
An Integrated Technique for Test Vector Selection and
Test Scheduling under Test Time Constraint

Stina Edbom and Erik Larsson

Department of Computer Science

Linköpings Universitet, Sweden

erila@ida.liu.se

Abstract1

The quality of test is highly related to the number of faults
that can be detected during the testing (fault coverage) and
the defect probability of each testable unit. High test quality
is reached by applying an excessive number of good test
vectors, however, such a high test data volume can be
problematic to fit in the ATE’s (automatic test equipment)
limited memory. We therefore propose, for core-based
designs, a scheme that selects test vectors for each core, and
schedule the test vectors in such a way that the test quality
is maximized under a given test time constraint given by the
ATE memory depth.

1. Introduction

The test data volume required to test an IC (integrated

circuit) is stored in an ATE (automatic test equipment). If

the test data volume does not fit the ATE memory, the test

cost increases either due to the division of test data into

multiple parts, which enforce additional time consuming

ATE re-loads, or to the need to purchase a new ATE with

additional memory [10].

A way to make test data fit the ATE memory is to employ

an effective organization of the application of test data.

Several architectures have been proposed [1,6,8], as well as

scheduling techniques [3,9]. Scheduling techniques taking

defect probability into account have also been proposed

[2,4,7]. Goel et al. showed that by using an efficient test

scheduling technique compared to using a less effective one

on a real industrial (Nexperia Home Platform PNX8550)

the test data volume can be made to fit the ATE memory [9].

However, currently the increase in test data volume is

even faster than the number of transistors on the IC test, and

scheduling alone may not be sufficient to handle the

problem [10]. Modern process technologies suffer from

defects that are not detected with the standard stuck-at fault

model. For instance, delay fault testing is required for

timing faults, which means that the test data volume

increases due to the need of additional vectors [9, 10].

In this paper, we explore techniques to reduce the test

data volume for modular systems in order to make it fit the

ATE memory while maximizing the test quality. In a

modular design approach modules (cores, blocks of logic),

are integrated to become a system, which is placed on a

single die, a SOC (system-on-chip). The modules may be

provided from different core providers; previous designs,

designed from scratch, or bought from core vendors. Each

core is tested by its test set (a set of test vectors).

The quality of a test set is determined by the fault

coverage. If all test vectors are applied, a high number of

faults can be checked, and the quality of the test is high. If

less vectors are applied, the quality is reduced. Fault

simulation can give the fault coverage curve for some

modules, but it can be difficult to get the fault coverage

curve for other modules (so called hard cores). However, it

is known that the first vectors in a test of a module detects a

higher number of faults compared to test vectors applied

later. For the estimation of the fault coverage, we make use

of the assumption that the fault detection (fault coverage)

can be approximated to an exponential function. The defect

probability for each core has also to be taken into account

when optimizing for quality. Modules with high defect

probability should be tested more extensively compared to

modules with lower defect probability. We assume that the

defect probabilities are collected from the production line

and are known prior to scheduling.

We assume that given is an SOC system with a set of

modules (cores, testable units), a test set per module, a

defect probability per module, and a constraint on the test

application time given by the memory depth of the ATE and

the clock frequency. Our problem is to select the number of

test vectors for each core and schedule the selected vectors

in such a way that: (1) the given constraint on test

application time (ATE memory) is met, and (2) the

probability to detect faults are maximized. We solve the

problems by proposing an integrated test vector selection

and test scheduling technique. We demonstrate on an

example the usefulness of the technique.

2. Problem Formulation

The quality of a test set (a set of test vectors) for a core is

determined by the:

 • fault coverage,

 • defect probability, and

 • number of applied test vectors.

If all test vectors in a test set are applied, long test time is

required but the highest number of possible faults are

checked. The test time can be reduced, if not all test vectors
1. The research is partially supported by the Swedish National

Program STRINGENT.

are applied, however, the quality of the test is reduced since

not all possible faults are checked. The possibility to detect

faults depends on the fault coverage curve versus the

number of test vectors. And it is commonly so that the first

test vectors in a test set detects more faults than the last test

vectors. From Figure 1 where the fault coverage over the

number of test vectors is plotted for a set of ISCAS’89

designs, it is obvious that the initial test vectors detect a

higher number of faults compared to test vectors applied at

the end of the test. If vectors are to be removed, the last

vectors should be removed in favor for the initial vectors at

another module.

The defect probability has also to be taken into account

when discussing test quality. A module with a high defect

probability is more likely to hold a fault compared to a

module with a low defect probability. If test vectors are to

be removed, they should be excluded from modules with a

low defect probability.

We assume that given is a core-based architecture with n
cores i={1..n} and for each core i the following is given:

 • scij={sci1, sci2,..., scim} - the length of the scanned ele-

ments at core i are given where m is the number of

scanned elements,

 • wii - the number of input wrapper cells,

 • woi - the number of output wrapper cells,

 • wbi - the number of bidirectional wrapper cells,

 • tvi - the number of test vectors,

 • fci - the fault coverage achieved when all the tvi test

vectors are applied.

 • ppi - the pass probability per core and,

 • dpi - the defect probability per core (given as 1-ppi).

For the system, a maximal TAM bandwidth Wtam and a

upper-bound (time constraint) τmax are given. The τmax is

given by the ATE memory depth and the clock speed of the

ATE. The TAM bandwidth can be partitioned into a set of k
TAMs each of width Wtam={w1, w2, ..., wk} in such a way

that:

and we assume sequential execution of tests on each TAM.

Our model supports systems with both soft cores - a set

of flip-flops is given for each core (scij=1 and m=number of

scanned flip-flops) and hard cores - a set of scanned

elements (scan-chains and wrapper cells) is given for each

core (scij is the length of scan-chain j at core i and m is the

number of scan-chains).

For solving the problem of partitioning (grouping)

scanned elements (scan-chains, input cells, output cells and

bidirectional cells) at a core into a balanced number of wj
wrapper chains that can be connected to the wj TAM wires

at TAM j, we make use of the Design_wrapper algorithm

proposed by Iyengar et al. [3]. For a wrapper-chain

configuration where sii (w) (soi(wj)) is the longest wrapper

scan-in (scan-out) chain, the test time τi (wj, tvi) for core i is

given by [3]:

where tvi is the number of vectors and wj is the TAM width.

Out of the factors that have an impact on the test quality

(fault coverage fci, probability of a defect dpi) it is possible

to impact on the number of test vectors that are applied,

which indirectly has an impact on the fault coverage. We

therefore define for each core i:
 • stvi - selected number of test vectors, and

 • fci(stvi) - fault coverage when stvi vectors are applied.

The fault coverage varies over the number of applied test

vectors. In some cases the fault coverage curve might be

available. However, in some cases (due to core protection,

limited design time etc) it might be more difficult. Hence,

an estimation technique is required. Figure 1 shows the

fault coverage for a set of ISCAS benchmarks. The

following observation can be made: the curves are similar
to an exponential function (Figure 2). We therefore assume

that the fault coverage can be estimated to:

where the slopeConst is given as follows:

and the +1 is used to adjust the curve so it passes the origin.

For each core i we introduce the CTQi (core test quality)

given as:

and for the system with n cores, we introduce the STQ
(system test quality) metric given as:

W tam wi
i 1=

k

∑= 1

Figure 1. Fault coverage versus the number of applied
number of test patterns for a set of ISCAS designs.

1 max sii w j() soi w j(),()+() tvi min sii w j() soi w j(),()+×= 2

f ci stvi()
stvi 1+()log

slopeConst
-------------------------------= 3

slopeConst
tvi 1+()log

f ci
----------------------------= 4

CT Qi dpi f ci× stvi()= 5

STQ CT Qi
i 1=

n

∑ dpi
i 1=

n

∑⁄= 6

The CTQi value depends on the defect probability (dpi)
and increases according to the exponential function fci (see

Eq. 3 and 4) with the number of applied test vectors (stvi).

Our problem is to:

 • for a given Wtam find the number of k TAMs and their

widths (w1, ..., wk),

 • for each core i select the number of vectors (stvi) and

 • assign the selected test vectors to the designed TAMs,

in such a way that the test application time for the system

meets τmax and STQ is maximized.

3. Test Scheduling and Test Vector Selection
First, it is important to note that there is the difference

between the order the test vectors are selected and the actual

execution order of the test vectors. Our algorithm may

select and assign the test vectors in one order, but when it

comes to execution all selected vectors for each core are

always executed as a single set for each core.

For a given value of the maximum number of TAMs (k),

our algorithm finds the number of TAMs, the TAM widths,

the assignment of the cores and the assignment of the test

vectors in such a way that the test quality (STQ) is

maximized (see Equation 6). In order to decide to which

TAM a core should be assigned, we introduce WDCi
(wrapper design cost):

The WDCi reflects the imbalance cost for a wrapper

design, and it is based on Eq. 2.

We assume that each core i is assigned to the TAM with

a width that will give the least contribution to WDC. During

test scheduling, we are always assigning test vectors to the

core that will increase the CTQ per clock cycle the most. If

such an assignment is impossible due to exceeding the total

available test time at one of the TAMs, we consider the

scheduling to be finished for this TAM and continue to

select the best option that do not exceed the time limit for

the remaining TAMs. We continue until test scheduling is

finished for all TAMs (all TAMs are fully occupied). Since

we want to find the solution with best system test quality,

we repeat the algorithm described above for every possible

set of TAM widths. The algorithm for our test scheduling

technique is outlined in Figure 3.

We make use of an example with data as in Table 1, is

based on core 2, 4, 5 and 6 from the ITC’02 benchmark

d281.

We illustrate in Figure 4 the following four alternatives:

1. Test scheduling without considering defect probability

and fault coverage,

2. Test scheduling considering defect probability but not

fault coverage,

3. Test scheduling considering defect probability and fault

coverage,

4. Test scheduling and test vector selection when consid-

ering defect probability and fault coverage.

In this example we assume the time constraint τmax to be

15% of the maximal test time, where the maximal test time

is the time when all test vectors are applied. In option 1,2,

and 3 where test set selection is not applied, the testing is

terminated at the time constraint τmax. As seen in Figure

4(a), option 1 results in a low system test quality (STQ). All

available test time is spent on one single core with high pass

probability (since defect probability is not taken into

account), while the other cores are not given any test time at

all. Option 2 and 3 in Figure 4 improves the test quality

Number of
test vectors

Fault coverage (%)

Figure 2. Fault coverage versus number of test vectors
estimated as an exponential function.

stvi

Max fault coverage - fci

fci(stvi)

tvi

fci

max sii w j() soi w j(),()() w j× max sii 1() soi 1(),()–= 7

Core i 1 2 3 4

Number of scan-chains 0 4 6 2

Scan-chain length scij - 8,7,7,7 32,32,32,32,32,1 9,9

Inputs wi 233 45 214 32

Outputs wo 140 52 228 32

Test vectors tvi 2206 346 374 336

Pass probability ppi 99 90 82 81

Max fault coverage fci (%) 95 98 99 45

 Table 1. Data for the example design.

Figure 3. Scheduling and vector selection algorithm.

1. Given: τmax - the upper test time limit for the system

Wtam - number of TAM wires - distributed over k
TAMs w1, w2,..., wk in such a way that Eq. 1 holds.

2. Variables: stvi = 0 //selected number of test vectors for core i
TAT = 0 // test application time of the system

3. Compute WDCi for all cores at all k TAMs (Eq. 7)

4. Select best TAM for each core based on WDCi
5. while TAT< τmax at any TAM begin
6. for i=1 to n begin // For all cores

7. Compute τ(wj,1) (Eq. 2)

8. Compute CTQi assuming stvi=stvi+1

9. end
10. for core with highest CTQ/τ(wj,1) and stvi<tvi
11. stvi=stvi+1 //take one additional vector

12. for all cores where stvi>0 begin// some selected vectors

13. Assign core to an available TAM with minimal WDCi
14. if a TAM is full (>τmax) - mark TAM as unavailable.

15. end
16. Compute and return STQ

17. end

significantly by considering defect probability respective

defect probability and fault coverage. By taking these

parameters into consideration we avoid assigning a high

number of test vectors to cores with high pass probability,

but still we are wasting test time since we are not exploiting

the fact that the first test vectors in a test set usually detects

more faults than the last ones. A more efficient way is to

considering test scheduling and test vector selection while

taking both defect probabilities and fault coverage into

account as in Figure 4 (d).

Results on the STQ for several approaches at several test

time constraints are collected in Figure 5. Interesting to note

is that the same quality (STQ) (0.7) using our approach at

10% of the test time (ATE memory) is achieved at 80% of

the test time (ATE memory) using the simplest approach.

4. Conclusions

The test data volume of SOC designs increases at a an

higher pace than the transistor count. It is therefore

becoming a problem to fit the test data in the ATE memory.

In this paper we have defined a system quality metric that

depends on fault coverage and defect probability. We have

also introduced an estimation technique for fault coverage

versus test time since fault simulation might not always be

possible to perform. We have proposed an integrated

technique for test vector selection and test scheduling where

defect probability and the fault coverage are taken into

account. Our technique selects test vectors and schedule the

tests in such a way that the test quality is maximized while

the constraint on ATE memory depth (test time) is met. We

have implemented our technique and an illustrative example

shows that high test quality can be achieved at shorter

testing times if test set selection is integrated with test

scheduling.

References
[1] P. Harrod, “Testing Reusable IP-a Case Study”, Proc. of ITC,

Atlantic City, NJ, USA, pp. 493-498, 1999.

[2] S. D. Huss and R. S. Gyurcsik, “Optimal Ordering of Analog
Integrated Circuit Tests to Minimize Test Time”, Proc. of
DAC, pp. 494-499, 1991.

[3] V. Iyengar et al., “Test Wrapper and Test Access Mechanism
Co-optimization for System-on-Chip”, Proc. of ITC,
Baltimore, MD, USA, pp. 1023-1032, 2001.

[4] W.J. Jiang and B. Vinnakota, “Defect-Oriented Test
Scheduling”,Trans. on VLSI.,Vo. 9,No.3,pp. 427-438, 2001.

[5] E. Larsson, J. Pouget, and Z. Peng, “Defect-Aware SOC Test
Scheduling“, Proc of VTS, Napa Valley, CA, USA, 2004.

[6] E. J. Marinissen et al., “A Structured and Scalable
Mechanism for Test Access to Embedded Reusable Cores”,
Proc. of ITC, Washington, DC, USA, pp. 284-293, 1998.

[7] L. Milor and A. L. Sangiovanni-Vincentelli, “Minimizing
Production Test Time to Detect Faults in Analog Circuits”,
Trans. on CAD of IC & Sys.,Vol.13, No. 6, pp 796-813, 1994.

[8] P. Varma and S. Bhatia, “A Structured Test Re-Use
Methodology for Core-based System Chips”, Proc. of ITC,
pp. 294-302, Washington, DC, USA, 1998.

[9] S. K. Goel et al., “Test Infrastructure Design for the
NexperiaTMHome Platform PNX8550 System Chip”, Proc
of DATE, Paris, France, 2004, pages 1530-1591.

[10] H. Vranken et al., “ATPG Padding And ATE Vector Repeat
Per Port For Reducing Test Data Volume”, Proc. of ITC,
Charlotte, NC, USA, 2003, pages 1069-1078.

Figure 4. Test quality (STQ) for different techniques.

Core1

Core4 Core3

1 Core2 Core3 Core4

STQ=0.584

STQ=0.437

STQ=0.397

STQ=0.0175

(a) Option 1 - test scheduling when not
considering defect probability and fault coverage.

(b) Option 2- test scheduling when considering
defect probability but not fault coverage.

(c) Option 3- test scheduling when considering
defect probability and fault coverage.

(d) Option 4- test set selection and test scheduling when
considering defect probability and fault coverage.

Core3Core2

4483

3369 1088

3122 1352

103 1232 2078 1069

0.2

0.4

0.6

0.8

1

 0 10 20 30 40 50 60 70 80 90 100

S
T

Q

test time %

Test vector selection, three TAMs
Test vector selection, two TAMs
Test vector selection, one TAM

Considering dp and fc
Considering dp but not fc
Not considering dp and fc

Figure 5. The STQ (system test quality) versus the test
application time.

