Minimizing System Modification in an Incremental Design Approach

Paul Pop, Petru Eles, Traian Pop, Zebo Peng
Department of Computer and Information Science, Linköpings universitet, Sweden

Summary

- Mapping and scheduling of distributed embedded systems for hard-real time applications
 - Static cyclic scheduling of processes and messages,
 - Bus access scheme: time-division multiple-access.
- Incremental design process
 - Already existing system,
 - Implement new functionality,
 - a) Existing system modified as little as possible,
 - b) New functionality can be easily added to the system.
- Mapping strategy
 - a) Subset selection to minimize modification time,
 - b) Two design criteria, objective function.

Problem Formulation

- Input
 - A set of existing applications.
 - A current application to be mapped.
 - The system architecture.
- Output
 - A mapping and scheduling of the current application, so that the incremental design requirements are satisfied.
- Requirements
 - a) Constraints of the current application are satisfied and minimal modifications are performed to the existing applications.
 - b) New future applications can be mapped on the resulted system.

Mapping Strategy

- Initial mapping and scheduling
- Requirement a)
 - Subset selection problem
 - Select that subset which will fit.
 - Characterizing existing applications:
- Requirement b)
 - Objective function minimization:

Paul Pop, Petru Eles, Traian Pop, Zebo Peng:
An approach to Incremental Design of Distributed Embedded Systems,
Design Automation Conference, 2001