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Abstract An interesting comparison of the TT and ET approaches, from

] ) o ) a more industrial, in particular automotive, perspective, can be

_ This paper deals with specific issues related to the design ofgyng in [10]. Their conclusion is that one has to choose the right
dl_strlbuted embedd?d systems |mplem_ented with _mlxed, eve pproach depending on the particularities of the scheduled tasks.
triggered and time-triggered task sets, which communicate over b his means not only that there is no single “best” approach to be

protocols consisting of both static and dynamic phases. Suc d. but also that insid ai lication the t h
systems are emerging as the new standard for automotivdS€d, butaisothatinside a certain application the two approaches

applications. We have developed a holistic timing analysis and*@n be used together, some tasks being time-triggered and others
scheduling approach for this category of systems. We have alsgvent-triggered.
identified several new design problems characteristic to such hybrid  The fact that such an approach is considered for future auto-
systems. An example related to bus access optimization in the contenbtive applications is also indicated by the recent activities
of a mixed static/dynamic bus protocol is presented. Experimentalelated to the development and standardisation of bus protocols
results prove the efficiency of such an optimization approach. which support both static (ST) and dynamic (DYN) communica-
1. Introduction tion. Such a _protopol has been suggested in [12] and [15].

. . . Recently, the first mixed protocol has been proposed by a consor-

Embedded systems very often have to satisfy strict timingjym, o be used in automotive applications [8]. In [6], the authors
requirements. In the case of such hard real-time applications, prejescribe the so called Universal Communication Model (Ucwm,
dictability of the timing behavior is an extremely important j framework for modelling at a high level of abstraction the com-
aspect. Frequently such applications are implemented as distribnication infrastructure in automotive applications. Their
uted systems. This is the case, for example, with many applicazpproach is targeted towards simulation and refinement without
tions in the automotive industry. Predictability of such a SyStemconsidering the aspect of timing analysis with hard real-time con-
has to be guaranteed globally, considering both the task schedyrgints.
ules determined for the particular processing units as well as the Efficient implementation of new, highly complex distributed
timing of the communication between different components ofatomotive applications entails the use of TT task sets together
the system. - . _with ET ones, implemented on top of a communication infra-

Task scheduling and schedulability analysis has been intensyrcture with a mixed ST/DYN protocol. Given its flexibility,
sively studied for the past decades. The reader is referred tg,ch an approach has the potential of highly efficient, fine-tuned,
[2],[3] for surveys on this topic. and optimised implementations.

A few approaches have been proposed for a holistic schedula- oy main contribution in this paper is related to the scheduling
bility analysis of distributed real-time systems, taking into con- 54 schedulability analysis of distributed embedded systems
sideration both task and communication scheduling. In [16]vimplemented with both ET and TT task sets, which are commu-
Tindell provided a framework for holistic analysis of event-trig- nicating through mixed ST/DYN bus protocols. Such an analysis
gered task sets interconnected through an infrastructure based gpq scheduling procedure constitutes the fundament for any syn-
either the CAN protocol or a generic TDMA protocol. In[13]and thesis approach aiming at an efficient, highly optimised imple-
[14] we have developed a holistic analysis allowing for either mentation of a distributed application which is also guaranteed to
time-triggered or event-triggered task sets communicating over &,get the timing constraints.
particular TDMA protocol, the TTP. In addition to schedulability  \we also identified several design problems which offer the
analysis, this work has also addressed the optimization of the TTBotentiaI of significant optimization and which can be solved by
based bus configuration in order to fit the particular application. gfficient design space exploration, based on the timing analysis

Two basic approaches for handling tasks in real-time applicamentioned above. In order to illustrate the potential of such opti-
tions can be identified [9]. In the event-triggered (ET) approachmizations, we have looked more closely at one particular com-
task activities are initiated whenever a particular event is notedenication synthesis problem.

In the time-triggered (TT) approach, task activities are initiated  This paper is the first one, to our knowledge, to handle the
at predetermined points in time. There has been a long debate iyjistic analysis and the design optimization of heterogeneous

the real-time and embedded systems communities concerning therg ET systems which are of great importance for future auto-
advantages of each approach and which one to prefer [1], [9lmotive applications.

[18]. Several aspects have been considered in favour of one or the |, the next section we present the architecture of the distrib-

other approach, such as flexibility, predictability, jitter control, ,teq systems and the application model that we are studying. Sec-
processor utilization, testability, etc. ~ tion 3 describes the holistic scheduling and schedulability
The same duality is reflected at the level of the communicationynalysis we have developed. Some specific optimization issues
infrastructure, where communication activities can be triggeredyye presented in Section 4. Section 5 describes a particular opti-
either dynamically, in response to an event (like with the CAN mization problem related to the bus access, while Section 6

bus [4]), or statically, at predetermined moments in time (as in thgyresents some experimental results. The last section presents our
case of TDMA protocols and, in particular, the TTP [9]). conclusions.



based on message priorities. In order to prevent the delay of an
. ST message by a DYN frame or the retransmission of a pre-
2.1 Hardware Architecture empted DYN message, the DYN messages will be sent only if
We consider architectures consisting of nodes connected by #ere is enough time available for that message before the
unique broadcast communication channel. Each node consists 8ynamic phase ends.
a communication controller, a CPU, memories (RAM, ROM), TT activities are triggered based on a local clock available in
and an I/O interface to sensors and actuators (see Figure 1). €ach processing node. The synchronization of local clocks
We model the bus access scheme using the Universal Commdiroughout the system is provided by the communication protocol.
nication Model [6]. The bus access is organized as consecutivg_3 Application Model

cycles, each with the duratidiy s We consider that the commu- o
nication cycle is partitioned into static and dynamic phases e modelan application as a set of task graphs. Nodes repre-

(Figure 1). Static phases consist of time slots, and during a slotnt tasks and arcs represent communication (and implicitly
only one node is allowed to send ST messages; this is the nodéePendency) between the connected tasks. Each task is mapped

2. System Architecture and Application Model

associated to that particular slot. During a dynamic phase, alP"
nodes are allowed to send DYN messages and the conflicts
between nodes trying to send simultaneously are solved by ah
arbitration mechanism based on priorities assigned to messages.
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Figure 1. System Architecture

The bus access cycle has the same structure during each period
Twus Every node has a communication controller that imple-
ments the static and dynamic protocol services. The controllef
runs independently of the node’s CPU.

2.2 Software Architecture

For the systems we are studying, we have designed a software
architecture which runs on the CPU of each node. The main com;
ponent of the software architecture is a real-time kernel which
supports both time-triggered and event-triggered activities. An
activity is defined as either the execution of a task or as the trans-
mission of a message on the bus. For the ST activities, the kernel
relies on a static schedule table which contains all the informa-
tion needed to take decisions on activation of TT tasks or trans-
mission of TT messages. For the ET tasks, the kernel maintains a

a certain node of the distributed application.
A task belongs either to the TT or to the ET domain.
Communication between tasks mapped to different nodes is
preformed by message passing over the bus. Such a mes-
sage passing is modelled as a communication task inserted
on the arc connecting the sender and the receiver tasks. The
communication time between tasks mapped on the same
node is considered to be part of the task execution time.
Thus, such a communication activity is not modelled explic-
itly. For the rest of the paper, when referring to messages
we consider only the communication activity over the bus.
A message belongs either to the static (ST) or the dynamic
(DYN) domain.
All tasks in a certain task graph belong to the same domain,
either ET, or TT, which is called the domain of the task
graph. However, the messages belonging to a certain task
graph can belong to any domain (ST or DYN). Thus, in the
most general case, tasks belonging to a TT graph, for exam-
ple, can communicate through both ST and DYN messages.
Each taskyj (belonging to the task gragdh) is mapped on
processorProg;, has a worst case execution ting, a
period Tj;, and a deadlind; (which, in the case of ET
tasks, can be longer than the period). Each ET task also has
a uniquely assigned priorifrio;;.
All tasks T;; belonging to a task graph; have the same
periodT; which is the period of the task graph.
For each message we know its size (which can be directly
converted into communication time on the particular com-
munication bus). The period of a message is identical with
that of the sender task. DYN messages also have an
uniquely assigned priority.

prioritized ready queue in which tasks are placed whenever their Figure 2 shows an application modelled as two task graphs
triggering event has occurred and they are ready for activation, off@Pped on two nodes.

when they have been pre-empted.

In order to keep the separation between the TT and ET

The real-time kernel will always activate a TT task at the par-domains, which are based on fundamentally different triggering
ticular time fixed for that task in the schedule table. If at that Policiés, communication between tasks in the two domains is not

moment, an ET task is running on that node, that task will be preincluded in the model. Technically, such a communication is

empted and placed into the ready queue according to its priority.
If no tasks are active, ET tasks are extracted from the ready queue
and are (re)activated. ET tasks can pre-empt each other based on
their priority.

The transmission of messages is handled in a similar way: for
each node, the sending and receiving times of ST messages ar
stored in the schedule table; the DYN messages are organized
a prioritized ready queue. ST messages will be placed at prede-
termined time moments into a bus slot assigned to the sending
node. DYN messages can be potentially sent during any dynamic
phase and conflicts are solved by the communication controllers

2

M1 F2ET Tasks:
Tl,l T, -NOde_L: Tl,l’ T1’3, szl
' DNOdeZ: Tl,Z' T]_AJ T2'2, T2,3
T2, 25
T 13 T,3 Messages:
1.2 Tl,G T2’2 1 ST: 11 5 Tog
DYN: 7{ g Ty
T4 1,60 ‘12,5

Figure 2. Application Model Example



implemented by the kernel, based on asynchronous non-blockinghe delay between the earliest possible activation timg ahd
send and receive primitives (using proxy tasks if the sender ands actual activation time is modelled as a jitthr(Figure 3.a).
receiver are on different nodes). The transmission and receptio@ffsets and jitters are the means by which dependencies among
of such a message are not considered as communication taskstasks are modelled for the schedulability analysis. The response
respectively events in the context described by our model, theretime R;; of an activity t; is the time measured from the occur-
fore they are outside the scope of our holistic analysis. Such mesence of the associated event until the completioroEach ET
sages are typically non-critical and are not affected by hard realactivity t;; has a best case response tiRyg;. The worst case
time constraints. response tim&; of an activitytj occurs wherrtj; is released at
the same time mometyttogether with all possible higher priority
. . activities onProg; [11]. The moment, is called critical instant
3. Holistic SChedu“ng and it representsJ the starting point of the busy windgwa time
Given an application and a system architecture as presented interval which ends wher; finishes execution (Figure 3.b). Dur-
Section 2, the following problem has to be solved: construct ang the busy windoww;, processoProg; executes only task;
correct static schedule for the TT tasks and ST messages (@ higher priority tasksp;; is the time interval between the criti-
schedule which meets all time constraints related to these activical instant and the earliest time for the first activation of the task
ties) and conduct a schedulability analysis in order to check thaafter this instant.
all ET tasks meet their deadlines. Two important aspects should Considering a set of data dependent ET tasks mapped on a sin-
be noticed: gle processor, the analysis in [11] computes the worst case
1. When performing the schedulability analysis for the ET response timdR; of a taskt;, based on the length of its busy
tasks and DYN messages, one has to take into considergeriod, considering all the critical instants initiated by higher pri-
tion the interference from the statically scheduled TT tasksority activities Ty, in I'; and all job instancep of t; which can
and ST messages. appear in the busy window;:
2. Among the possible correct schedules for TT tasks and ST
messages, it is important to construct one which favours, as  R; = max max vI\fk(p) - ¢ijk —-(p-1)T,;+ @ )],
much as possible, the schedulability of ET tasks and DYN  Ok|Prio;, > Prio;;, Op
messages.
In Section 3.1 we present the schedulability analysis for a set wherew(p) is the worst-case busy window of tpeth job of
of ET tasks and DYN messages, considering a fixed given staticj;, numbered from the critical instagtinitiated byt,.
schedule of TT tasks and ST messages. In Section 3.2 we discuss The value o (p) is determined as follows:
the construction of the static schedule which is driven by the
objective of achieving global schedulability of the system. In Wijk(p) = Bij +(P— Py, ikt 1) EC”- +Wik(rij, wijk(p)) +
order to keep the presentation reasonably simple and given the
space limitations, we present here the analysis for a restricted Z w (Tii, Wi (P)))
model, in the sense that TT tasks are communicating only EED) at it

through ST messages, while the comn_wu_nlcatlon _betwee”_E-{;vhere,Bi- represents the maximum interval during whighcan
_tasks is only through DYN messages. ThIS is not an inherent limye plocked by lower priority activitiésW,k(Tij,t) is the interfer-
itation of our approach and the analysis we have developed angnce from higher priority activities in the same task grapht
implemented supports the general model (in [14], for exampletime t, and\/\Z(rii ) is the maximum interference of activities
we have presented an approach to schedulability analysis of Effom other task graph, ont;;. One problem that arises during
tasks communicating through ST messages). the computation of response times is that the length of the busy

. . window depends on the values of task jitters, which in turn are
3.1 Schedulability analysis of the ET sub-system  computed as the difference between the response times of two

ij

considering the influence of a given static successive tasks (for exampletjjfprecedes;y in 'y, thenJy, =
echedule Rj - Ry,ij)- Because of this cyclic dependency, the process of com-
puting ng is an iterative one: it starts by assigniRg); to R;; and

An ET task graplf’j is activated by an associated event which then computes the values fdy, wj,(p) and then agaif;, until
occurs with a period;. Each activityt;; (task or message) in an  the response times converge to their final value.
ET task graph has an offsgf which specifies the earliest activa-  Starting from the analysis in [11], we had to consider the fol-
tion time of;; relative to the occurrence of the triggering event. lowing additional aspects:

= «  The interference from the set of statically scheduled tasks.

c
g Ti « The computation of worst case delays for the messages
o 0] Ui Tij+1 l @ J Tjj Tij+1 communicated on the bus and the global schedulability
— . [ - ‘—L- analysis of the distributed task set.
: T First we introduce the notion &T demandssociated with an
B2 Tasks with off M ET activity ;; as the amount of CPU time or bus time which is
a) Tasks Wr'\:[__ ofisets demandeanly by higher priority ET activities and by; during
1 ' the busy windoww;. In Figure 4, the ET demand of the tagk
@; during the busy windowy; is represented witht;; (w;), and it is
t, ®;; Ji W the sum of worst case execution times for tagland two other
_ higher priority tasks,, andtcq. During the same busy periog,
R“- = Wi+ @ _¢ij —(p=DT; we define theavailability as the processing time which is not
b) Response time and busy period w for tgsk
Figure 3. Model of the event-triggered sub-system 1. Such blocking can occur at access to a shared critical resource.



to test if the task set is schedulable or not, but we need a metric

Rj = w+@;—¢;; —(p— T, that captures the “degree of schedulability” of the task set. For
T > this purpose we use a cost function similar with the one described
C =S in [14]:
(ﬂ ab = -lg Ccd Ni
‘ f, = max(0, R; —D;), if f; >0
qT, tel 9y Ju | w; 1 . (0, R —Dy). it Ty

N Cost =
- ET availability: A% (w;) = w; - T,
t I [t., t+ ij Wij ij = Tt
nterva [TC fe W] { ET demandHij (WU) = C'J +Capt+ Cey f2 -
Figure 4. Availability and Demand
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used by statically scheduled activities. In Figure 4, the CPU avail- whereN is the number of ET task graphs aNgis the number

ability for the interval of lengthw;; is obtained by substracting of activities in the ET task gragh.

fromw; the amount of processing time needed for the TT activities.  If the task set is not schedulable, there exists at least one task
During a busy windovw;, theET demand i of a taskrj; is for which R; > Dj;. In this casef; > 0 and the cost function is a

equal with the length of the busy window which would result metric of how far we are from achieving schedulability. If the set

when considering only ET activity on the system: of ET tasks is schedulabl&, < 0 is used as a metric. A valdg
Hij (Wij) = Bij +(p- Po,ijk * 1) ECij + =0 means that the task set is “just” schedulable. A smaller value
for f, means that the ET tasks are schedulable and a certain
Wik(Tij' Wij) + Z W;(Tab’ w; amount of processing capacity is still available. N _
eeD) Now, that we are able to perform the schedulability analysis
During the same busy window;;, the availabilityA; associ-  for the ET tasks considering the influence from a given static
ated with taskj is: schedule of TT tasks, we can go on to perform the global sched-
LCM(T;, Tsd uling and analysis of the whole application.
Aj(w;) = min[ Al(w;)], q = 0, ——=—3% . . -
T, 3.2 Static schedule construction and holistic

whereAqij(w) is the total available CPU-time oRrog; in the analysis ) _ )
interval [q T, + @— di. q T, + @ =y + w1, Ti is the period of For the construction of the gycllc statlc_schedule for TT tasks
I andTsgis the period of the static schedule (see Section 3.2)and ST messages, we use a list-scheduling based algorithm [5].
Figure 4 presents howd;(w) and the demand are computed for ASSuming that in our application we have N time-triggered task
a taskr;: the busy window of; starts at the critical instant T, ~ 9raphsy, Iz, ..., [y, the static schedule will be computed over a
+ tcinitiated by taskiy, and ends at momenf; + t.+w;, when ~ Period Tss=LCM(Ty, T, ..., T). The input o the list scheduling
both higher priority task$Tay, Teg, all TT tasks scheduled for ~@lgorithm is a graph consisting of instances of eachy;, where
execution in the analysed interval, anchave finished execution. M=TsdTi- A ready list contains all TT tasks and ST messages
The discussion above is, in principle, valid for both ET tasksWhich are ready to be scheduled (they have no predecessors or all
and ST messages. However, there exist two important differfheir predecessors have been scheduled). From the ready list,
ences. First, messages do not pre-empt each other, therefore, ks and messages are extracted one by one to be scheduled on
demand equation is modified so that it will not consider the timethe processor they are mapped to, respectively into a static bus-
needed for the transmission of the message under analysis (on&t associated to that processor on which the sender of the mes-
the message has gained the bus it will be sent without any interSage is executed. The priority function which is used to select
ference [12]). Second, the availability for a message is compute@mong ready tasks and messages is a critical path metric, modi-
by substracting fromw; the length of the ST slots which appear fied for the particular goal of scheduling tasks mapped on distrib-
during the considered interval; moreover, because a DYN mesuted systems [13]. Let us consider a particular tgskelected
sage will not be sent unless there is enough time before the cuffom the ready list to be scheduled}.is the earliest time moment
rent dynamic phase ends, the availability is further decreasedhich satisfies the condition that all preceding activities (tasks or
with C, for each dynamic phase in the busy window (whege C Messages) i in graphr; are finished and the processanog;
is the transmission time of the longest DYN message). is free.6, = ALAP(Tj) is the latest time whemy; can be sched-
Our schedulability analysis algorithm determines the length ofuled. With only the TT tasks in the system, the straight forward
a busy windoww; for an ET task or DYN message by identifying solutlop would be to schedufrq; atf;. In our case, howeve.r: such
the appropriate size G'f/ij for which the ET demand is satisfied @ Solution could have negat_lve effects_ onthe sched_u_labl_llty_ of ET
by the availability:H;; (w;j) < A;(w;). This procedure for the cal- tasks. What we have to do is to plaggin such a position inside
culation of the busy window is included in the iterative processthe interval By, 8;] that the chance to finally get a globally sched-
for calculation of response times, presented earlier in this subse¢l/able system is maximised.
tion. It is important to notice that this process includes both tasks [N order to find the right position forj;, we try k different
and messages and, thus, the resulted response times of the @ifernatives:
tasks are computed by taking into consideration the delay _ 8,-6,
induced by the bus communication. start_timgty) = 6;+ 4 —"*x x=0,..k-1
After performing the schedulability analysis, we can check if _ N )
R; < Dj; for all the ET tasks. If this is the case, the set of ET activ-  For each alternative we perform the schedulability analysis of

ities is schedulable. In order to drive the global scheduling procihe ET task set considering the influence from those TT tasks
ess, as it will be explained in the next section, it is not sufficientWhich are already scheduled. We will select that start timejfor
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bandwidth into dynamic phases

which produces the minimum value f0pst(see Section 3.1).

When scheduling an ST message extracted from the ready list,
we place it into the first bus-slot associated with the sender node
in which there is sufficient space available.

If all TT tasks and ST messages have been scheduled and the
schedulability analysis for the ET tasks indica@sst< 0, the
global system scheduling has succeeded.

There are two aspects to be mentioned: .
1. How large should be the numbeof alternatives to be tried

for the placement of a tagk? If kis large, we will increase
the chance to generate a schedulable system, however the
execution time for the scheduling algorithm could become
unacceptably large. At the same time, for relatively large
intervals Py, 6-] it is reasonable to try more alternatives
than for tight intervals. In our current implementation we
set the numbék as follows:

(8,-6,)

k = ma>(—A—-><N,1)

The optimization problems
approached once the holistic scheduling technique presented in

a) Phase Splitting b) Phase Merging

Figure 6. Operations on dynamic phases

implemented by the task, the hardness of the constraints,
sensitivity to jitter, etc. There exists, however, a subset of
tasks/messages which could be assigned to any of the
domains. Decisions concerning the partitioning of this set
of activities can lead to various trade-offs concerning, for
example, the size of the schedule table or the schedulability
properties of the system.

Determining the optimal structure of the bus access cycle
The configuration of the bus access cycle has a strong
impact on the global performance of the system. The
parameters of this cycle have to be optimised such that they
fit the particular application and the timing requirements at
the task level. Parameters to be optimised are the number of
static and dynamic phases during a communication cycle,
as well as the length and order of these phases. Considering
the static phases, parameters to be fixed are the order,
number, and length of slots assigned to the different nodes.
identified above can be

The valueA is determined at the beginning of the scheduling Section 3 is available. In the next section we illustrate this by con-
process after an initial ASAP and ALAP schedule has been considering a particular problem related to bus access optimization.

structed for the TT tasksA is the average of (ALAR()-
ASAP(t;)) over all TT taskgj;. Thus, the value df will oscillate
around the valud, getting larger values for long interval6,|
6,] and small values for short intervals. The vaNés set by the

5. Bus Access Optimization
We consider an application and an architecture like the one

designer. In Section 6 we present some experimental resultdescribed in Section 2. The designer has mapped the tasks on the
showing the influence ol on the scheduling time and on the nodes of the system and has set the bus cycle according to his best
quality of the generated schedules. knowledge. After running the holistic scheduling presented in
2. Forthe case that no correct schedule has been produced, v&ction 3, it turns out that a correct static schedule for the TT
have implemented a backtracking mechanism in the listtasks and ST messages has been generated, but the ET task set is
scheduling algorithm, which allows to turn back to previ- not schedulable. One of the reasons for this could be that there is
ous scheduling steps and to try alternative solutions. Innot sufficient bandwidth allocated for the communication of mes-
order to avoid excessive scheduling times, the maximumsages between ET tasks. The problem to be solved is to find a
number of backtracking steps can be limited. structure of the bus cycle such that more bandwidth is allocated
to the dynamic phases with the goal to improve the schedulability
.. . of ET tasks while maintaining a correct static schedule.
4. SyStem Optlmlzatlon As a first step, the optimization algorithm transforms some
Considering a hard real-time system like the one described ifparts of the static phases into dynamic phases. For each static slot
Section 2, several design problems emerge. There are, of cours#,the bus cycle and for each round in the static schedule we trans-
the classical issues as selection of an architecture (e.g. numb#&rm the periodically unused part of the slot in a dynamic phase
and kind of nodes), the mapping of tasks on the processing nodefsee Figure 5).
or the assignment of priorities to ET tasks and DYN messages After this initial step, various bus cycle configurations are
[11,[71.[17]. However, due to the heterogeneous ET and TTexplored by splitting and merging bus phases. Figure 6 illustrates
nature of the application and the mixed synchronous/dynamidhe operations on dynamic phases. Three possible outcomes are
bus protocol, some new, very interesting problems can be identishown for both the splitting and the merging example. We have
fied: implemented a simulated annealing based algorithm which
«  Partitioning of the system functionality into TT and ET applies successive splitting and merging transformations with the
activities During the design process, a decision should begoal to improve the schedulability of the ET task set and the con-
made on which tasks and messages will be implemented asfraint of achieving a correct static schedule for TT tasks. The
TT/ET and ST/DYN activities, respectively. Typically, this objective function driving the algorithm is the functiddost
decision is taken, based on the experience and preferencégfroduced in Section 3.1
of the designer, considering aspects like the functionality
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5 80 tasks (60% ET), 60% ET tasks 40% ET tasks
@ | 10 processors, Processd - . - —
2 4l 60% processor utilisation utilisatior{[schedulability optimiza- (schedulability optimiza-
g improvement tion time | improvement tion time
é’ 3 (sec) (sec)
E 2 60% 34% 67.4 25% 109.8
[}
S 80% 29% 64.7 24% 715
0 Table 1: Bus Optimization Results
0 5 10 15 20 25 30 35 40 45

N have been obtained considering only a very limited optimization
issue, namely the distribution of bandwidth between the static and
the dynamic phases. This demonstrates the huge optimization
potential of the different design problems discussed in Section 4.
6. Experimental Results Finally, we considered a real-life example implementing a
For evaluation of our scheduling and analysis algorithm and Otveh_icle C”?‘SE controller and a _control application_related to the
the bus access optimization heuristic, we generated a total of 8'8”“ Blocking System. The cruise controller consists of 32 TT.
applications. Each application consisted of 80 tasks mapped otr‘?'SkS mapped over 5 nodes. The second control system con5|§ts
10 processor nodes. The percentage of ET tasks was 40% of tﬁ)é 30 ET tasks which are mapped on 3 of the same 5 nodes. Ini-

total number of tasks for half of the application set and 60% fort'al.ly’ the bandwidth on the commu_nlcanon bus is equally
the other half. Processor utilisation was 60% and 80%. The buglvIded between the static and dynamic phases. The scheduling

bandwidth was equally divided between the dynamic and theof the system took 0.57 seconds and resulted in a correct static
static phases. All experiments were run on an AMD Athlon schedule and an unschedulable ET domain. After running the bus

access optimization, the schedulability (expressed in terms of the
850MHz PC. function Cosd has i db th der of ;
The first set of experiments concerns the holistic schedulin unction Cos) has improved by more than one order of magni-

algorithm and, in particular, the trade-off between speed an%Ude‘ resulting in a completely schedulable system. The optimi-

quality. In Section 3 we have shown that the number of alterna-Zatlon was solved in less than 2 minutes.

tives considered for the placement of a TT task depends on th#Z . Conclusions

coefficientN. A larger number of such alternatives improves the o . . .
quality of the schedule but increases the schedule time. Figure 8 Distributed embedded systems based on mixed static/dynamic

shows how the scheduling time grows wih When following communication protocols are becoming the new standard for

Figure 7, however, we can observe that the quality of the scheduI%S;Z:Zﬁﬂveo?%glt'ﬁaé'_?g? ds':i(lf T:g;;e\g]v: Ly:\;gal lé;ir:]?e%pg‘::;%rt‘;
(expressed through the functidBos) at the beginning very 9 ) P

quickly improves with growind\, and then practically keeps at a scheduling and timing analysis approach for this class of systems.

; A static cyclic schedule is constructed for TT tasks and ST mes-
constant level. For all experiments a value\odround 5 already dthe schedulability of ET tasks and DYN : :
provided for the best quality schedule. sages and the schedulability o asks an messages is ver

The next set of experiments concems the potential of the bugﬁed.The static schedule is constructed in such a way that it fits the

access optimization discussed in Section 5. For this purpose W%chedulablhty requwement_s O.f th? ET domain. We have identified
new class of system optimization issues typical for the hetero-

selected that part of the generated applications for which the = X . .
gneous systems considered in the paper. In particular, we have

component resulted unschedulable. Table 1 shows the results aftdf e L
. S - . - considered a bus access optimization problem and have shown
running our optimization heuristic for this application set. As can

be observed, the average improvement of the schedulability i%:attg;ebsféeEepg{ﬁ;mzr:gi ﬁg?rze 'Tgﬁgﬁgtg ti]aerzfu”ﬁlci?%ﬁt'
between 24% and 34%, with an average optimization time jus{ 9 uscy particu qui pplication.

above 1 minute. As discussed in Section 5, these improvements
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