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E-mail: {bogdan.tanasa, unmesh.bordoloi, petru.eles, zebo.peng}@liu.se

Abstract—We propose an analytical framework for probabilistic
timing analysis of the event-triggered Dynamic segment of the
FlexRay communication protocol. Specifically, our framework
computes the Deadline Miss Ratios of each message. The core
problem is formulated as a Mixed Integer Linear Program
(MILP). Given the intractability of the problem, we also propose
several techniques that help to mitigate the running times of our
tool. This includes the re-engineering of the problem to run it on
GPUs as well as re-formulating the MILP itself.

I. INTRODUCTION
Modern automobiles are, nowadays, equipped with an em-

bedded computing system that consists of several processing
units interconnected by a fieldbus like FlexRay. In the near
future, it is expected that applications from increasingly diverse
domains will empower such automobiles. The diverse range
of functional domains would include x-by-wire safety-critical
applications (like engine control and control of car stability),
driver assistance applications (like night vision service and
lane departure warning), telematics (like navigation systems
and traffic information), entertainment applications (like multi-
media programs, personal connectivity and rear seat entertain-
ment), and so on. In spite of their varied characteristics, to
reduce design costs, it is important to map such applications
into a shared hardware resource.
This is challenging because each functional domain features

different requirements and specific constraints on its respec-
tive communication data. For example, x-by-wire applications
impose hard real-time deadlines while other applications, such
as control applications related to body control, must meet soft
deadlines, specified by constraints like deadline miss ratios.
Hybrid protocols like FlexRay are well-poised to serve

as a communication backbone to such systems with mixed
constraints. FlexRay allows the sharing of the bus between
both time-triggered and event-triggered messages. The time-
triggered component is the Static (ST) segment and the
event-triggered component is known as the Dynamic (DYN)
segment. Given the deterministic and predictable nature of the
ST segment, it is considered very suitable for hard real-time
systems. In fact, several tools have been introduced to schedule
and map messages, characterized by hard deadlines, to the ST
segment and the ST segment has been used in cars already
deployed on the road. On the other hand, the DYN segment is,
potentially, an attractive choice as a communication platform
for soft-real time applications.
Our Contributions and Related Work: In spite of the above,
however, there has been no systematic study on probabilistic
timing analysis of the DYN segment. On the contrary, the

related literature [11], [8], [6] has heavily focused on computing
the worst-case response time of messages transmitted on the
DYN segment which is relevant only for hard deadlines. There
is only one exception [4], which however, suffers from several
serious drawbacks. First, it makes the assumption that the prob-
ability of a message to be transmitted on the DYN segment is
associated with the load on the buffer which is at odds with the
real behavior of the system. Second, unlike our paper, it does
not associate any stochastic behavior to the message triggering
patterns like jitter. Third, the experiments were conducted
with exactly the same probability for all the messages which
severely restricts the conclusions that may be drawn. Finally,
they only compute the probability that a message would be
delayed beyond a single cycle and this provides no information
regarding the overall delay or the relation of the delays with
the deadlines. In this paper, we attempt to bridge this gap in
the literature regarding the probabilistic analysis of the DYN
segment. We hope that our results on the probabilistic timing
analysis of the DYN segment can serve as a stepping stone to
build frameworks that schedule and map messages from diverse
applications, with both hard and soft constraints, in a systematic
manner.
The goal of our framework is to compute the Deadline Miss

Ratio (DMR) of each message that is transmitted over the DYN
segment. We assume that messages are triggered by their parent
tasks that generate messages in a periodic fashion. However,
various factors such as variable execution times of the task
or the interference from the other higher priority tasks may
lead to randomness in the queuing jitter of a message. Given
such a random jitter as an input, our framework, first, builds
a transition graph where each vertex of the graph represents a
unique backlog (see Section V). Each transition is associated
with the probabilistic characteristics needed to compute the
DMR. We rely on a Mixed Integer Linear Program (MILP)
formulation to build this graph. Once the graph has been built,
we compute the DMR using a GPU-based engine.
In the real-time system community, there has been a lot of

work devoted towards probabilistic analysis. Our work is in line
with such efforts [7], [2], [5]. However, most of them focused
on a task set running on computational cores as opposed to
our work that considers a communication system. In fact, they
considered scheduling policies like fixed-priorities or EDF and
hence, such existing frameworks may not be trivially extended
to a probabilistic analysis of the DYN segment. It should be
noted here that Zeng et al. [10] recently proposed a framework
for stochastic analysis of the CAN bus protocol. However, the
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CAN bus protocol is based on a fixed-priority scheduling policy
which has major differences compared to the protocol of the
DYN segment of FlexRay.
Given the fact that even the worst-case response time anal-

ysis of the DYN segment is an NP-hard problem and that
probabilistic analysis of relatively simpler schedulers, such as
fixed-priority or EDF, are already intractable, the problem of
probabilistic analysis of the DYN segment of FlexRay cannot
be expected to be solved efficiently. As such, we propose
two novel techniques to tackle the scalability issues — (i) re-
engineering the problem to run it on GPUs as well as (ii) re-
formulation of the MILP itself. Note that the use of GPUs, for
solving schedulability analysis problems [1], [3], has gained
traction in recent years.

II. FLEXRAY COMMUNICATION

Communication in FlexRay is organized as a periodic
sequence of communication cycles with a fixed length, lfc. As
discussed in Section I, each communication cycle is further
subdivided into a ST segment and a DYN segment. It also
consists of two segments : a network idle time and a symbol
window that are used for administrative purposes but not for
communication. In this paper, we denote them together as a
time interval called IDLE.
DYN Segment: The DYN segment is partitioned into equal-
length slots which are referred to as “minislots”. A minislot
counter tracks the current minislot of the DYN segment. An
instance of a message is given access to the DYN segment
when the minislot counter has the same value as the frame
identifier of the message. Note that the instance of the message
occupies the required number of minislots on the bus according
to its size. Thus, at the beginning of each DYN segment, first,
the highest priority message gets access to the DYN segment.
However, if the message is not ready for transmission or the
size of the message does not fit into the remaining portion
of the DYN segment, then only one minislot goes empty. In
either case, the bus is then given to the next highest-priority
message and the same process is repeated until the end of the
DYN segment. Further, at most one instance of each message
is allowed to be transmitted in each FlexRay cycle.
Notations: The length of the ST segment is denoted by lst.
The length of one minislot in the DYN segment is denoted
with lms and the total number of minislots is denoted with
nms. The length of the DYN segment is thus ldyn = lms ×
nms. The length of the IDLE interval is assumed to be lidle.
Hence, the length of the FlexRay cycle (denoted by FC) is
lfc = lst + ldyn + lidle.

III. SYSTEM MODEL

As mentioned in Section I, we consider that messages
are triggered by periodic tasks that are running on ECUs.
We assume that messages are triggered at the point of task
completion and hence, the messages inherit the periods of
their parent tasks on the ECUs . However, due to the variable
execution times of the tasks combined with the interferences
due to other higher priority tasks, the messages may suffer from
varying queuing jitter which leads to the stochastic nature of
the message response times.
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Fig. 1. The kth instance of message mi, from its triggering moment until
the completion of its transmission.

Definition 1: The queuing jitter of an instance of a given
message mi is the time interval since the given instance has
been triggered by an event until the moment it has been queued
in the buffer and starts competing for bus access. �
To encapsulate queuing jitter as well as other char-

acteristics of the messages, we define each message mi

as a n-tuple of 8 parameters. We assume that a set
Γ of N periodic messages are designated to be trans-
mitted on the DYN segment of FlexRay. Thus Γ ={
mi|mi =

(
Oi, Ti, Di,Wi, Fi, J

min
i , Jmax

i , fi
)
, i = 1, N

}
.

1) The offset - Oi is the relative time with respect to the
starting point of the FlexRay communication when the
first instance of a message mi will be triggered.

2) The period - Ti is the rate at which all the instances
of a message mi are being triggered. After the offset
Oi elapses the triggering events of the instances of the
message mi are assumed to be periodic with period Ti.

3) The deadline - Di is the relative time since the triggering
event of a given instance of a message mi until the time
by which the transmission of it must end.

4) The length - Wi is the number of minislots that each
instance of a message mi will occupy when transmitted
on the DYN segment of FlexRay.

5) The priority - Fi is the minislot identifier used by the
FlexRay communication controller to transmit all the
instances of message a mi on the DYN segment.

6) The minimum jitter - Jmin
i is the minimum queuing

jitter that each instance of a message mi can have.
7) The maximum jitter - Jmax

i is the maximum queuing
jitter that each instance of a message mi can have.

8) The probability density function - fi : [Jmin
i ..Jmax

i ]→
R+ of the jitter of a message mi describes the relative
likelihood for this jitter to take on a given value in the
interval [Jmin

i ..Jmax
i ]. We do not impose any restriction

with regards to the nature of this function.
The instances of a message are triggered periodically but due

to the queuing jitter, an instance competes for the bus only after
suffering an additional delay. Thereafter, an instance might be
further delayed by instances of higher priority messages as well
as prior instances of the same message that are in the queue.
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This time interval — since the queuing of the instance in the
transmission buffer until the moment when the given instance
is sent on the bus — may be referred to as the queuing delay
of an instance of a message mi. Once the instance gains access
to the bus, the time required by Wi minislots occupied by an
instance of a message may be called the bus transfer time. The
above is also illustrated in Figure 1 for the kth instance of a
message mi.
Given the above, the response time of an instance of a

message mi is the time interval since the triggering moment
of the given instance until the moment when the instance
completes its transmission. An instance of a message mi is
said to suffer a deadline violation if its response time is greater
than its deadline Di.

IV. PROBLEM FORMULATION

We now state the problem of probabilistic timing analysis of
the DYN segment as the problem of computing the Deadline
Miss Ratio (DMR) of a given message mi when the system
identified by the set of messages Γ is analyzed for an infinite
amount of time. Formally, for a finite interval of time Δt, the
DMRi

Δt of a message mi represents the expected value of
the discrete random variable Zi

Δt. The discrete random variable
Zi

Δt

Zi
Δt =

(
0

si

1

si
· · · k

si
· · · si

si

ξ0 ξ1 · · · ξk · · · ξsi

)
(1)

gives the probability ξk that exactly k instances of message
mi, out of the total number of instances si sent during the
time interval Δt , may have a response time greater than the
deadline Di. Thus,

DMRi
Δt = E

[
Zi

Δt

]
=

si∑
k=0

k

si
× ξk (2)

Definition 2: For an infinite time interval, the DMRi of a
message mi is defined as:

DMRi = lim
Δt→∞

DMRi
Δt � (3)

V. OVERVIEW OF OUR SOLUTION
Our method starts by computing the possible backlog vectors

(which represents the accumulated messages in the buffers) at
the end of a finite time interval Δt (the quantum of which,
we will discuss later). As mentioned in Section I, we construct
a transition graph with one vertex for each unique backlog
vector. Our technique, then, computes the probability that for
a message mi, exactly k instances violate the deadline Di at
each transition. Once this is computed, we apply the process of
convolution in order to find the DMR as defined in Equation
3. The above process consists of three major steps as described
in Section V-A, V-B, and V-C. Towards this, we introduce a
few definitions in the following.
Definition 3: A message mi is said to have an input backlog

of ui instances at the start of the time intervalΔt, if ui instances
of message mi have been triggered during the FlexRay cycles
before Δt and have not been transmitted until the start of the
time interval Δt. �
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Fig. 2. The algorithmic flow of Step I of our proposed framework.

Note that the ui instances of message mi referred in Defini-
tion 3 are a subset of all the instances triggered during all the
FlexRay cycles before the start of the time interval Δt.
Definition 4: A message mi is said to have an output back-

log of vi instances at the end of the time interval Δt if there
exists an accumulation of vi instances of message mi triggered
(i) during the time interval Δt and (ii) during the cycles before
Δt but still waiting to be transmitted during the FlexRay cycles
after the completion of Δt. �
We would like to emphasize that the above definition of

backlog also includes an instance that has been triggered during
Δt but has not been queued in the transmission buffer because
of its own queuing jitter within Δt. Thus, physically, such
an instance is not in the buffer but since its periodic event
of triggering has elapsed within Δt, it contributes to the
output backlog according to the above definition. Of course,
an instance that has been triggered and has been queued in the
transmission buffer during Δt but is delayed, also contributes
to the output backlog defined above.
Given the above definitions for backlogs for each message,

we can now extend it to consider the backlog of all messages
as encapsulated by a vector.
Definition 5: The vector U = (u1, u2, · · · , uN ) is defined

as the input backlog vector at the start of the time interval Δt,
where ui has been previously introduced as the input backlog
of message mi at the start of Δt. �

Definition 6: The vector V = (v1, v2, · · · , vN ) is defined as
the output backlog vector at the end of the time interval Δt,
where vi has been previously introduced as the output backlog
of message mi at the end of Δt. �
A. Step I - Generating the transition graph
In Step I, our framework builds a transition graph G where

each vertex represents a unique backlog vector and each edge
is a transition as defined below.
Definition 7: A transition U

Δt
→ V over a finite time interval

Δt is defined as the sequence of events connecting the backlog
vectors U and V at the boundaries of Δt. �
Our algorithm is sketched in Figure 2. First, the transition

graph G is initialized with a vertex representing the input
backlog vector U = (0, 0, · · · , 0) (corresponding to the start of
the FlexRay communication). Then, our algorithm proceeds,
iteratively, in the following fashion. Given an input backlog
vector U at the start of a time interval Δt, it computes the
list L of all possible output backlog vectors which can be
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TABLE I
THE PARAMETERS OF ALL MESSAGES IN THE RUNNING EXAMPLE.

O

ms

T

ms

D

ms
W F

Jmin

μs

Jmax

μs
a

m1 .10 4.5 4.5 12 1 45 900 472.5
m2 .25 3.0 3.0 10 2 30 600 315.0
m3 .18 3.0 3.0 9 3 30 600 315.0
m4 .40 4.0 4.0 5 4 40 800 420.0
m5 .28 4.5 4.5 4 5 45 900 472.5

reached at the end of Δt. If any backlog vector V1,V2, · · · ,Vl

from the list L is not present in the graph G, then a new
vertex is added corresponding to that backlog vector. We also
update the graph with all the outgoing transitions from the
vertex representing backlog U . The algorithm terminates when
there are no new backlog vectors in the list L otherwise it
repeats the above phases by setting one of the new vectors
as the U for the next iteration. We would like to note that
our algorithm has been designed to terminate even if the size
of the transition graph G is infinite. It can be easily shown
that the transition graph G is finite as long as there is no
infinite accumulation in any of the backlog vectors. Hence,
our algorithm checks if the transition graph G is infinite by
imposing some simple conditions on the nature of backlog
accumulated in the transitions. Due to space limitations, we
omit the details here.

Choice of the time interval Δt: We choose Δt as the hyper-
period of all periods and length of the FlexRay cycle: Δt =
lcm {lfc, T1, T2, · · · , Tn}. It is a natural choice of Δt because
the triggering patterns of all the messages repeat in the same
fashion with respect to the FlexRay cycles after a hyper-period.
Note that, for a given input backlog vector U , several output

backlog vectors are possible at the end of the time interval Δt
and we denote that with the list L = {V1,V2, · · · ,Vl}. This is
due to the random behavior of the queuing jitter of all ui + pi
(defined in the following) instances of a message mi which
have to be considered during the time interval Δt. Here ui is
the input backlog for message mi at the start of Δt while pi is
the number of triggered instances during Δt. The total number
of instances of a message mi which will be triggered during
an arbitrarily hyper-period Δt is pi =

⌈
Δt−Oi

Ti

⌉
.

Each input backlog vector needs to be analyzed separately to
compute the output backlog vectors that might result from it.
This, however, is a complex function of the FlexRay parameters
and the parameters of the messages. To compute this list, we
formulate a MILP model (see Section VI).
Running Example: In order to better illustrate our framework,
we use a running example that is shown in Table I. In this
example, the set Γ contains 5 messages. The length of the ST
segment is lst = 1200μs, the number of minislots inside the
DYN segment is nms = 24, the length of one minislot is lms =
10μs and the length of the IDLE interval is lidle = 160μs. This
gives us the length of FlexRay cycle lfc = 1600μs and thus
the length of the time interval Δt = 45× lfc μs (because Δt
is chosen to be equal to the hyper-period). We assume that the
likelihood of the jitter to occur in the [Jmin

i ..Jmax
i ] is defined

by a truncated Weibull distribution. The parameter a of Weibull
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Fig. 3. The complete graph G of transitions over intervals of time Δt for the
example presented in Table I.

distribution is shown in the last column in the table and b is set
to 4 for all messages. We re-iterate that our framework is not
restricted to any particular distribution and Weibull has been
chosen only as an illustration.
We describe Step I (Figure 2) with respect to the above

example. The algorithm starts by initializing U = (0, 0, 0, 0, 0).
Here, U is the backlog vector at the start of the system and
contains the backlog (which is 0 when the system starts) for
each of the 5 messages. This initial backlog vector is added
as the first vertex U in the transition graph (Figure 3). Then
the algorithm proceeds as shown in Figure 2, where we invoke
a MILP solver with U as the input. The MILP solver now
updates the list L with two new vertexes V = (0, 0, 0, 1, 0)
and W = (0, 0, 0, 1, 1). These backlog vectors show that the
messages m4 and m5 accumulate a backlog of 1 after two
different transitions. Our algorithm now adds two new vertices
in the transition graph (Figure 3). We also add the transition
from vertex U to itself and the transition from vertex U to
vertices V and W .
Thereafter, our algorithm iterates again because V andW are

new vertices in the list L. Thus, the MILP solver is invoked
again, once with V and once withW as the input. However, this
time the MILP solver does not return any new backlog vectors
and hence, the algorithm does not iterate any further. However,
it updates the graph with new transitions and this results in the
final graph that is shown in Figure 3. The probability for these
transitions to occur, depending on the input backlog vector, is
computed by Step II of our framework.

B. Step II - Computing the probabilities at transitions

Knowing the set of all possible transitions U Δt
→ V , in Step

II, our method will compute for a message mi, based on its
own set of higher priority messages, the probability ξk that
exactly k instances suffer a deadline violation out of the total
number of instances si sent during the current transition. For
a given transition U

Δt
→ V , when the message under analysis is

mi, we will attach to it a discrete random variable Y U
Δt
→V

i with
no more than (si + 1) realizations. Thus, in Step II, we will
compute the probability ξk that exactly k deadline violations
occur during Δt when k takes values in the set {0, 1, · · · , si}.
This probability is obtained by analyzing in how many ways
exactly k instances out of si instances can violate their deadline
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TABLE II
THE PROBABILITIES THAT EXACTLY k INSTANCES OF MESSAGE m5

VIOLATED THE DEADLINE D5 .

k ξk k ξk
0 0 4 7.739474E-04
1 2.371244E-03 5 1.778538E-04
2 1.216082E-03 6 1.805873E-08
3 1.406886E-04 7 5.622012E-05

Di (see Section VII for details on how this is done). Thus, as
an output of Step II we obtain the following.

Y U
Δt
→V

i =

(
0/si 1/si · · · si/si
ξ0 ξ1 · · · ξsi

)
(4)

At the end of Step II, for each message mi, we will have
assigned to all possible transitions U

Δt
→ V a discrete random

variable Y U
Δt
→V

i . It would be appropriate to mention here that
the number of instances si of a message mi which have been
sent during the time interval Δt is computed in Step I and is
discussed in Section VI.
Note: We have mentioned above that during Step I, for a
possible transition U

Δt
→ V , ui + pi instances of a message

mi are involved. This is in contrast with the fact that for the
same transition, during Step II, only si ≤ ui + pi instances
have to be analyzed. The remaining vi instances (see Equation
10) will be analyzed in the context of the next transition which
takes the output backlog vector V as an input backlog vector.
Running Example: For the example presented in Table I,
considering that the message under analysis ism5, we show the
discrete random variable Y U

Δt
→W

5 in Table II. The number of
instances of message m5 triggered during Δt in the context of
the transition U

Δt
→ W is p5 = 16 as given by pi =

⌈
Δt−Oi

Ti

⌉
,

whereΔt is the length of the hyper-period. Out of them only 15
are sent on the FlexRay bus (as computed during Step II using
Equation 10) and thus k varies from 0 to 15. The remaining
ones will be sent during the next time interval Δt. In Table
II, it can be seen, for example, that the probability that exactly
5 instances of message m5, out of the total which have been
sent during Δt, may suffer a deadline violation is 1.778538E-
04. Note that for each k from 8 to 15 the associated probability
value is 0 and hence, it is not shown in the above table.

C. Step III - Computing the DMR
Step III of our solution is to compute the DMR as defined

in Equation 3. Note that the exact value of the DMRi of
a message mi is obtained when the process of convoluting
the discrete random variables (defined in Equation 4) is let to
run for an infinite amount of time. However, in practice, it is
typically approximated by terminating the convolutions after
a desired level of convergence. Hence, we proceed as in the
following.
The starting point of the convolution process is the vertex

with the backlog vector U = (0, 0, · · · , 0). The process of
approximating the DMRi of message mi is iterative. First
the DMRi of message mi will be approximated for one time
interval Δt, i.e., one transition starting from vertex U . Then,
the process is repeated for two consecutive intervals of time Δt

1 2 3 4 5 6 7 8
6.88

6.9

6.92

6.94

6.96

6.98

Number of hyper−periods

D
M

R
5

Fig. 4. The convolution process converges rapidly while computing the
DMR5 value of the message m5.

(i.e., two consecutive transitions starting from vertex U ) and,
based on the designers preference of accuracy, it iterates for
three, four and possibly for more consecutive intervals of time
Δt until the desired level of convergence is achieved.
We would like to remind that, the convolution process first

provides as an output the discrete random variable Zi
n×Δt (see

Section IV). Here n signifies the number of consecutive hyper-
periods Δt. Based on it, the DMRi of a message mi is
approximated by computing the expected value E

[
Zi

n×Δt

]
.

Running Example: For the example presented in Table I
the convolution process is described below. The graph of
transitions returned by Step I is a complete graph with 3
vertices (see Figure 3). For one time interval Δt (n = 1)
the DMRi of message mi is approximated by analyzing all
possible transitions (U Δt

→ U ,U
Δt
→ V and U

Δt
→ W) starting

from the backlog vector U = (0, 0, 0, 0, 0). By collapsing
the discrete random variables Y U

Δt
→U

i , Y U
Δt
→V

i and Y U
Δt
→W

i (that
were computed in Step II) into one we get the discrete random
variable Zi

1×Δt.
For two consecutive intervals of time Δt the approximation

of the DMRi of message mi is obtained by analyzing all
possible transitions U

Δt
→ U

Δt
→ U ,U

Δt
→ U

Δt
→ V, · · · ,U

Δt
→

W
Δt
→ W . A transition of the form U

Δt
→ V

Δt
→ W will

have associated a discrete random variable Y U
Δt
→V

Δt
→W

i obtained
as the convolution of the discrete random variables Y U

Δt
→V

i

and Y V
Δt
→W

i . Similarly the discrete random variable Zi
2×Δt is

obtained by collapsing together all the associated random vari-
ables to the possible transitions for two consecutive intervals of
time Δt. In Figure 4, we show how the DMR5 of messagem5

converges with increasing number of iterations. It is important
to note that, even if this is a potentially computationally
expensive step due the possibly large number of paths to be
explored, in practice the convergence is achieved very fast. In
fact, as our results will later demonstrate, Step III incurs the
least running time amongst the three steps in our framework.
Recall that computing the DMR was the goal of our frame-

work and with the above example from Step III, where we
discussed how we obtained DMR5, we may now conclude
the overview of our overall framework. In the following, we
would like to provide more details on two components of our
framework. First, in Section VI, we will discuss the MILP
model that is used in first phase of the algorithm (see Figure 2)
in Step I. Second, in Section VII, we will discuss the details on
how Step II computes the discrete random variables (Equation
4) associated with each transition.
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Fig. 5. Modeling the input backlog at the start of one time interval Δt.

VI. MODELING THE FLEXRAY COMMUNICATION

In what follows we will model the temporal behavior of
the FlexRay communication for a finite interval of time Δt,
chosen to be equal to one hyper-period, by formulating a
MILP problem which takes as an input (i) the parameters of
all messages, (ii) the FlexRay parameters and (iii) the input
backlog vector U . As an output, the MILP formulation provides
the set of output backlog vectors reached from U at the end of
time interval Δt.
Let us first introduce the variables required to model a

particular message mi associated with priority Fi. For each
message mi we introduce a set of Boolean variables qci , qci = 1
if an instance of this message has been transmitted in cycle c.
Instances will be sent in the order they have been triggered.
The total number of cycles in one hyper-period is h = Δt

lfc
.

Essentially the linear constraints of our MILP problem will
model the arrival times of instances of message mi in the
transmission buffer as well as their possible transmission times.
We will denote with αc

i (see Equation 5) the queuing moment
in the transmission buffer of the instance which has to be
considered for transmission in cycle c.

αc
i =

periodic moments of triggering︷ ︸︸ ︷
Oi −

input backlog︷ ︸︸ ︷
ui × Ti︸ ︷︷ ︸

reference of mi

+

⎛
⎝c−1∑

j=1

qji

⎞
⎠

︸ ︷︷ ︸
sent until cycle c

×Ti+X
c
i (5)

The above equation is explained with the help of Figure
5, where we show how we model, in our MILP formula-
tion, the input backlog of a message mi with ui instances
triggered during the cycles before Δt which are still waiting
to be transmitted. These instances are indexed by the set
{ui, ui−1, · · · , 1}. Without loss of generality we can consider
that each interval of time Δt starts at moment t = 0. Thus,
if a message has an input backlog of ui instances, the first
instance that has to be considered for transmission in the first
cycle of Δt is the one triggered at moment Oi − ui × Ti.
This moment is denoted as the reference point of message
mi. We also show how instances will be triggered during Δt.
The first instance will be triggered with a given offset Oi with
respect to the starting moment of Δt. For a cycle c the instance

which has to be considered for transmission is given by the
summand

∑c−1

j=1
qji . This value tells us how many instances of

message mi have been transmitted in the previous cycles since
the beginning of cycle 1 of the current time interval Δt until
the beginning of cycle c.
The variable Xc

i in the definition of αc
i represents the

queuing jitter of the instance which has to be considered for
transmission in the current cycle c. It is required to attach a
queuing jitter variable even to the instances which represent
the input backlog because of the fact that it is possible to have
instances which have been triggered during the cycles before
Δt but have not arrived yet in the transmission buffer until the
start of Δt (or until the start of the current hyper-period).
βc
i (see Equation 6) represents the possible time, relative

to starting moment of cycle c, when the instance that needs
to be considered for transmission in this cycle can be trans-
mitted. The qualifier possible is used to denote the following
characteristic of FlexRay communication in the DYN segment:
the transmission of an instance does not depend only on the
fact that the given instance has to be ready in the transmission
buffer before its own minislot has arrived but also there must
be enough space for it inside the DYN segment. Otherwise
the given instance will be delayed until the next cycle when
the same arbitration process starts again. To capture this, we
introduce γc

i (see Equation 7), which is the displacement of
minislot Fi inside the DYN segment of cycle c based on the
set of messages with higher priorities compared to messagemi.

βc
i =

c− 1 cycles since t = 0︷ ︸︸ ︷
(c− 1)× lfc +

inside cycle c︷ ︸︸ ︷
lst + γc

i × lms (6)

γc
i = Fi − 1 +

i−1∑
j=1

qcj ×

the load of mj , if transmitted︷ ︸︸ ︷
(Wj − 1) (7)

Having the previous equations (Equations 5, 6, 7) an instance
of message mi can be transmitted in a cycle c iff:

(qci = 1)⇔

part 1︷ ︸︸ ︷
(αc

i ≤ βc
i )∧

part 2︷ ︸︸ ︷
(γc

i +Wi ≤ nms) (8)

The first part of Equation 8 checks if the instance of mes-
sagemi, which has to be considered for transmission, is queued
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in the transmission buffer before the possible transmission
time βc

i associated with cycle c. The second part enforces
the condition that the given instance of message mi has to
fit inside the DYN segment of cycle c. In other words, (i)
the displacement of minislot Fi based on the set of messages
with higher priority than message mi plus (ii) the number of
minislots which the current instance of messagemi will occupy
when transmitted cannot exceed the total number of minislots
nms of the DYN segment.
As discussed, the variable Xc

i of a cycle c captures the
queuing jitter of an instance of messagemi. Hence, the variable
Xc

i for any cycle c is constrained (by our MILP model)
within the bounds [Jmin

i ..Jmax
i ] provided as an input in our

system model. However, Xc
i for an instance of a message

mi may be constrained within a tighter interval by the MILP
constraints that we have described above. When a message is
not transmitted in cycle c, these tighter constraints must remain
valid in the next cycle c + 1.Towards this, we introduce the
following additional MILP constraints.{

Xc+1
i ≤ Xc

i + qci ×M

Xc+1
i ≥ Xc

i − qci ×M
(9)

, where M is large enough constant.
For example, if qci = 0, then the instance of the message

mi has not been sent in cycle c. This implies this instance will
contend for transmission in cycle c+1. Hence, if the Xc

i value
of this instance was evaluated by the MILP to be associated
with tighter constraints, then this must be propagated to Xc+1

i .
To handle this scenario, if qci = 0, the above inequalities will
be reduced to the equality Xc

i = Xc+1
i . The opposite case for

qci = 1 is similarly handled with the fact that M is a large
constant.
When invoked with the above constraints, the MILP solver

returns a feasible (i.e., satisfying the above constraints) assign-
ment of the qji variables. The summation

∑h

j=1
qji is equal to

si which gives us the number of instances sent in Δt. Now,
using Equation 10, we can obtain vi for each message mi and
thereby, obtain the output backlog vector V .

output backlog︷︸︸︷
vi =

input backlog︷︸︸︷
ui +

triggered︷︸︸︷
pi −

sent︷︸︸︷
si (10)

Next, the MILP solver iterates to produce a new V ′, if it exists.
To obtain this, it is invoked with the constraint that at least for
one message, the backlog vi ∈ V from the previous iteration
must be assigned a different value in V ′. These iterations
continue as long as a new backlog vector is produced after
which our algorithm (Figure 2) in Step I proceeds to its second
phase.
Note: The MILP model is composed of the linear in-equations
described in this section. We followed standard techniques to
transform the logical operator AND of Equation 8 into linear
constraints [9]). Let us denote the above MILP problem with
MILPh, where h = Δt

lfc
represents the number of consecutive

FlexRay cycles in Δt when Δt was chosen to be equal to the
hyper-period. We also note that our MILP formulation does
have an optimization function because in this problem we are
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Fig. 6. The hyper-period is divided into equal lengths and a new MILP
problem is formulated based on these smaller time intervals. The MILP
produces a set of intermediary solutions based on which the list of solutions
for the initial MILP problem is computed.

looking for any solution that satisfies the constraints presented
above.

A. Towards scalability : Re-engineering the MILPh problem
The above MILP formulation is invoked repeatedly in algo-

rithm (see Figure 2) used in Step I. Given the intractability
of the problem, this might lead to a serious performance
bottleneck. Hence, in the following, we propose a method to
tackle the scalability problem by re-engineering the MILPh
problem into a set of smaller MILP problems. By smaller
MILP, we imply the fact that these MILP problems consider
a smaller time interval Δt than the hyper-period. To obtain
the smaller time interval, we divide the original time interval
Δt into a number of n segments all containing the same
number of cycles f = h

n
. For a given segment l, l = 1, n,

we now formulate a new but smaller MILP problem based on
the same model presented in Section VI considering a shorter
time interval Δt = f × lfc chosen to represent f consecutive
FlexRay cycles. We denote with MILPlf the new smaller MILP
problem.
In Figure 6 we show that starting from an input backlog

vector U a MILP1f problem is solved for the first segment
of the hyper-period. By solving the MILP1f problems, we
mean obtaining the output vectors at the end of the first
segment (i.e., at the end of f cycles). They are represented by
{I1

1 , I
1
2 , · · · , I

1
l1
}. Each of these output backlog vector will be

analyzed separately by the corresponding MILP problem for the
next segment. This process is repeated until all the intermediary
solutions are processed.
Since f ≤ h the number of optimization variables of the

MILPlf model is reduced compared to the MILPh model. Thus
the MILPlf problem can be solved faster. The list of the possible
output backlog vectors {V1,V2, · · · ,Vl} at the end of the
hyper-period, based on the input backlog vector U , is obtained
when the last segment has been analyzed. When compared to
output backlog vectors provided by solving the MILPh, this
set of solution is a superset and hence, leads to pessimism.
This pessimism propagates to the Step II and Step III. This is
discussed further in the experimental results.
VII. COMPUTING THE PROBABILITIES AT TRANSITIONS

Above, we discussed the MILP formulation used in Step I
of our overall framework. Step II computes the probabilities
of all possible realizations (for k deadline violations) of the
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discrete random variable Y U
Δt
→V

i associated with the transition
U

Δt
→ V , when the time interval Δt is one hyper-period. In the

light of the new approach to our MILPh problem, as discussed
in Section VI-A, we first note that, in fact, we solve a set
of smaller MILPlf problems by dividing Δt into a number of
segments. The variable Y U

Δt
→V

i is computed by convoluting the
variables on the intermediary paths which lead to the output
backlog vector V . Hence, we must first compute the corre-
sponding random variables from the intermediate transitions
obtained from the smaller MILPlf problems and this procedure
is the subject of discussion in the following.
Let us consider the case of an intermediary segment l for

which the input and the output backlog vectors, Il−1
a and

Il
b, are known by solving the corresponding MILPlf problem.
We also consider that the message under analysis is mi. In
what follows we will present the method to compute the dis-
crete random variable Y

I
l−1

a

Δt
→I

l
b

i associated with the transition
Il−1
a

Δt
→ Il

b in the context of the segment l, when Δt is chosen
to be equal to the length of the given segment. This method
will be iteratively called for all the transitions Il−1

a

Δt
→ Il

b.
Towards this, we formulate a new MILP model and we

denote this as eMILPl,kf . This model is exactly the same model
as presented in Section VI but with two sets of additional
constraints. The first set of constraints are imposed in order to
evaluate the intermediate transition Il−1

a

Δt
→ Il

b obtained after
solving the MILPlf in Section VI-A. To achieve this, we use
Equation 10, instantiated with the values obtained after solving
the MILPlf , as an additional constraint. This constraint is

required because we are interested in computing the Y I
l−1

a

Δt
→I

l
b

i

associated with this transition for this iteration.
The second additional set of constraints is to capture the

sequence of events that can lead to a scenario where exactly k
instances of message mi, out of the total which are sent, may
violate the deadline Di during the given intermediate transition.
To achieve this, we introduce a set of Boolean variables yci
in the eMILPl,kf model, where yci = 1 if the instance of a
message mi sent in cycle c may violate its deadline Di. Hence,
to analyze if exactly k instances can violate their deadlines we
impose the condition

∑f

c=1
yci = k.

A solution of the eMILPl,kf problem is given by the integer
values of the Boolean variables qcj (∀j ≤ i, ∀c ≤ f )
and the bounds on the continuous values of variables Xc

j

(∀j ≤ i, ∀c ≤ f ) representing the queuing jitter. Using this
solution, we may now compute the probability that k deadline
violations for a message mi could have occurred with the
particular scenario represented by the eMILPl,kf solution. This
probability computation is shown in Algorithm 1. Given a
particular solution found by the eMILPl,kf problem, it computes
the probability of that this solution (with k deadline violations)
could have occurred, based on the bounds on the variable Xc

j

(∀j ≤ i). The algorithm represents these bounds as a and b.
Recall that these bounds are, initially, within Jmin

i and Jmax
i

but the eMILPl,kf model could have imposed tighter constraints.
The algorithm (i) iterates over all the cycles f in the segment
l and then (ii) iterates in order to consider the message mi and

Data: A fixed assignment of the integer variables qcj .
Result: The probability ψ for the given sequence of events to happen.
/* Initialize ψ */
ψ = 1 ;
for c = 1 → f do

for j = 1 → i do
if qcj == 1 then

get the bounds a and b on the variable Xc
j ;

/* Update the probability ψ */
ψ = ψ ×

∫ b

a
fj(x)dx ;

end
end

end

Algorithm 1: The algorithm of computing the probability of
a sequence of events given by the a fix assignment of the
integer variables qcj .

its higher priority messages.
The above description was regarding the computation of

the probability ψ of one particular solution of the eMILPl,kf
problem. In order to compute the overall probability ξk, we
iterate this for all solutions of the eMILPl,kf problem. The
probability ξk, that exactly k instances of message mi violate
the deadline Di, is obtained by summing all the probabilities
ψ for all the assignments of the integer variables qcj .
However, exploring the set of all possible solutions of the

eMILPl,kf problem is a computational bottleneck. This is despite
the fact that the MILPlf problem, on which the eMILPl,kf
problem has been built upon, can be solved very fast in practice.
This is because of the additional constraints and additional
variables, introduced above, when compared to the MILPlf
model. More importantly, it is slower because we need to find
all the feasible solutions and not just one particular solution.

A. Towards scalability: A GPU-based engine
In the light of the above, we propose to harness the com-

putational power of the GPUs to address the scalability issue.
However, taking the problem as it is, and utilizing the GPUs
might deteriorate the performance. In order to fully exploit the
computational power of the GPUs it is important to carefully
reformulate the problem. In the following, we describe our
algorithm towards this. The pseudo-code for our algorithm is
listed in Algorithm 2.

As a first step, for each Y
I
l−1

a

Δt
→I

l
b

i , we invoke the MILP
solver i times for each message m1, m2, ..., mi. At the jth
invocation, the MILP solver is asked to give us all possible
assignments of the variables {q1j , q2j , · · · , q

f
j } corresponding to

the message mj . The multiple invocations of these eMILPl,kf
problems runs significantly faster compared to invoking the
solver to obtain all the solutions using one eMILPl,kf invocation.
This is due to two reasons. First, note that f << i because f is
the number of cycles in each segment l which is typically very
small compared to the total number of messages in a realistic
system. Second, in contrast to exploring all the solutions from
the eMILPl,kf problems, the above formulation only explores the
solutions corresponding to each message mj individually. We
emphasize that this formulation, of course, takes into account
the interference by the higher priority messages.
Now that we have obtained a set of values for the variables
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{q1j , q
2
j , · · · , q

f
j }, we are finally, in a position to formulate the

appropriate problem, denoted with pGPUl,k
f to be solved by the

GPUs. Towards this, we introduce the definition of a column.
A column is an assignment of the variables {q1j , q

2
j , · · · , q

f
j }

that was found using the above step. It represents one particular
instance of how the instances of a messagemj were sent during
f consecutive cycles in the segment l. We then define with Cj

the matrix of all possible columns for the message mj . The
matrix Cj represents all possible ways in which the instances
of a messagemj may be sent during f consecutive cycles in the
segment l. For each matrix Cj we introduce a set of Boolean
variables Zj = {ζj1 , ζ

j
2 , · · · ζ

j
nj
}, where nj is the number of

columns of matrix j. Now, we introduce the constraints ζj1 +
ζj2 + · · · + ζjnj

= 1,∀j ≤ i to capture the fact that only one
column is chosen to form the solution of the pGPUl,k

f problem.
This is because we want to choose one particular way in which
the instances of each message may be sent in the segment l.
We obtained the column of a matrix Cj while ignoring the

assignment of the remaining Boolean variables corresponding
to the rest of the messages. However, this does not result
in any inaccuracy in our framework because the pGPUl,k

f

problem imposes the relevant constraints regarding the temporal
behavior of the DYN segment (e.g., an instance of a message
has to fit into the available minislots). Given the above, our
framework suffers from no loss of accuracy at this step.
It is important to note that Cj of a message mj , j = 1, i has

been obtained such that exactly k instances of the message
under analysis mi violate the deadline Di out of the total
number of instances sent during f consecutive FlexRay cycles
as part of intermediary transition Il−1

a

Δt
→ Il

b for the segment l.
Thus, if we find all possible solutions to the pGPUl,k

f problem,
we would have found all possible solutions to the original
eMILPl,kf problem.
The maximum number of solutions the pGPUl,k

f problem can
have is

∏i

j=1
nj . To explore this vast solution space, we use

GPUs and exploit the data parallelism. The GPU framework
explores, in parallel, the set of all possible combinations of the
columns by checking their feasibility. By feasibility, we refer to
(i) the FlexRay related constraints and (ii) the constraints on the
intervals of queuing jitter of all the instances of all messages.
Finally, the algorithm for probability calculation (Algorithm
1) is also implemented on the GPUs. We omit a detailed
discussion on our GPU algorithms due to limitations on space.

VIII. EXPERIMENTAL RESULTS

We implemented our framework on the Nvidia Fermi ma-
chine with a TeslaM2050 GPU. It has 14 streaming multi-
processors which together have 448 cores running at 1147MHz.
The host contains 2 Intel CPUs Xeon E5520, with 8 cores
in total and each clocked at 2.27 GHz. Our framework is
partially implemented in Matlab and partially in C++. In order
to efficiently solve the MILP problems we used CPLEX. For
the reformulated MILP problems, we used Jacket to explore
the set of all possible combinations of columns on the GPUs.
These tools are integrated with Matlab through MEX files.

Data: The transition graph G with the intermediate transitions (see
Figure 6).

Result: The discrete random variables Y U
Δt
→V

i for message mi.
for l = 1 → n do

forall the MILPl
f
problems at segment l do

I
l−1
a - the input backlog vector of segment l ;
forall the solutions of the MILPl

f
problem do

Il
b
- the output backlog vector of segment l ;

get si - instances sent during the segment l ;
for k = 0 → si do

formulate the eMILPl,k
f

problem ;
for j = 1 → i do

build the matrix of columns Cj ;
end
formulate the pGPUl,k

f
problem ;

solve the pGPUl,k
f

problem on GPUs ;
/* Implemented in parallel where

each thread calls Algorithm 1 */
get ξk , - the probability that exactly k instances
violate the deadline Di ;

end

get Y I
l−1

a
Δt
→I

l
b

i - the discrete random variable associated
with the intermediary transition I

l−1
a

Δt
→ Il

b
;

end
end

end

Algorithm 2: The algorithm described in Section VII-A.

The test cases have been generated randomly by varying the
message parameters like the periods, deadlines, lengths and
priorities. In all experiments we assumed that the length of
ST segment is lst = 675μs and the length of one minislot
lms = 10μs. The total number of minislots nms and the length
of the IDLE segment lidle have been varied such that the length
of the FlexRay cycle lfc remained constant lfc = 1500μs. All
generated periods represent harmonic numbers such that the
length of the hyper-period Δt does not exceed 24 FlexRay
cycles of length lfc. As discussed in Section VI-A, we divide
the time interval Δt into a number of segments. For our
experiments, each hyper-period consists of 6 segments and each
segment has 4 FlexRay cycles.
The intervals of queuing jitter [Jmin

i ..Jmax
i ] have been

generated with respect to the periods Ti of the messages. In all
of our experiments Jmin

i has been set to represent 1% of the
period Ti while Jmax

i has been varied up to a maximum value
of 15% of the same period. The probability density functions
assigned to the messages have been chosen from a list of
well known distributions like the Uniform, Normal and Weibull
distribution. In our experiments we used the truncated version
of this distributions to the given interval [Jmin

i ..Jmax
i ].

A. Running Times with Increasing Number of Messages
In Figure 7 we show the running times of our tool for a

varying number of messages. The jitter Jmax
i was set to 15%

for all the messages in all the sets used in this experiment. The
running times for each step (Step I, Step II and Step III) of our
tool is depicted separately.
The blue line represents the running taken by Step I to

compute the transition graph G, the red line represents the time
needed by the GPU (Step II) to compute the probability of the
transitions and the green line represents the time needed for
the convolutions (Step III) to approximate the DMRi of a
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Fig. 7. The running times needed by each step.

message mi. The message mi was always chosen to be the
lowest priority message because it leads to the highest running
times. In Figure 7 it can be seen that the time needed by Step II
to finish dominates over the time needed by the other two steps.
The running times have been reported for our tool that includes
the optimizations for scalability, i.e., division of the hyper-
period into several segments (Section VI-A) and the use of
GPUs (Section VII-A). We report that, in the absence of these
optimizations, it was not possible to obtain the results even for a
small set containing 2 messages. We provide more comparisons
regarding our scalability optimizations in the following.

B. Running Times with Jitter Variation

The computation time of the DMRi of a message mi

is also dictated by the length of the queuing jitter intervals
[Jmin

j ..Jmax
j ], ∀j ≤ i, of the messages with higher priority

than message mi and message mi itself. Large intervals may
result in a large number of columns to be explored by the
pGPUl,k

f problems.
In Figure 8, we show how the time needed by the Step

II depends on the length of the queuing jitter intervals
[Jmin

i ..Jmax
i ]. We vary the Jmax

i between 2% and 16%. We
consider the same set of 20 messages as considered in Figure
7. Once again, these experiments were for the message with
the lowest priority.
The Figure 8 shows the impact of (i) dividing of the MILPh

into several smaller problems (Section VI-A) and (ii) the use
of GPUs (Section VII-A). In the figure, l = 1 implies that we
invoked the MILPh problem (i.e., the hyper-period is a single
segment) which processes Step I. Thereafter, Step II is either
performed on the CPU or on the GPU. As seen from the graph,
without the GPU, Step II on the CPU (line CPU, l = 1) cannot
scale beyond 4% of Jmax

i . However, with MILPh, Step II with
the GPU (line GPU, l = 1) cannot scale beyond 6% of Jmax

i .
This is because the MILPh generates such a large number of
combinations of columns that it cannot accomodated in the
GPU memory. This, once again, highlights the importance of
breaking down the MILPh.
As shown in the graph, with l = 6, when we divide the

hyper-period into 6 segments, now Step II can scale further.
Thus, with the MILPlf problem (instead of MILPh), Step II
on the CPU (line CPU, l = 6) scales up to 12%. The best
performance is delivered when we use MILPlf for the Step I
and the GPU for Step II, observed in the graph (line GPU,
l = 6).
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Fig. 8. The running time needed by Step II, highlighting the importance of
our proposed scalability techniques.

C. Quality of the results
The low running times achieved by Step I are due to the

division of the time interval Δt into a number of segments
as presented in Section VI-A. As discussed in Section VI-A,
this division can possibly introduce pessimism in computing
the discrete random variable Y U

Δt
→V

i . In order to experimen-
tally verify the degree of pessimism we conducted a set of
experiments. This was conducted for a set of 20 messages with
jitter varying from 2% to 6%. It is not possible to compare
beyond this range because with MILPh formulation, the tool
does not scale beyond 6% as shown in Figure 8. Our results,
interestingly, reported no deviations at all between the solutions
from MILPh and MILPl,kf . The reason for this is that with small
jitters, the intermediary graphs generated by MILPlf can capture
the same temporal behavior as covered by MILPh.

IX. CONCLUSION

We have proposed a method towards probabilistic analysis of
the DYN segment of FlexRay while addressing the scalability
of the problem by novel techniques. The experimental results
highlight the significance of our proposed scheme.
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