
SOC Test Time Minimization Under Multiple Constraints

Julien Pouget, Erik Larsson, and Zebo Peng

Embedded Systems Laboratory,

Computer Science Department

Linköpings Universitet, Sweden
Abstract1

In this paper, we propose a SOC (system-on-chip) test
scheduling technique that minimizes the test application
time while considering test power limitations and test
conflicts. The test power consumption is important to
consider since exceeding the system’s power limit might
damage the system. Our technique takes also into account
test conflicts that are due to cross-core testing (testing of
interconnections), unit testing with multiple test sets,
hierarchical SOCs where cores are embedded in cores, and
the sharing of test access mechanism (TAM). Our technique
handles these conflicts as well as precedence constraints,
which is the order in which the tests has to be applied. We
have implemented our algorithm and performed
experiments, which shows the efficiency of our approach.

1. Introduction

Test time minimization is a major problem when
developing a system-on-chip (SOC) test solution. Long
testing times are due to excessive test data volumes, a direct
consequence of high design complexity and the use of core-
based SOC design methodology, where pre-defined logic
blocks, cores, are integrated with UDL (user-defined logic)
to form a system.

An efficient test schedule can reduce the testing time by
allowing tests to be executed concurrently. However,
executing tests concurrently increases the activity in the
system, which leads to higher power consumption. It is
important that the test power constraints are not violated
since it might damage the system. Furthermore, test
conflicts such as cross-core testing (interconnection
testing), unit testing with multiple test sets, hierarchical
SOCs where cores are embedded in cores, and the sharing
of test access mechanism (TAM) wires, must be considered
during the test scheduling process.

Several approaches have been proposed for SOC test
scheduling [1,2,3,4,5,6,7,9,10,11,12,14]. The basic
problem is to minimize the test time for a design where the
test sets are stored in an Automatic Test Equipment (ATE)
and the main limitation is the number of available pins in
the system. Goel and Marinissen, for instance, proposed, for
systems where each core has a dedicated wrapper, a

technique that schedules the test data transportation on the
TAM wires in such a way that the total test application time
is minimized. Huang et al. proposed also a method to
address the test power consumption [3], where the test time
for a system with wrapped cores is minimized while test
power limitations are considered and tests are assigned to
TAM wires. Recently, Iyengar et al. proposed a scheduling
technique minimizing the testing time while taking
hierarchical constraints into account [8]. We have in our
previous work considered design hierarchy constraints,
power limitations, precedence constraints, multiple test set
and interconnection test [14]. However, the wrapper design
and the test scheduling were considered as two sequential
steps, which has the consequence that even if locally
optimal wrapper configurations are selected a global system
optimum is usually not achieved.

In this paper we address the SOC test scheduling
problem by proposing a test scheduling technique that
minimizes the test application time while considering test
power consumption and test conflicts. In our approach we
take power constraints and hierarchical constraints into
account. We allow the cores to be tested by multiple test
sets. It means that a core can for instance be tested using one
test set generated by an LFSR and one test set stored in the
ATE. In our approach we also consider cross-core
(interconnection) testing, which is the testing of logic and
interconnections placed between wrapped cores. We also
take precedence constraints into account which is important
when a particular order has to be enforced between some of
the tests. The main advantage of our proposed approach,
compared to our previous, is that we integrate the wrapper
design algorithm with the test scheduling algorithm, which
makes it possible to explore the design space in a more
efficient way since we do not fix the wrapper configuration
prior to the scheduling.

The rest of the paper is organized as follows. In Section
2, we give the background to the problem and formulate
precisely the problem. Our combined wrapper design and
test scheduling approach is then described in Section 3. The
experimental results are reported in Section 4 and the paper
is concluded with conclusions in Section 5.

2. Background and Problem Formulation

In this section we give the background and our problem
formulation. Let us consider a core-based system as given
in Figure 1. Such a system is said to be testable if every

1. The research is partially supported by the Swedish National
Program on Socware.

testable unit in the system is equipped with a test method
and corresponding test sets. A testable unit can be a core,
UDL, or interconnections. It is also assumed that a set of
pins can be used for the TAM (the total number of wires in
the TAM is denoted by Wmax in Figure 1) and in order to
connect the cores to the TAM some cores are equipped with
wrappers.

The problem we focus on is basically how to assign a
start time, an end time and if needed a set of TAM wires for
each test in such a way that the total test time is minimized.
The assignment should consider the conflicts discussed
below.

A wrapper is the interface between a core and the TAM
and it can normally be in one of the following modes at a
time: normal operation mode, internal test mode, external
test mode, or bypass mode. Some cores are equipped with
wrappers while others are not. In order to access test data on
the TAM, a wrapper must be used. If a testable unit does not
have its own wrapper, some other wrapper must be used.
For example, in order to test core B in Figure 1 with an ATE
stored test, the wrapper at Core A can be used to feed test
stimuli to core B and Core C can be used to receive test
responses from core B. Note, that since a wrapper can be
only in one mode at a time, testing of Core B cannot be
performed concurrently with the testing of core A and core
C, since there is a wrapper conflict. We call this type of
testing cross-core testing.

Another conflict illustrated in Figure 1 is the design
hierarchy conflict. The two cores named F and G are
embedded within core C. Such embedding of cores leads to
test conflicts since concurrent testing of core F and/or core
G with core C is not possible.

Each testable unit can be tested by one or more test sets.
If more than one test set exists for a testable unit, there is a
test conflict since only one test set can be applied at a time
to a testable unit. The test time at a testable unit can often be
modified. An example of such is the scan-tested core given
in Figure 3 where the scan-chains and the wrapper cells are
configured into two wrapper-chains. A higher number of
wrapper-chains reduces the testing time at the expense of

more TAM wires and vice versa. Iyengar et al. showed that
the problem is NP-hard [6]. A wrapper design algorithm
computes the test time at a given number of wrapper chains.
A Pareto-optimal point is a configuration where there exists
no lower testing time for a lower number of wrapper chains.

We assume that a test set for a testable unit is either stored
in an ATE or generated at a dedicated BIST engine placed
at the testable unit. It means that if a testable unit is tested
by only a BIST test set there is no need to make use of TAM
wires. On the other hand, for a test stored at the ATE, TAM
wires are required for the transportation of test stimuli from
the ATE via the TAM to the testable unit and TAM wires are
required for the transportation of test response from the
testable unit to the ATE. At any time, only one testable unit
can use a wire. There is a sharing conflict, which is
illustrated in Figure 2. Figure 2 illustrates the assignment of
TAM wires to three tests over time. Each test is assigned to
TAM wires for a certain period of time. In terms of TAM
costs, at the moment and for small systems, the area
overhead induced by the bus based TAM we propose might
be negligeable compared to the cores total area. With the
apparition of more complex systems and larger SoCs (up to
100 cores), the SoC concept should move to a Network On
Chip one (NoC) and the wiring additionnal area should be
considered. In our approach, we only provide as a TAM
information the number of wires, considered as an upper
bound to schedule the tests considering all the constraints.
We do not provide more details on the wiring area of the
TAM because we do not propose a physical implementation
of the test architecture. Therefore, we do not consider the
routing cost.

The execution of a test results in switching activity,
which consumes power. Figure 4 shows the execution of a
test and its power consumption. The power varies over time.
However, to simplify the analysis, we will assume a fixed
power value attached to each test. The total power
consumed by a system under test at a certain point is the

Figure 1. A core-based design with a TAM, cores in
wrappers (Core A and core C) and hierarchy (core D
and E are embedded in core A and core F and G are

embedded in core C).

Wmax

Core A Core C

Core BD E
F

G

WrapperTAM wire

Figure 2. TAM wire-constrained test scheduling.

W
Wmax

TimeTest 3
Test 1

Test 2

Figure 3. A wrapped scan tested core where the scan-
chains and wrapper cells are configured into two

wrapper chains.

Core

Wrapper cell Scan-chain 3

Wrapper

Wrapper cell

Scan-chain 1

Scan-chain 2

summation of the test power of the tests that are executed at
the point. At no time it is allowed to consume more power
than the power budget.

In some cases, the order in which the tests are executed
is important. It imposes precedence constraints which
means that some tests must be executed prior to others.

3. Proposed Test Scheduling Technique

In this section we describe our technique to integrate
wrapper design (scan-chain chaining) and test scheduling.

The wrapper chain design algorithm configures the
scanned elements (scan-chains, input wrapper cells, output
wrapper cells and bidirectional wrapper cells) into a given
number of wrapper chains and computes the testing time for
the wrapper configuration. We compute the Pareto optimal
points for each core. In the scheduling step, we use a
heuristic aiming to minimize the total test time taking into
account the constraints and we make use of the Pareto
optimal points provided by the wrapper designs heuristic.

Our previously proposed technique [14] considered
design hierarchy constraints, power limitations, precedence
constraints, multiple test sets, and cross-core testing.
However, the technique consists of two consecutive steps.
First it selects a wrapper configuration for each core and
then the tests, configured according to the selected
configuration, are scheduled. The main disadvantage is that
it does not allow an efficient exploration of the possible
solutions since a locally optimal wrapper configuration
does not guarantee a global optimal solution. In our current
work method, we integrate the wrapper design and the test
scheduling. The advantage is that a wide range of wrapper
designs can be explored.

The proposed wrapper design heuristic is illustrated in
Figure 5. We use an internal chaining function aiming at
balancing the scan chains in order to reduce the longest
wrapper chain. The longest wrapper chain is the one that
limits the solution (the testing time) as shown in [14]. The
generated designs are memorized so that all the possible
architectures for each core can be checked during the TAM
building and the test scheduling steps.

The scheduling heuristic is outlined in Figure 6. First the
tests are sorted in decreasing test time order. For each test,
one Pareto optimal point is selected considering the
maximal width use (i.e. the couple Ti, Wi with Wi being the
closest to Wmax (Wmax is given)).

At step two, the VirtualTime test time is estimated in
order to obtain a lower bound for the system test time. This
bound is used in the scheduling heuristic during the

selection of configurations for each core. The advantage is
that points with a testing time higher than VirtualTime will
not be selected since they will increase the total test time.

The VirtualTime is calculated using the formula:

where Wmax is the number of available pins for test access
(the TAM bandwidth), Wi is the lowest number of TAM

Figure 4. Modelling of test power consumption.

Power

Time

Power consumption

Power estimation

Test 1

Wmax=number of TAM connections
NbLines=(int)(Wmax/2)
#SC=number of Scan Chains

Process ‘Internal chaining’
Sort the internal scan chain in decreasing length order
Select the (NbLines) longest scan chains as the (NbLines) lines
While (#SC>NbLines)

Chain the shortest line with the shortest scan chain
Update #SC
Update length of the longest scan chain
Sort scan chains in decreasing length order

End process
Add functional I/Os balancing the scan chains
End

Figure 5. Our wrapper chain design
heuristic (scan-chain chaining).

1. L1=list of sorted tests in decreasing test time order

2. VirtualTime=

3. For tolerance=0 to tolerance=80
4. While all tests are not scheduled
5. While L1 not empty
6. For each test T in L1
7. For each time point t defining the beginning of a

test session
8. Select the best Pareto optimal point such that a)

it respects the tolerance; b) the width constraint
is satisfied, c) the test time does not exceed Vir-
tualTime, and d) precedence, power, incompati-
bilities constraints are respected.

9. If (the current total test time will not change
when T is scheduled to start at t)

10. Schedule T at t with the selected Pareto
point; remove T from L1.

11. Else
12. If T is the first test of L1
13. Schedule T at t with the selected Pareto

point; remove T from L1.
14. Else
15. Put the test T in L2; remove T from L1.
16. L1<=L2
17. End

Wi Ti×∑ Wlimit⁄

Figure 6. Our Test Scheduling Heuristic

VirtualTime

Wi Ti×
i
∑

Wlimit
------------------------=

wires assigned to a core, and Ti is the testing time assuming
Wi TAM wires.

The formula gives the lower bound for the system test
time without considering any constraints. In this ideal case,
the schedule does not contain any idle times (i.e. there is no
time loss), and it is therefore the best it can ever achieve. In
practice, it is usually impossible to find a test schedule with
the VirtualTime test time because the tests incompatibilities
due to design hierarchy and test resource sharing constraints
influence the schedule. Through the scheduling process, we
slowly increase the VirtualTime. We then use a tolerance
percentage in order to select the Pareto optimal points in the
scheduling. The Pareto optimal points correspond to
optimal wrapper designs for a given width constraint and
are pre-calculated by our wrapper design heuristic. The
tolerance is a percentage of cost loss compared to the best
cost computed by the wrapper design algorithm (the cost is
defined for each wrapper design by the product Wi*Ti). For
instance, if the tolerance is 10%, the dynamic choice of the
Pareto optimal point will be done in each session trying to
schedule the test checking every wrapper configuration with
a cost loss between 0% and 10%.

The main idea in the heuristic is to schedule the tests as
soon as possible using the Pareto optimal points defined in
the wrapper design heuristic. For each test, the heuristic
tries to place each test in a session starting from time t=0,
and also trying all the Pareto optimal points (i.e. changing
the values of Wi and Ti) of the considered test with a cost
loss lower or equal to the tolerance to fit in the constraints.
The heuristic defines one schedule and one TAM
configuration for each tolerance (i.e. 80 schedules and TAM
configurations from 0% to 80%) and memorizes the
solution with the smallest test time fitting into the limits
imposed by the constraints.

For all the tests that are first sorted into a list L1, if one
test can not be scheduled, it is placed in a auxiliary list L2
to be scheduled later. When L1 is empty, i.e. all tests are
scheduled or placed in L2, then L2 becomes L1 and the
process is re iterated until all tests are scheduled.

4. Experimental Results

We have implemented our test scheduling technique and
performed experiments using the ITC’02 benchmarks. Note
that none of the previous approaches consider more test
conflicts than TAM wire sharing but Iyengar et al. [8] who
consider design hierarchy constraints in the benchmarks. In
all other approaches the design is assumed to be flat.

We are, as discussed above, considering the test conflicts
and we are also considering cases when one core is tested
by several tests. These realistic assumptions, obviously,
make the problem more complicated.

In the first experiment we compare our technique with
the approach presented by Huang et al. [3] using the d695
circuit considering the same power values depicted in Table
1. The results are given in Table 2 for different TAM

the power constraint is relaxed the better are our results
compared to the ones presented in [3]. Otherwise, the
results by the two approaches are similar even if we in our
approach consider the test conflicts.

In our second experiment, we compared our approach to
previous proposed techniques using the d695, p22810 and
p93791 without considering any power limitation. The
results are for a range of TAM bandwidths given in Table 3.
We list first the lower bound from Goel and Marinissen [10]
and the VirtualTime extracted from our formula above.
Then we compare the test times for each TAM width for
[3,5,6,14]. Note that in p22810 and p93791 there are design
hierarchy constraint that we are considering.

In our last experiment, we applied our algorithm
assuming different power constraint values. We made use of
two designs with a high number of tests; p22810 containing
30 tests and p93791 containing 32 tests. As power values
are not given in these benchmarks, we added values as
depicted in Table 1. The power limitations for p93791 are in
the range from 30000 down to 10000 and for p22810 the
range is from 10000 down to 3000 units. The results are

Test d695 p22810 p93791
1 660 173 7014
2 602 173 74
3 823 1238 69
4 275 80 225
5 690 64 248
6 354 112 6150
7 530 2489 41
8 753 144 41
9 641 148 77

10 1144 52 395
11 - 2505 862
12 - 289 4634
13 - 739 9741
14 - 848 9741
15 - 487 78
16 - 115 201
17 - 580 6674
18 - 237 113
19 - 442 5252
20 - 441 7670
21 - 167 113
22 - 318 76
23 - 1309 7844
24 - 260 21
25 - 363 45
26 - 311 76
27 - 2512 3135
28 - 2921 159
29 - 413 6756
30 - 508 77
31 - - 218
32 - - 396

 Table 1. Power consumption values for the tests in
design d695, p22810, and p93791.

Desig 128

App ur

Pmax 402

Pmax 804

Pmax 469

Pmax 394
presented in Table 4 and Table 5.
The computation time of our algorithm including the

wrapper design and test scheduling is only a few seconds
using an AMD 1800 machine (1.53 GHz, 512 MB RAM).

5. Conclusions

In this paper we have proposed a test scheduling technique
that takes test power consumption and test conflicts into
account when minimizing the test application time. It is
important to consider test power consumption since
exceeding it might damage the system. The test conflicts we
consider are important since they appear in SOC designs.
For instance, cross-core testing (interconnection testing),
unit testing with multiple test sets, hierarchical SOCs where
cores are embedded in cores, and the sharing of test access
mechanism (TAM) wires. Another important conflict that
we consider is precedence constraints, which is the order in
which the tests are to be applied.

We have implemented our technique and performed
several experiments where we compare our technique with
previous proposed approaches. The experiments show that
our technique has a low computational cost and the results
are comparable with other techniques which do not consider
all the constraints and limitations that we are handling.

References

[1] E. Cota, L. Carro, M. Lubaszewski, and A. Orailoglu, “Test
Planning and Design Space Exploration in a Core-based
Environment”, Proceedings of the Design, Automation and
Test in Europe Conference (DATE), pp. 478-485, Paris,
France, March 2002.

[2] H-S Hsu, J-R Huang, K-L Cheng, C-W Wang, C-T Huang,
and C-W Wu, “Test Scheduling and Test Access Architecture
Optimization for System-on-Chip”, Proceedings of IEEE
Asian Test Symposium (ATS), pp. 411-416, Tamuning, Guam,
USA, November 2002.

[3] Y. Huang, S.M. Reddy, W-T Cheng, P. Reuter, N. Mukherjee,
C-C Tsai, O. Samman, Y. Zaidan, “Optimal core wrapper
width selection and SOC test scheduling based on 3-D bin
packing algorithm”, Proceedings IEEE of International Test
Conference (ITC), pp. 74-82, Baltimore, MD, USA, October
2002.

[4] V. Iyengar, K. Chakrabarty, and E. J. Marinissen, “Test
Wrapper and Test Access Mechanism Co-Optimization for
System-on-Chip”, Journal of Electronic Testing; Theory and
Applications (JETTA), pp. 213-230, April 2002.

[5] V. Iyengar K. Chakrabarty, and E. J. Marinissen, “Efficient
Wrapper/TAM Co-Optimization for Large SOCs”,
Proceedings of Design and Test in Europe (DATE), pp. 491-
498, Paris, France, March 2002.

[6] V. Iyengar, K. Chakrabarty, and E. J. Marinissen, “On Using
Rectangle Packing for SOC Wrapper/TAM Co-
Optimization”, Proceedings of IEEE VLSI Test Symposium
(VTS), pp. 253-258, Monterey, California, USA, April 2002.

[7] V. Iyengar, S. K. Goel, E. J. Marinissen and K. Chakrabarty,
“Test Resource Optimization for Multi-Site Testing of SOCs
under ATE Memory Depth Constraints”, Proceedings of
IEEE International Test Conference, pp. 1159-1168,
Baltimore, MD, USA, October 2002.

[8] V. Iyengar, K. Chakrabarty, M. D. Krasniewski, and G. N.
Kuma, "Design and Optimization of Multi-level TAM
Architectures for Hierarchical SOCs", Proceedings of IEEE
VLSI Test Symposium (VTS), pp. 299-304, 2003.

[9] S. K. Goel and E. J. Marinissen, “Cluster-Based Test
Architecture Design for System-On-Chip, Proceedings of
IEEE VLSI Test Symposium (VTS), pp. 259-264, Monterey,
California, USA, April 2002.

[10] S. K. Goel and E. J. Mariniseen, “Effective and efficient test
architecture design for SOCs”, Proceedings of IEEE
International Test Conference, pp. 529-538, Baltimore, MD,
USA, October 2002.

[11] S. Koranne, “On Test Scheduling for Core-based. SOCs”,
Proceedings of International Conference on VLSI Design, pp
505-510, Bangalore, India, January 2002.

[12] S. Koranne and V. Iyengar, “On the use of k - tuples for SoC
test schedule representation”, Proceedings of International
Test Conference (ITC), pp. 539- 548, Baltimore, MD, USA,
October 2002.

[13] E. J.Marinissen, R. Kapur, and Y. Zorian, “On Using IEEE
P1500 SECT for Test Plug-n-play”, Proceedings of IEEE
International Test Conference (ITC), pp. 770-777, Atlantic
City, NJ, USA, October 2000.

[14] J. Pouget, E. Larsson, Z. Peng, M.-L. Flottes, B. Rouzeyre,
“An Efficient Approach to SoC Wrapper Design, TAM
configuration, and Test Scheduling”, Proceedings of IEEE
European Test Workshop (ETW), Maastricht, The
Nederlands, May 2003.

n: d695 TAM width=32 TAM width=48 TAM width=64 TAM width=80 TAM width=96 TAM width=112 TAM width=

roach: [3] Our [3] Our [3] Our [3] Our [3] Our [3] Our [3] O

=1500 45560 43541 31028 32663 27573 26973 20914 24369 20914 23425 16841 19402 16841 19

=1800 44341 42450 29919 32054 24454 23864 20467 18774 18077 18774 14974 18774 14899 16

=2000 43221 42450 29419 29106 24171 21942 19206 18691 17825 17467 14128 14563 14128 14

=2500 43221 41847 29023 29106 23721 21931 19206 18691 15847 17257 14128 13963 12993 13

 Table 2. Power constrained test time on design d695 - Comparison between Huang et al. [3] and our approach.

Test Time

Design TAM Width LB[10] Virtual Time Multiplexed [14] Static [14] [3] [6] [5] [8] Our

d695

128/64 10247 9584 36158 13348 11279 11604 12941 - 13348

96/48 13659 12780 36232 19932 15142 15698 15300 - 17257

80/40 16388 15335 36232 19932 17366 18459 18448 - 18691

64/32 20482 19169 45798 32857 21389 23021 22268 - 20512

48/24 27305 25559 45972 33031 28639 30317 30032 - 29106

32/16 40951 38339 78077 65136 42716 43723 42644 - 41847

p22810

128/64 104868 105493 503088 142360 128512 136941 153990 - 128332

96/48 139823 140578 503534 215339 167858 167256 232049 - 159994

80/40 167787 168790 503635 223463 184951 197293 232049 - 195733

64/32 209734 210988 531631 294046 223462 246150 246332 - 236186

48/24 279644 281317 619537 418226 300723 307780 313607 - 352834

32/16 419466 421976 664665 574120 446684 452639 468011 - 473418

p93791

128/64 436673 413565 639827 618150 459233 511286 473997 481896 457862

96/48 582227 551420 672119 650402 607955 627934 599373 635710 639217

80/40 698670 661704 1174475 1155800 719880 794020 741965 758156 787588

64/32 873334 827131 1240170 1221495 900798 975016 894342 863765 945425

48/24 1164442 1102841 1377123 1358448 1200157 1248795 1209420 1293990 1220469

32/16 1746657 1654261 2432511 2432511 1791860 1851135 1786200 1927010 1827819

Table 3. Experimental results. Comparison between Multiplexed approach [14], Pouget et al. [14], Huang et al. [3], Iyengar
et al. [6], Iyengar et al. [5], Iyengar et al. [8], and our approach.

p22810
Virtual Time

No Pmax Pmax = 10000 Pmax = 8000 Pmax = 6000 Pmax = 5000 Pmax = 4000 Pmax = 3000

TAM Width Test Time Test Time Test Time Test Time Test Time Test Time Test Time

128 103 344 128 332 128 332 142 056 157 568 246 110 268 856 293 021

112 118 108 138 410 138 542 147 535 159 686 257 600 268 272 293 528

96 137 792 159 994 159 994 159 994 174 928 266 166 285 814 311 632

80 165 351 195 733 195 733 195 733 209 559 264 038 285 307 356 215

64 206 688 236 186 236 186 236 186 250 487 321 930 324 478 309 255

48 275 584 352 834 352 834 352 834 346 461 382 507 389 243 392 525

32 413 376 473 418 473 418 473 418 475 951 472026 480 223 482 963

24 551 168 635 583 635 583 635 583 638 116 638 316 653 699 680 622

20 661 402 819 465 819 465 819 465 819 530 845 469 845 469 845 469

16 826 753 892 713 892 713 892 713 893 050 891 457 891 457 948 481

12 1 102 337 1 206 986 1 206 986 1 206 986 1 206 986 1 206 986 1 206 986 1 206 986

 Table 4. Power-constrained scheduling on p22810.

p93791
Virtual Time

No Pmax Pmax = 30000 Pmax = 25000 Pmax = 20000 Pmax = 15000 Pmax = 10000

TAM Width Test Time Test Time Test Time Test Time Test Time Test Time

128 424 847 457 862 457 862 493 599 472 653 486 469 568 734

112 485 539 515 020 515 020 549 669 549 669 598 487 629 051

96 566 462 639 217 639 217 639 217 658 132 631 214 691 866

80 679 755 787 588 787 588 821 475 821 575 848 050 1 091 210

64 849 694 945 425 945 425 965 383 957 921 1 014 616 1 117 385

48 1 132 924 1 220 469 1 220 469 1 220 469 1 220 469 1 220 469 1 220 469

32 1 699 387 1 827 819 1 827 819 1 827 819 1 827 819 1 827 819 1 827 819

24 2 265 850 2 399 834 2 399 834 2 399 834 2 399 834 2 399 834 2 399 834

20 2 719 020 2 951 651 2 951 651 2 951 651 2 951 651 2 951 651 2 951 651

16 3 398 775 3 574 150 3 574 150 3 574 150 3 574 150 3 574 150 3 574 150

12 4 531 700 4 728 023 4 728 023 4 728 023 4 728 023 4 728 023 4 728 023

 Table 5. Power-constrained scheduling on p93791.

	SOC Test Time Minimization Under Multiple Constraints
	Julien Pouget, Erik Larsson, and Zebo Peng
	Embedded Systems Laboratory,
	Computer Science Department
	Linköpings Universitet, Sweden
	Abstract
	In this paper, we propose a SOC (system-on-chip) test scheduling technique that minimizes the tes...
	1. Introduction
	2. Background and Problem Formulation
	Figure 1. A core-based design with a TAM, cores in wrappers (Core A and core C) and hierarchy (co...
	Figure 2. TAM wire-constrained test scheduling.
	Figure 3. A wrapped scan tested core where the scan- chains and wrapper cells are configured into...
	Figure 4. Modelling of test power consumption.

	3. Proposed Test Scheduling Technique
	Figure 5. Our wrapper chain design heuristic (scan-chain chaining).
	2. VirtualTime=
	3. For tolerance=0 to tolerance=80
	4. While all tests are not scheduled
	5. While L1 not empty
	6. For each test T in L1
	7. For each time point t defining the beginning of a test session
	8. Select the best Pareto optimal point such that a) it respects the tolerance; b) the width cons...
	9. If (the current total test time will not change when T is scheduled to start at t)
	10. Schedule T at t with the selected Pareto point; remove T from L1.
	11. Else
	12. If T is the first test of L1
	13. Schedule T at t with the selected Pareto point; remove T from L1.
	14. Else
	15. Put the test T in L2; remove T from L1.
	16. L1<=L2
	17. End

	4. Experimental Results
	Table 1 . Power consumption values for the tests in design d695, p22810, and p93791.

	5. Conclusions
	References
	[1] E. Cota, L. Carro, M. Lubaszewski, and A. Orailoglu, “Test Planning and Design Space Explorat...
	[2] H-S Hsu, J-R Huang, K-L Cheng, C-W Wang, C-T Huang, and C-W Wu, “Test Scheduling and Test Acc...
	[3] Y. Huang, S.M. Reddy, W-T Cheng, P. Reuter, N. Mukherjee, C-C Tsai, O. Samman, Y. Zaidan, “Op...
	[4] V. Iyengar, K. Chakrabarty, and E. J. Marinissen, “Test Wrapper and Test Access Mechanism Co-...
	[5] V. Iyengar K. Chakrabarty, and E. J. Marinissen, “Efficient Wrapper/TAM Co-Optimization for L...
	[6] V. Iyengar, K. Chakrabarty, and E. J. Marinissen, “On Using Rectangle Packing for SOC Wrapper...
	[7] V. Iyengar, S. K. Goel, E. J. Marinissen and K. Chakrabarty, “Test Resource Optimization for ...
	[8] V. Iyengar, K. Chakrabarty, M. D. Krasniewski, and G. N. Kuma, "Design and Optimization of Mu...
	[9] S. K. Goel and E. J. Marinissen, “Cluster-Based Test Architecture Design for System-On-Chip, ...
	[10] S. K. Goel and E. J. Mariniseen, “Effective and efficient test architecture design for SOCs”...
	[11] S. Koranne, “On Test Scheduling for Core-based. SOCs”, Proceedings of International Conferen...
	[12] S. Koranne and V. Iyengar, “On the use of k - tuples for SoC test schedule representation”, ...
	[13] E. J.Marinissen, R. Kapur, and Y. Zorian, “On Using IEEE P1500 SECT for Test Plug-n-play”, P...
	[14] J. Pouget, E. Larsson, Z. Peng, M.-L. Flottes, B. Rouzeyre, “An Efficient Approach to SoC Wr...
	Table 2 . Power constrained test time on design d695 - Comparison between Huang et al. [3] and ou...
	Table 3 . Experimental results. Comparison between Multiplexed approach [14], Pouget et al. [14],...
	Table 4 . Power-constrained scheduling on p22810.
	Table 5 . Power-constrained scheduling on p93791.

