vi is the supply
voltage, and Mi+Oi is the number of cycles executed by Ti.
The energy overhead, for switching from Vi to Vj , is [5]

E∆V
i,j = Cr(Vi − Vj)

2 (2)
where Cr is the capacitance of the power rail. We also con-
sider, for the QS solution, the energy overhead E sel

i caused by
looking up and selecting one of the precomputed assignments.
The way we store the assignments makes the selection process
take O(1) time and thus E sel

i is a constant value. The energy

overhead caused by on-line operations is denoted Edyn
i . In a

QS solution the on-line overhead is just the selection over-
head, that is, Edyn

i =E sel
i .

The total energy consumed up to the completion of task
Ti is denoted EC i. We consider a given energy budget Emax

that imposes a constraint on the total amount of energy.
The execution time of a task Ti executing Mi + Oi cycles

at Vi is given by [5]
τi = k

Vi

(Vi − Vth)α
(Mi + Oi) (3)

where k is a technology-dependent constant, α is the satu-
ration velocity index (1.4 ≤ α ≤ 2), and Vth is the threshold
voltage. The time overhead, for switching from Vi to Vj , is
given by [5]

δ∆V
i,j = p|Vi − Vj | (4)

where p is a constant. The time overhead for looking up and
selecting one V/O assignment in the QS approach is denoted

δsel
i and, as explained above, is constant.
The starting and completion times of a task Ti are denoted

si and ti respectively, with si + δi + τi = ti where δi captures
the different time overheads. δi = δ∆V

i−1,i + δdyn
i where δdyn

i is
the on-line overhead. This on-line overhead in a QS solution
is just the lookup and selection time, that is, δdyn

i =δsel
i .

3. MOTIVATIONAL EXAMPLE
Let us consider the example shown in Fig. 1. The reward
functions are of the form Ri(Oi) = KiOi, Oi ≤ Omax

i . The
energy budget is Emax=1 mJ and the tasks run on a processor
with continuous voltage scaling in the range 0.6-1.8 V. In this
example we assume that transition overheads are zero.

The optimal static V/O assignment is given by Table 1(a).
It gives, for each task Ti, the voltage Vi at which Ti must run
and the number of optional cycles Oi that it must execute.

T3

T2T1 Task Mbc
i Mwc

i Ci [nF] di [µs] Ki Omax
i

T1 20000 100000 0.7 250 0.00014 50000
T2 70000 160000 1.2 600 0.0002 80000
T3 100000 180000 0.9 1000 0.0001 60000

Fig. 1: Motivational example

This assignment produces a total reward Rst=3.99.
The actual number of execution cycles, which are not known

in advance, are typically far off from the worst-case values
used to compute the static V/O assignment. The assignment
could instead be computed dynamically and thus exploit the
dynamic slack: taking into account the information about
completion time and consumed energy, a new V/O assign-
ment is computed every time a task finishes. For instance,
for the situation M1 =60000, M2 =100000, M3 =150000, the
dynamic V/O assignment in the ideal case (on-line computa-
tions take zero time and energy) is given by Table 1(b). This

assignment delivers a total reward Rdynideal

= 16.28. In real-
ity, however, the on-line overhead caused by computing new
assignments is not negligible. When considering time and en-
ergy overheads, using for example δdyn=65 µs and Edyn=55
µJ, the assignment computed dynamically is clearly different,
as given by Table 1(c). This assignment yields a total reward

Rdynreal

= 6.26. The values of δdyn and Edyn are in practice
orders of magnitude higher than the ones used in this hypo-
thetical example [2]. Even on-line heuristics, which produce
approximate results, have long execution times [9].

In our QS approach we compute at design-time a number of
assignments, which are selected at run-time by the so-called
quasi-static V/O scheduler. We can define, for instance, a set
of assignments as given by Fig. 2. When finishing each task,
Vi and Oi are selected from the precomputed set, according
to the given condition. These assignments were computed
considering selection overheads δsel=0.3 µs and E sel=0.3 µJ.

Task Condition Vi [V] Oi

T1 — 1.654 35
T2 if t1 ≤ 75 µs ∧ EC1 ≤ 77 µJ 1.444 66924

else if t1 ≤ 130 µs ∧ EC1 ≤ 135 µJ 1.446 43446
else 1.450 19925

T3 if t2 ≤ 400 µs ∧ EC2 ≤ 430 µJ 1.380 60000
else if t2 ≤ 500 µs ∧ EC2 ≤ 550 µJ 1.486 46473

else 1.480 11

Fig. 2: Precomputed set of V/O assignments

For M1 = 60000, M2 = 100000, M3 = 150000, and the set
in Fig. 2, the quasi-static V/O scheduler would do as follows.
Task T1 is run at V1 =1.654 V and is allotted O1 =35 optional
cycles. Since, when completing T1, t1 = τ1 = 111.73≤ 130 µs
and EC 1 = E1 = 114.97 ≤ 135 µJ, V2 = 1.446/O2 = 43446 is
selected. Task T2 runs under this assignment so that, when it
finishes, t2 =τ1 + δsel

2 + τ2=442.99 µs and EC 2 =E1 + E sel
2 +

E2 = 474.89 µJ. Then V3 = 1.486/O3 = 46473 is selected and
task T3 is executed accordingly. Table 1(d) summarizes the
selected assignment, which delivers a total reward Rqs=13.34

(compare to Rdynideal

=16.28, Rdynreal

=6.26, and Rst=3.99).

4. PROBLEM FORMULATION
In what follows we present the precise formulation of related
problems and the particular problem addressed in this paper.

Static V/O Assignment: Find, for each task Ti, 1≤ i≤n,
the voltage Vi and the number of optional cycles Oi that

maximize

nX

i=1

Ri(Oi) (5)

subject to V min ≤ Vi ≤ V max (6)

si+1 = ti =si+p|Vi−1−Vi|
| {z }

δ∆V
i−1,i

+k
Vi

(Vi−Vth)α
(Mwc

i +Oi)

| {z }

τi

≤di (7)

nX

i=1

“

Cr(Vi−1 − Vi)
2

| {z }

E∆V
i−1,i

+ CiV
2

i (Mwc

i + Oi)
| {z }

Ei

”

≤ Emax (8)

Task Vi [V] Oi

T1 1.654 35
T2 1.450 19925
T3 1.480 11

(a) Static

Task Vi [V] Oi

T1 1.654 35
T2 1.446 51396
T3 1.472 60000

(b) Dynamic (δdyn=0, Edyn=0)

Task Vi [V] Oi

T1 1.654 35
T2 1.429 1303
T3 1.533 60000

(c) Dynamic (δdyn=65µs, Edyn=55µJ)

Task Vi [V] Oi

T1 1.654 35
T2 1.446 43446
T3 1.486 46473

(d) QS selected from Fig. 2

Table 1: V/O assignments (for M1 =60000, M2 =100000, M3 =150000)

The total reward, as given by Eq. (5), is to be maximized.
For each task the voltage Vi must be in the range [V min, V max]
(Eq. (6)). The completion time ti is the sum of the start time
si, the voltage-switching time δ∆V

i−1,i, and the execution time
τi, and tasks must complete before their deadlines (Eq. (7)).
The total energy is the sum of the voltage-switching energies
E∆V

i−1,i and the energy Ei consumed by each task, and cannot
exceed the energy budget Emax (Eq. (8)). Note that a static
assignment must consider the worst-case number of manda-
tory cycles Mwc

i for every task (Eqs. (7) and (8)).
For tractability reasons, when solving the above problem,

we consider Oi as a continuous variable and then we round
the result down. By this, we obtain a solution that is very
near to the optimal one [2]. We can rewrite the above prob-
lem as “minimize

P

R′

i(Oi)”, with R′

i(Oi)=−Ri(Oi). It can
thus be noted that: R′

i(Oi) is a convex function since Ri(Oi)
is concave (see Subsection 2.1); the constraint functions are
also convex. Therefore it corresponds to a convex non-linear
programming (NLP) formulation [7]. It is worth mentioning
that convex NLP problems can be solved using polynomial-
time methods [7].

Dynamic V/O Scheduler: The following is the problem
that a dynamic V/O scheduler must solve every time a task
Tc completes. It is considered that tasks T1, . . . , Tc have
already completed (the total energy consumed up to the
completion of Tc is EC c and the completion time of Tc is
tc).
Find Vi and Oi, for c + 1≤ i≤n, that

maximize

nX

i=c+1

Ri(Oi)

subject to V
min
≤ Vi ≤ V

max

si+1 = ti = si + δdyn
i + δ∆V

i−1,i + τi ≤ di

nX

i=c+1

`
Edyn

i + E∆V
i−1,i + Ei

´
≤ Emax − EC c

where δdyn
i and Edyn

i are, respectively, the time and energy
overhead of computing dynamically Vi and Oi for task Ti.

Observe that the problem solved by the dynamic V/O sched-
uler corresponds to an instance of the static V/O assignment
problem (for c+1≤ i≤n and taking into account tc and EC c),

but considering δdyn
i and Edyn

i . The total reward Rideal deliv-

ered by a dynamic V/O scheduler in the ideal case δdyn
i = 0,

Edyn
i = 0 represents an upper bound on the reward that can

practically be achieved without knowing in advance how many
mandatory cycles tasks will execute and without accepting
risks regarding deadline or energy violations.

We prepare off-line a set of V/O assignments, one of which
is to be selected by the quasi-static V/O scheduler. When a
task Tc completes, the quasi-static V/O scheduler checks the
completion time tc and the total energy EC c, and looks up an
assignment in the table for Tc. From the lookup table LUTc,
it obtains the point (t′c,EC ′

c)—the closest to (tc,EC c) such
that tc≤ t′c and EC c≤EC ′

c—and selects V ′/O′ corresponding
to (t′c,EC ′

c), which are the voltage and number of optional
cycles for the next task Tc+1. Our aim is to obtain a reward
Rqs , as delivered by the quasi-static V/O scheduler, as high
as possible. The problem we discuss in the rest of the paper
is the following:

Set of V/O Assignments: Find a set of N assignments
such that: N ≤Nmax; the V/O assignment selected by the

quasi-static V/O scheduler guarantees the deadlines (si +
δsel

i +δ∆V
i−1,i+τi = ti≤di) and the energy constraint (Σn

i=1 E
sel
i +

E∆V
i−1,i +Ei ≤ Emax), and yields a total reward Rqs that is

maximal.

As discussed in Section 5, for a task Ti, potentially there ex-
ist infinitely many values for ti and EC i. Therefore, in order
to approach the theoretical limit Rideal , it would be needed to
compute an infinite number of V/O assignments, one for each
(ti,EC i). The problem is thus how to select at most Nmax

points in this infinite space such that the respective V/O as-

signments produce a reward as close as possible to Rideal .

5. SET OF V/O ASSIGNMENTS
For each task Ti, there exists a space time-energy of possible
values of completion time ti and energy EC i consumed up to
the completion of Ti (see Fig. 3(a)). Every point in this space
defines a V/O assignment for the next task Ti+1, that is, if
Ti completed at ta and the energy consumed was EC a, the
assignment for the next task would be Vi+1 =V a/Oi+1 =Oa.
The values V a and Oa are those that an ideal dynamic V/O
scheduler would give for the case ti = ta, EC i = EC a. Note
that different points (ti,EC i) define different assignments.

b
t(,)

+1iV V
a=

+1iO O
a=

EC

a
t

a
EC(,)

it

iEC

+1iV V
b=

+1iO O
b=

b

(a) General view

EC
min

i

t
min

i

ECi

EC
max

i

t
max

i

ti

(b) Pessimistic boundaries

Fig. 3: Space time-energy

We need first to determine the boundaries of the space time-
energy for each task Ti, in order to select Ni points in this
space and accordingly compute the set of Ni assignments. Ni

is the number of assignments to be stored in the lookup ta-
ble LUTi, after distributing the maximum number Nmax of
assignments among tasks. A straightforward way to deter-
mine these boundaries is to compute the earliest and latest
completion times as well as the minimum and maximum con-
sumed energy for task Ti, based on the values V min, V max,
Mbc

j , Mwc
j , and Omax

j , 1 ≤ j ≤ i. The earliest completion

time tmin
i occurs when each of the previous tasks Tj (inclu-

sive Ti) execute their minimum number of cycles Mbc
j and

zero optional cycles at maximum voltage V max, while tmax
i oc-

curs when each task Tj executes Mwc
j + Omax

j cycles at V min.

Similarly, ECmin
i happens when each task Tj executes Mbc

j

cycles at V min, while ECmax
i happens when each task Tj ex-

ecutes Mwc
j + Omax

j cycles at V max. The intervals [tmin
i , tmax

i]

and [ECmin
i , ECmax

i] bound the space time-energy as shown
in Fig. 3(b). However, the space time-energy delimited in this
way is rather pessimistic as there are points in this space that
cannot happen. For instance, (tmin

i ,ECmin
i) is not feasible be-

cause tmin
i requires all tasks running at V max whereas ECmin

i

requires all tasks running at V min.

5.1 Characterization of the Space Time-Energy
We take now a closer look at the relation between the energy
Ei consumed by a task and its execution time τi as given by

τ
max
iτ

i

V
m

a
x

V
minM bc

i

+
M

w
ci

O
m

a
x

i

min
iE

max
iE

iE

min
iτ

Fig. 4: Space τi-Ei for task Ti

1τ

1E

=+
2E

2τ

EC2

t2

Fig. 5: “Sum” of spaces τ1-E1 and τ2-E2

l l
/

l
V

i i

l
O/

i

iEC

it

i
EC

l

i
EC

l l

= i
l l

ti
l

t

i

l l
OV

Fig. 6: V ′

i /O′

i and V ′′

i /O′′

i converge

Eqs. (1) and (3). In this subsection we consider, as commonly
assumed in the literature [8], that τi is inversely proportional
to Vi (Vth = 0, α = 2) to make the illustration of our point
simpler, yet the drawn conclusions are valid in general. After
simple algebraic manipulations on Eqs. (1) and (3) we get

Ei =
CiV

3
i

k
τi (9)

which, in the space τi-Ei, gives a family of straight lines,
each for a particular Vi. Thus Ei = Ci(V

min)3τi/k and Ei =
Ci(V

max)3τi/k define two boundaries in the space τi-Ei. We
can also write

Ei = Cik
2(Mi + Oi)

3 1

τ 2
i

(10)

which gives a family of curves, each for a particular Mi + Oi.
Thus Ei = Cik

2(Mbc
i)3/τ 2

i and Ei = Cik
2(Mwc

i + Omax
i)3/τ 2

i

define another two boundaries, as shown in Fig. 4. Note that
Fig. 4 represents the energy consumed by one task (energy
Ei if Ti executes for τi time), as opposed to Fig. 3(b) that
represents the energy by all tasks up to Ti (total energy EC i

consumed up to the moment ti when task Ti finishes).
In order to obtain a realistic view of the diagram in Fig. 3(b),

we must “sum” the spaces τj-Ej introduced above. The re-
sult of this summation, as illustrated in Fig. 5, gives the space
time-energy ti-EC i we are interested in. In Fig. 5 the space
t2-EC 2 is obtained by sliding the space τ2-E2 with its coor-
dinate origin along the boundaries of τ1-E1.

The shape of the space ti-EC i is depicted by the solid lines
in Fig. 7(a). There are in addition deadlines di to consider
as well as energy constraints Fmax

i . Note that, for each task,
the deadline di is explicitly given as part of the system model
whereas Fmax

i is an implicit constraint induced by the overall
energy constraint Emax. The constraint Fmax

i comes from the
fact that future tasks will consume at least a certain amount
of energy Fi+1→n so that Fmax

i =Emax−Fi+1→n. The deadline
di and the induced energy constraint Fmax

i further restrict the
space time-energy, as depicted by the dashed lines in Fig. 7(a).

The space time-energy can be narrowed down even further
if we take into consideration that we are only interested in
points as calculated by the ideal dynamic V/O scheduler, as
explained in the following. Let us consider two different acti-
vations of the system. In the first one, after finishing task Ti−1

at t′i−1 with a consumed energy EC ′

i−1, task Ti runs under a
certain assignment V ′

i /O′

i. In the second activation, after Ti−1

completes at t′′i−1 with energy EC ′′

i−1, Ti runs under the assign-
ment V ′′

i /O′′

i . Since the points (t′i−1,EC ′

i−1) and (t′′i−1,EC ′′

i−1)
are in general different, the assignments V ′

i /O′

i and V ′′

i /O′′

i

are also different. The assignment V ′

i /O′

i defines in the space
ti-EC i a segment of straight line L′

i that has slope Ci(V
′

i)3/k,
with one end point corresponding to the execution of Mbc

i +O′

i

cycles at V ′

i and the other end corresponding to the execu-
tion of Mwc

i +O′

i cycles at V ′

i [2]. V ′′

i /O′′

i defines analogously
a straight line L′′

i . Solutions to the dynamic V/O assignment
problem, though, attempt to make tasks consume as much as
possible of the available energy and finish as late as possible
without risking energy or deadline violations: there is no gain
by consuming less energy or finishing earlier than needed as
the goal is to maximize the reward. Both solutions V ′

i /O′

i

and V ′′

i /O′′

i (that is, the lines L′

i and L′′

i) will thus converge
in the space ti-EC i when M ′

i =M ′′

i =Mwc
i (which is the value

that has to be assumed when computing the solutions) as
shown in Fig. 6. Therefore, if Ti under the assignment V ′

i /O′

i

completes at the same time as under the second assignment
V ′′

i /O′′

i (t′i = t′′i), the respective energy values EC ′

i and EC ′′

i

will actually be very close (see Fig. 6). This means that in
practice the space ti-EC i is a narrow area, as depicted by the
dash-dot lines and the gray area enclosed by them in Fig. 7(a).

We conducted a number of experiments in order to deter-
mine how narrow the area in the space time-energy actually
is. For each task Ti, we considered a segment of straight line,
called in the sequel the diagonal Di, defined by the points
(ts-bc

i ,EC s-bc

i) and (ts-wc

i , EC s-wc

i). The point (ts-bc

i ,EC s-bc

i)
corresponds to the solution given by the ideal dynamic V/O
scheduler in the particular case when every task Tj , 1 ≤
j ≤ i, executes its best-case number of mandatory cycles
Mbc

j . Analogously, (ts-wc
i ,EC s-wc

i) corresponds to the solu-
tion in the particular case when every task Tj executes its
worst-case number of mandatory cycles Mwc

j . We generated
50 synthetic examples, consisting of between 10 and 100 tasks,
and we simulated for each of them the ideal dynamic V/O
scheduler for 1000 cases, each case S being a combination
of executed mandatory cycles MS

1 , MS
2 , . . . , MS

n . For each
task Ti of the different benchmarks and for each set S of
mandatory cycles we obtained the actual point (tS

i ,EC S
i) in

the space ti-EC i, as given by the ideal dynamic V/O sched-
uler. Each point (tS

i ,ECS
i) was compared with the point

(tS
i ,EC Di

i) (a point with the same abscissa tS
i , but on the

diagonal Di so that its ordinate is EC Di
i) and the relative

deviation e = |EC S
i − EC Di

i |/EC S
i was computed. From the

simulations we found average deviations of around 1% and
a maximum deviation of 4.5%. These results show that the
space ti-EC i is indeed a narrow area. Fig. 7(b) shows the
actual points (tS

i ,EC S
i), corresponding to the simulation of

the 1000 sets S of executed mandatory cycles, in the space
time-energy of a particular task Ti as well as the diagonal Di.

max
EC

iEC

i

min
EC

id

F
max
i

i
min

t i
max

t it

i

(a) Realistic boundaries

 1.5

 1.6

 1.7

 1.8

 1.9

 2

 2.1

 2.2

 0.58 0.6 0.62 0.64 0.66 0.68 0.7 0.72 0.74 0.76

E
C

i
[m

J
]

ti [ms]

(ti
s-bc

,ECi
s-bc

)

(ti
s-wc

,ECi
s-wc

)

(b) Actual points

Fig. 7: Realistic view of the space time-energy

5.2 Point Selection and Assignment Computation
We conclude, from the discussion in Subsection 5.1, that the
points in the space ti-EC i are concentrated in a narrow area
along the diagonal Di. This observation is crucial for choosing
the points for which we compute the V/O assignments.

We take Ni points (tj
i ,EC j

i), 1 ≤ j ≤ Ni, along the diagonal
Di in the space ti-EC i of task Ti, and then we compute and
store the respective assignments V j

i+1/Oj
i+1 that maximize the

total reward when Ti completes at tj
i and the total energy is

EC j
i . For the computation of the assignment V j

i+1/Oj
i+1, the

time and energy overheads δsel
i+1 and E sel

i+1 (needed for selecting
assignments at run-time) are taken into account. Each of the
chosen points together with its respective V/O assignment
covers a region as indicated in Fig. 8.

i

s-bc
ECi

EC

i

it

EC

s-wc

i

t
s-bc

i

s-wc
t

bt(

)cc
EC,t(

)

,

,EC
dd

t a,EC
a)(

t(

)b
EC

Condition Vi+1 Oi+1

if ti≤ ta ∧ EC i≤ECa V a Oa

else if ti≤ tb ∧ EC i≤EC b V b Ob

else if ti≤ tc ∧ EC i≤ECc V c Oc

else V d Od

Fig. 8: Regions

The pseudocode of the procedure for computing the set of
assignments is given by Alg. 1. First, the maximum num-
ber Nmax of assignments that are to be stored is distributed
among tasks (line 5.2). A straightforward approach is to dis-
tribute them uniformly among the different tasks, so that each
lookup table contains the same number of assignments. How-
ever, as shown by the experimental evaluation of Section 6, it
is more convenient to distribute the assignments according to
the size of the space time-energy of tasks (we use the length of
the diagonal D as a measure of this size), in such a way that
lookup tables of tasks with larger spaces get more points.

After distributing Nmax among tasks, the solutions V/Os-bc

and V/Os-wc are computed (lines 5.2-5.2). V/Os-bc (V/Os-wc)
is a structure that contains the pairs V s-bc

i /Os-bc
i (V s-wc

i /Os-wc
i),

1≤ i≤n, as computed by the dynamic V/O scheduler when
every task executes its best-case (worst-case) number of cy-
cles. Since the assignment V1/O1 is invariably the same, this
is the only one stored for the first task (line 5.2). For every
task Ti, 1≤ i≤n−1, we compute: a) ts-bc

i (ts-wc

i) as the sum
of execution times τ s-bc

k (τ s-wc

k)—given by Eq. (3) with V s-bc

k ,
Mbc

k , and Os-bc

k (V s-wc

k , Mwc
k , and Os-wc

k)—and time overheads
δk (line 5.2); b) EC s-bc

i (EC s-wc
i) as the sum of energies Es-bc

k

(Es-wc

k)—given by Eq. (1) with V s-bc

k , Mbc
k , and Os-bc

k (V s-wc

k ,
Mwc

k , and Os-wc

k)—and energy overheads Ek (line 5.2). For ev-

ery task Ti, we take Ni equally-spaced points (tj
i ,EC j

i) along
the diagonal Di (straight line segment from (ts-bc

i ,EC s-bc
i) to

(ts-wc
i ,EC s-wc

i)) and, for each such point, we compute the re-

spective assignment V j
i+1/Oj

i+1 and store it in the j-th posi-
tion in the particular lookup table LUTi (lines 5.2-5.2).

input: The maximum number Nmax of assignments
output: The set of V/O assignments

1: distribute Nmax among tasks (Ti gets Ni points)

2: V/Os-bc:= sol. by dyn. scheduler when Mk =Mbc
k , 1≤k≤n

3: V/Os-wc:= sol. by dyn. scheduler when Mk =Mwc
k , 1≤k≤n

4: V1 := V s-bc
1 =V s-wc

1 ; O1 := Os-bc
1 =Os-wc

1

5: store V1/O1 in LUT1[1]
6: for i← 1, 2, . . . , n− 1 do

7: ts-bc
i :=

Pi
k=1

`
τ s-bc

k + δk

´
; ts-wc

i :=
Pi

k=1

`
τ s-wc

k + δk

´

8: EC s-bc
i :=

Pi
k=1

`
Es-bc

k +Ek

´
; EC s-wc

i :=
Pi

k=1

`
Es-wc

k +Ek

´

9: for j ← 1, 2, . . . , Ni do

10: tj
i := [(Ni − j)ts-bc

i + j ts-wc
i]/Ni

11: EC
j
i := [(Ni − j)EC s-bc

i + j EC s-wc
i]/Ni

12: compute V j
i+1

/Oj
i+1

for (tj
i , EC

j
i) and store it in LUTi[j]

13: end for

14: end for

Algorithm 1: OffLinePhase

At run-time, the selection of assignments by the quasi-static
V/O scheduler is very simple: upon completing task Ti, the
lookup table LUTi is consulted and the index j of the table
entry is calculated directly (without searching through the
table LUTi). Then the V/O assignment in LUTi[j] is re-
trieved. The on-line operation performed by the quasi-static
V/O scheduler takes takes constant time and energy and it is
several orders of magnitude cheaper than the on-line compu-
tation by the dynamic V/O scheduler.

6. EXPERIMENTAL RESULTS
We evaluated our approach through numerous synthetic bench-
marks. We considered task graphs containing between 10 and
100 tasks. Each point in the plots of the experimental re-
sults (Figs. 9, 10, and 11) corresponds to 50 automatically-
generated task graphs. The technology-dependent parameters
were adopted from [5] and correspond to a processor in a 0.18
µm CMOS fabrication process.

The first set of experiments was performed to investigate
the reward gain achieved by our approach compared to the op-
timal static solution (the approach proposed in [9]). In these
experiments we consider that the selection overheads by the
quasi-static V/O scheduler are δsel=450 ns and E sel=400 nJ.
These are realistic values as selecting a precomputed assign-
ment takes only tens of cycles and the access time and energy
consumption of, for example, a low-power Static RAM are
around 70 ns and 20 nJ respectively [6]. Fig. 9(a) shows the
reward (normalized with respect to the reward given by the
static solution) as a function of the deadline slack (the rela-
tive difference between the deadline and the completion time
when worst-case number of mandatory cycles are executed at
the maximum voltage that guarantees the energy constraint).
Three cases for the QS approach (2, 5, and 50 points per
task) are considered. Very significant gains in terms of total
reward, up to four times, can be obtained with the QS solu-
tion, even with few points per task. The highest reward gains
are achieved when the system has very tight deadlines (small
slack): when large amounts of slack are available, the static
solution can accommodate most of the optional cycles (there
is a value Omax

i after which no extra reward is achieved).

 0

 1

 2

 3

 4

 0 10 20 30 40 50 60

A
v
e
ra

g
e
 R

e
w

a
rd

 (
N

o
rm

a
li

z
e
d

)

Deadline Slack [%]

QS (50 points/task)

QS (5 points/task)

QS (2 points/task)

Static

(a) Influence of the deadline slack

 0

 1

 2

 3

 0 2 4 6 8 10 12 14 16

A
v
e
ra

g
e
 R

e
w

a
rd

 (
N

o
rm

a
li

z
e
d

)

Ratio Mwc
/Mbc

Quasi-Static

Static

(b) Influence of ratio Mwc/Mbc

Fig. 9: Comparison of the quasi-static and static solutions

The influence of the ratio between the worst-case number of
cycles Mwc and the best-case number of cycles Mbc has also
been studied and the results are presented in Fig. 9(b). In
this case we have considered systems with a deadline slack of
10% and 20 points per task in the QS solution. The larger the
ratio Mwc/Mbc is, the more the actual number of execution
cycles deviate from the worst-case value Mwc (which is the
value considered by a static solution). Thus the dynamic
slack becomes larger and therefore there are more chances to
exploit such a slack and consequently improve the reward.

The second set of experiments was aimed at evaluating the
quality of our QS approach with respect to the theoretical
limit that could be achieved without knowing in advance the
exact number of execution cycles (the reward delivered by
the ideal dynamic V/O scheduler). For comparison fairness,
we considered zero time and energy overheads δsel and E sel .
Fig. 10(a) shows the deviation dev =(Rideal−Rqs)/Rideal as a
function of the number of precomputed assignments (points
per task) and for various degrees of deadline tightness. More
points per task produce higher reward, closer to the theo-
retical limit (smaller deviation). Nonetheless, with relatively
few points per task we can get very close to the theoretical
limit, for instance, for deadline slack of 20% and 30 points per
task the average deviation is around 1.3%. The deviation gets
smaller as the deadline slack increases, as shown in Fig. 10(a).

In the previous experiments we considered that, for a given
system, the lookup tables have the same size, that is, contain

the same number of assignments. When the number Nmax of
assignments is distributed among tasks according to the size
of their spaces time-energy (more assignments in the lookup
tables of tasks that have larger spaces), better results are ob-
tained as shown in Fig. 10(b). This figure plots the cases of
equal-size lookup tables (QS-uniform) and assignments dis-
tributed non-uniformly among tables (QS-non-uniform), as
described above, for systems with a deadline slack of 20%.
The abscissa is the average number of points per task.

 0 10 20 30 40 50 60 70
Number of Points per Task

 0
 10

 20
 30

 40

Deadlin
e Slack

 [%
]

 1

 2

 3

 4

A
v
e
ra

g
e
 D

e
v
ia

ti
o
n

 [
%

]

(a) Influence of the deadline slack

and number of points

 0.5

 1

 1.5

 2

 2.5

 0 10 20 30 40 50 60 70

A
v
e
ra

g
e
 D

e
v
ia

ti
o
n

 [
%

]

Average Number of Points per Task

QS-uniform

QS-non-uniform

(b) Influence of the distribution

of points among lookup tables

Fig. 10: Comparison of quasi-static and ideal dyn. solutions

In a third set of experiments we took into account the
on-line overheads of the dynamic V/O scheduler (as well as
the QS one) and compared the static, QS, and dynamic ap-
proaches in the same graph. Fig. 11 shows the reward normal-
ized with respect to the one by the static solution. It shows
that, in a realistic setting, the dynamic approach performs
poorly, even worse than the static one. Moreover, for systems
with tight deadlines, the dynamic approach cannot guarantee
the time and energy constraints because of its large overheads
(this is why no data is plotted for benchmarks with deadline
slack less than 20%). The overhead values considered for the
dynamic case correspond actually to overheads by heuristics
[9] and not by exact methods, although in the experiments
the exact solutions were considered. This means that, even
in the optimistic case of an on-line algorithm that delivers
exact solutions in a time frame similar to the one of heuristic
methods, the QS approach outperforms the dynamic one.

 0

 1

 2

 3

 4

 0 10 20 30 40 50 60

A
v
e
ra

g
e
 R

e
w

a
rd

 (
N

o
rm

a
li

z
e
d

)

Deadline Slack [%]

QS (5 points/task)

Static

Dynamic

Fig. 11: Comparison considering realistic overheads

We evaluated also our approach by means of a real-life ap-
plication, namely the navigation controller of an autonomous
rover for exploring a remote place [3]. The rover is equipped,
among others, with two cameras and a topographic map of
the terrain. Based on the images captured by the cameras and
the map, the rover must travel towards its destination avoid-
ing nearby obstacles. This application includes several tasks
described briefly as follows. A frame acquisition task captures
images from the cameras. A position estimation task corre-
lates the data from the captured images with the one from
the topographic map and estimates the rover’s current posi-
tion. Using the estimated position and the topographic map,
a global path planning task computes the path to the desired
destination. Since there might be impassable obstacles along
the global path, there is an object detection task for finding
obstacles in the path of the rover and a local path planning
task for adjusting accordingly the course. A collision avoid-
ance task checks the produced path to prevent the rover from
damaging itself. Finally, a steering control task commands
the motors the direction and speed of the rover.

For this application the total reward is measured in terms
of how fast the rover reaches its destination [3]. Rewards
produced by different tasks (all but the steering control task
which has no optional part) contribute to the overall reward.
For example, higher-resolution images by the frame acqui-
sition task translates into a clearer characterization of the
surroundings, which in turn implies a more accurate estima-
tion of the location and thus makes the rover get faster to its
destination (that is, higher total reward). Other tasks make
likewise their individual contribution to the global reward.

The navigation controller is activated periodically every 360
ms and tasks have a deadline equal to the period. The en-
ergy budget per activation of the controller is 360 mJ (average
power consumption 1 W) during the night and 540 mJ (aver-
age power 1.5 W) during daytime. We use two memories, one
for the assignments used during daytime and one for the set
used during the night, and assume that Nmax= 512 assign-
ments can be stored in each memory. We computed, for both
cases, the sets of assignments using Alg. 1. When compared
to the respective static solutions, our QS solution delivers re-
wards that are in average 3.8 times larger for the night case
and 1.6 times larger for the day case. This means that a rover
using the precomputed assignments can reach its destination
faster than in the case of a static solution and thus explore a
larger region under the same energy budget.

7. CONCLUSIONS
We addressed the problem of maximizing rewards for real-
time systems with energy constraints, in the frame of the
Imprecise Computation model. We proposed a quasi-static
approach, whose chief merit is the ability to exploit the dy-
namic slack at very low on-line overhead. This is possible
because, in our QS approach, a set of solutions are prepared
and stored at design-time, leaving for run-time only the se-
lection of one of them.

We considered that the voltage can continuously be varied.
If only discrete voltages are supported, the approach can eas-
ily be adapted by using well-known techniques for obtaining
the voltage levels that replace the calculated ideal one [8].

We evaluated our approach through numerous synthetic
benchmarks and a realistic application. We found that sig-
nificant gains in terms of reward can be obtained by the QS
approach. We showed also that, due to its large on-line over-
heads, a dynamic approach performs poorly. Thus, the dy-
namic slack can efficiently be exploited only if high overheads
are avoided, as done by our QS approach.

8. REFERENCES
[1] L. A. Cortés, P. Eles, and Z. Peng. Quasi-Static Scheduling for

Real-Time Systems with Hard and Soft Tasks. In Proc. DATE
Conference, pp. 1176–1181, 2004.

[2] L. A. Cortés. Verification and Scheduling Techniques for Real-
Time Embedded Systems. PhD thesis, Department of Computer
and Information Science, Linköping University, Mar. 2005.

[3] D. L. Hull. An Environment for Imprecise Computations. PhD
thesis, Department of Computer Science, University of Illinois,
Urbana-Champaign, Jan. 2000.

[4] J. W. Liu, W.-K. Shih, K.-J. Lin, R. Bettati, and J.-Y. Chung.
Imprecise Computations. Proc. IEEE, 82(1):83–94, Jan. 1994.

[5] S. M. Martin, K. Flautner, T. Mudge, and D. Blaauw. Com-
bined Dynamic Voltage Scaling and Adaptive Body Biasing for
Low Power Microprocessors under Dynamic Workloads. In Proc.
ICCAD, pp. 721–725, 2002.

[6] NEC Memories. http://www.necel.com/memory/index e.html.
[7] Y. Nesterov and A. Nemirovski. Interior-Point Polynomial Al-

gorithms in Convex Programming. SIAM, Philadelphia, 1994.
[8] T. Okuma, H. Yasuura, and T. Ishihara. Software Energy Reduc-

tion Techniques for Variable-Voltage Processors. IEEE Design &
Test of Computers, 18(2):31–41, Mar. 2001.

[9] C. Rusu, R. Melhem, and D. Mossé. Maximizing Rewards for
Real-Time Applications with Energy Constraints. ACM Trans.
on Embedded Computing Systems, 2(4):537–559, Nov. 2003.

