
Test Time Minimization for Hybrid BIST of Core-Based Systems
Gert Jervan, Petru Eles, Zebo Peng

Embedded Systems Laboratory (ESLAB)
Linköping University, Sweden

{gerje, petel, zebpe}@ida.liu.se

Raimund Ubar, Maksim Jenihhin
Department of Computer Engineering
Tallinn Technical University, Estonia

{raiub, maksim}@pld.ttu.ee

Abstract1
This paper presents a solution to the test time minimization

problem for core-based systems. We assume a hybrid BIST
approach, where a test set is assembled, for each core, from
pseudorandom test patterns that are generated online, and
deterministic test patterns that are generated off-line and
stored in the system. In this paper we propose an iterative
algorithm to find the optimal combination of pseudorandom
and deterministic test sets of the whole system, consisting of
multiple cores, under given memory constraints, so that the
total test time is minimized. Our approach employs a fast
estimation methodology in order to avoid exhaustive search
and to speed-up the calculation process. Experimental results
have shown the efficiency of the algorithm to find a near
optimal solutions.

1. Introduction

Today’s microelectronics technology provides designers
the possibility to integrate a large number of different
functional blocks, usually referred as cores, in a single IC.
Such a design style allows designers to reuse previous
designs and will lead therefore to shorter time-to-market and
reduced cost. Such a system-on-chip (SoC) approach is very
attractive from the designers’ perspective. Testing of such
systems, on the other hand, is a problematic and time
consuming task, mainly due to the resulting IC’s complexity
and the high integration density [1].

To test the individual cores in such systems the test pattern
source and sink have to be available together with an
appropriate test access mechanism (TAM) [2]. Traditional
approaches implement both test source and sink off-chip and
require therefore the use of external Automatic Test
Equipment (ATE). As the requirements for the ATE speed
and memory size are continuously increasing, the ATE
solution may be unacceptably expensive and inaccurate.
Therefore, in order to apply at-speed tests and to keep the test
costs under control, on-chip test solutions are becoming a
mainstream technology for testing such complex systems.
Such a solution is usually referred to as built-in self-test
(BIST).

1 This work has been supported by the Swedish Foundation for Strategic
Research (SSF) under the Strategic Integrated Electronic Systems Research
(STRINGENT) program, by the EC project EVIKINGS (IST-2001-37592)
and by the Estonian Science Foundation Grants 4300 and 5649.

Different test scenarios are possible while using BIST.
Sometimes the embedded cores may be tested using only
internally generated pseudorandom test patterns. Due to
several reasons, like very long test sequences, and random
pattern resistant faults, this approach may not always be
efficient. One solution to this problem is to complement
pseudorandom test patterns with deterministic test patterns,
applied from the on-chip memory or, in special situations,
from the ATE. This approach is usually referred to as hybrid
BIST [3].

One of the important parameters influencing the efficiency
of a hybrid BIST approach is the ratio of pseudorandom and
deterministic test patterns in the final test set. As the amount
of resources on the chip is limited, the final test set has to be
designed in such a way that the deterministic patterns fit into
the on-chip memory. At the same time the testing time must
be minimized in order to reduce testing cost and time-to-
market.

There exists extensive work for testing core-based
systems. The main emphasis has been so far on test
scheduling, TAM design and testability analysis. The earlier
test scheduling work has had the objective to determine start
times for each test such that the total test application time is
minimized. This assumes a fixed set of tests and test
resources together with a test access architecture. Some
approaches can also take into account test conflicts and
different constraints, e.g. power [4] - [11]. However there
hasn’t been any work to find the optimal test sets for testing
every individual core in such a manner that the total system
test time is minimized and the different ATE constraints
satisfied. Sugihara et al. [8] have addressed the problem of
selecting a test set for each core from a set of pre-determined
test sets provided by the core vendor and scheduling these
tests in order to minimize the testing time. Although this
approach can find the best possible selection of tests from a
given set, it doesn’t provide a mechanism for finding the test
set in first place.

This paper deals with the problem of core-based system
testing where hybrid BIST approach is used. Our earlier
work, [3], [12] and [13], has been concentrating on test cost
calculation and hybrid BIST optimization for single-core
designs. In this paper we propose a methodology for test time
minimization, under memory constraints, for multi-core
systems. We propose an algorithm for calculating the best
combination between pseudorandom and deterministic tests,
where the memory constraints are not violated, the total test

time is minimized, and maximum achievable fault coverage
is guaranteed.

Relations between different cost components of the test
sets, as functions of the hybrid BIST structure, are introduced
to find the optimal solution. To avoid exhaustive search, a
method for estimating the cost of the deterministic
component in the hybrid test set is introduced. Finally, based
on our estimation methodology, we have developed an
iterative algorithm to minimize the total length of the hybrid
BIST solution under given memory constraints.

The rest of the paper is organized as follows. In Section 2
a hybrid BIST architecture is described and a general problem
description is given. Section 3 is devoted to basic definitions,
cost functions and problem formulation. Section 4 describes
our test cost estimation methodology and the algorithm for
test length minimization, based on our estimates is presented
in Section 5. Finally, the experimental results are presented in
Section 6, and Section 7 concludes the paper together with
directions to the future work.

2. Hybrid BIST Architecture

Recently we have proposed a hybrid BIST optimization
methodology for a single core designs [3]. Such a hybrid
BIST approach starts with a pseudorandom test sequence of
length L. At the next stage, the stored test approach takes
place: precomputed deterministic test patterns are applied to
the core under test to reach the desirable fault coverage. For
off-line generation of the deterministic test patterns, arbitrary
software test generators may be used, based on deterministic,
random or genetic algorithms.

In a hybrid BIST technique the length of the
pseudorandom test is an important parameter that determines
the behavior of the whole test process. It is assumed here that
for the hybrid BIST the best polynomial for the
pseudorandom sequence generation will be chosen. By using
the best polynomial, we can achieve the maximal fault
coverage of the CUT. In most cases this means that we can
achieve 100% fault coverage if we run the pseudorandom test
long enough. With the hybrid BIST approach we terminate
the pseudorandom test in the middle and remove the latter
part of the pseudorandom sequence, which leads to lower
fault coverage achievable by the pseudorandom test. The loss
of fault coverage should be compensated by additional
deterministic test patterns. In general a shorter pseudorandom
test set implies a larger deterministic test set. This requires
additional memory space, but at the same time, shortens the
overall test process, since deterministic test vectors are more
efficient in covering faults than the pseudorandom ones. A
longer pseudorandom test, on the other hand, will lead to
longer test application time with reduced memory
requirements. Therefore it is crucial to determine the optimal
length LOPT of the pseudorandom test sequence, in order to
minimize the total testing cost. Our previously proposed
methodology enables us to find the most cost-effective
combination of the two test sets not only in terms of test time

but also in terms of tester/on-chip memory requirements. The
efficiency of such approach has been demonstrated so far for
individual cores. In this paper we propose an approach to
extend our methodology also for complex systems containing
more than one core. We take into account the constraints
(memory size) imposed by the system and minimize the
testing time for the whole system with multiple cores, while
keeping the high fault coverage.

In this paper we assume the following test architecture:
Every core has its own dedicated BIST logic that is capable to
produce a set of independent pseudorandom test patterns, i.e.
the pseudorandom test sets for all the cores can be carried out
simultaneously. The deterministic tests, on the other hand,
can only be carried out for one core at a time, which means
only one test access bus at the system level is needed. An
example of a multi-core system, with such a test architecture
is given in Figure 1.

SoC

 C3540

 C1908 C880 C1355

Embedded Tester
 C2670

Test access
mechanismBIST BIST

BISTBISTBIST

Test
Controller

Tester
Memory

Figure 1. A core-based system example with the

proposed test architecture

This example system consists of 5 cores (different ISCAS
benchmarks). Using our hybrid BIST optimization
methodology for single core [3] we can find the optimal
combination between pseudorandom and deterministic test
patterns for every individual core (Figure 2). Considering the
assumed test architecture, only one deterministic test set can
be applied at any given time, while any number of
pseudorandom test sessions can take place in parallel. To
enforce the assumption that only one deterministic test can be
applied at a time, a simple ad-hoc scheduling can be used.
The result of this scheduling defines the starting moments for
every deterministic test session, the memory requirements,
and the total test length t for the whole system. This situation
is illustrated on Figure 2.

As it can be seen from Figure 2, the solution where every
individual core has the best possible combination between
pseudorandom and deterministic patterns usually does not
lead to the best system-level test solution. In the example we
have illustrated three potential problems:
 The total test length of the system is determined by the

single longest individual test set, while other tests may be
substantially shorter;

 The resulting deterministic test sets do not take into
account the memory requirements, imposed by the size of

the on-chip memory or the external test equipment;
 The proposed test schedule may introduce idle periods,

due to the test conflicts between the deterministic tests of
different cores;

There are several possibilities for improvement. For

example the ad-hoc solution can easily be improved by using
a better scheduling strategy. This, however, does not
necessarily lead to a significantly better solution as the ratio
between pseudorandom and deterministic test patterns for
every individual core is not changed. Therefore we have to
explore different combinations between pseudorandom and
deterministic test patterns for every individual core in order to
find a solution where the total test length of the system is
minimized and memory constraints are satisfied. In the
following sections we will define this problem more
precisely, and propose a fast iterative algorithm for
calculating the optimal combination between different test
sets for the whole system.

3. Basic Definitions and Problem Formulation

Let us assume that a system S consists of n cores C1, C2,…,
Cn. For every core Ck ∈ S a complete sequence of determinis-
tic test patterns TDF

k and a complete sequence of
pseudorandom test patterns TPF

k will be generated. It is
assumed that both test sets can obtain by itself maximum
achievable fault coverage Fmax .

Definition 1: A hybrid BIST set THk = {TPk, TDk} for a
core Ck is a sequence of tests, constructed from the subsets of
pseudorandom test sequence TPk ⊆ TPF

k, and a deterministic
test sequence TDk ⊆ TDF

k . The sequences TPk and TDk
complement each other to achieve the maximum achievable
fault coverage.

Definition 2: A pattern in a pseudorandom test sequence is
called efficient if it detects at least one new fault that is not
detected by the previous test patterns in the sequence. The
ordered sequence of efficient patterns form an efficient
pseudorandom test sequence TPEk = (P1, P2,…,Pn) ⊆ TPk.
Each efficient pattern Pj ∈ TPEk is characterized by the length
of the pseudorandom test sequence TPk, from the start to the
efficient pattern Pj, including Pj. Efficient pseudorandom test

sequence TPEk, which includes all efficient patterns of TPF
k is

called full efficient pseudorandom test sequence and denoted
by TPEF

k .
Definition 3: The cost of a hybrid test set THk for a core

Ck is determined by the total length of its pseudorandom and
deterministic test sequences, which can be characterized by
their costs, COSTP,k and COSTD,k respectively:

kkkkDkPkT TDTPCOSTCOSTCOST βα +=+= ,,,

and by the cost of recourses needed for storing the
deterministic test sequence TDk in the memory:

., kkkM TDCOST γ=
The parameters α and βk can be introduced by the designer

to align the application times of different test sequences. For
example, when a test-per-clock BIST scheme is used, a new
test pattern can be generated and applied in each clock cycle
and in this case α = 1. The parameter βk for a particular core
Ck is equal to the total number of clock cycles needed for
applying a deterministic test pattern from the memory. In a
special case, when deterministic test patterns are applied by
an external test equipment, application of deterministic test
patterns may be up to one order of magnitude slower than
applying BIST patterns. The coefficient γk is used to map the
number of test patterns in the deterministic test sequence TDk
into the memory recourses, measured in bits.

Definition 4: When assuming the test architecture
described above, a hybrid test set TH = {TH1, TH2, …, THn}
for a system S = {C1, C2, …, Cn} consists of hybrid tests THk
for each individual core Ck, where pseudorandom
components of the TH can be scheduled in parallel, whereas
the deterministic components of TH must be scheduled in
sequence due to the shared test resources.

Definition 5: J = (j1, j2,…, jn) is called the characteristic
vector of a hybrid test set TH = {TH1, TH2, …, THn}, where
jk = |TPEk| is the length of the efficient pseudorandom test
sequence TPEk ⊆ TPk ⊆ THk.

According to Definition 2, for each jk corresponds a
pseudorandom subsequence TPk(jk) ⊆ TPF

k, and according to
Definition 1, any pseudorandom test sequence TPk(jk) should
be complemented with a deterministic test sequence, denoted
with TDk(jk), that is generated in order to achieve the
maximum achievable fault coverage. Based on this we can
conclude that the characteristic vector J determines entirely
the structure of the hybrid test set THk for all cores Ck ∈ S.

Definition 6: The test length of a hybrid test TH = {TH1,
TH2, …, THn} for a system S = {C1, C2, …, Cn} is given by:

}.),(max{max kk
k

kkk
k

T TDTDTPCOST ββα ∑+=

The total cost of resources needed for storing the patterns
from all deterministic test sequences TDk in the memory is
given by:

.∑=
k

kkM TDCOST γ

Definition 7: Let us introduce a generic cost function
COSTM,k = fk(COSTT,k) for every core Ck ∈ S, and an
integrated generic cost function COSTM = fk(COSTT) for the

0 100 200 300 400 500

c3540

c1355

c2670

c880

c1908

BIST Idle Deterministic

Core Random Det.
C1908 105 123
C880 121 48
C2670 444 77
C1355 121 52
C3540 297 110

clock
cycle

t

Figure 2. Ad-hoc test schedule for hybrid BIST
of the core-based system example

whole system S.
The functions COSTM,k = fk(COSTT,k) will be created in the

following way. Let us have a hybrid BIST set THk(j) =
{TPk(j), TDk(j)} for a core Ck with j efficient patterns in the
pseudorandom test sequence. By calculating the costs
COSTT,k and COSTM,k for all possible hybrid test set structures
THk(j), i.e. for all values j = 1, 2, …, TPEF

k, we can create
the cost functions COSTT,k = fT,k(j), and COSTM,k = fM,k(j). By
taking the inverse function j = f’T,k(COSTT,k), and inserting it
into the fM,k(j) we get the generic cost function COSTM,k =
fM,k(f’T,k(COSTT,k)) = fk(COSTT,k) where the memory costs are
directly related to the lengths of all possible hybrid test
solutions.

The integrated generic cost function COSTM=f(COSTT) for
the whole system is the sum of all cost functions COSTM,k =
fk(COSTT,k) of individual cores Ck ∈ S.

From the function COSTM = f(COSTT) the value of COSTT
for every given value of COSTM can be found. The value of
COSTT determines the lower bound of the length of the
hybrid test set for the whole system. To find the component jk
of the characteristic vector J, i.e. to find the structure of the
hybrid test set for all cores, the equation fT,k(j)= COSTT should
be solved.

The objective of this paper is to find a shortest possible
(min(COSTT)) hybrid test sequence THopt when the memory
constraints are not violated COSTM ≤ COSTM,LIMIT.

4. Hybrid Test Sequence Computation Based

on Cost Estimates
By knowing the generic cost function COSTM = f(COSTT),

the total test length COSTT at any given memory constraint
COSTM ≤ COSTM,LIMIT can be found in a straightforward way.
However, the procedure to calculate the cost functions
COSTD,k(j) and COSTM,k(j) is very time consuming, since it
assumes that the deterministic test set TDk for each j = 1, 2,
…, |TPEF

k| has to be available. This assumes that after every
efficient pattern Pj ∈ TPEk ⊆ TPk, j = 1, 2, …, |TPEF

k| a set of
not yet detected faults FNOT,k(j) should be calculated. This can
be done either by repetitive use of the automatic test pattern
generator or by systematically analyzing and compressing the
fault tables for each j [13]. Both procedures are accurate but
time-consuming and therefore not feasible for larger designs.
To overcome the complexity explosion problem we propose
an iterative algorithm, where costs COSTM,k and COSTD,k for
the deterministic test sets TDk can be found based on
estimates. The estimation method is based on fault coverage
figures and does not require accurate calculations of the
deterministic test sets for not yet detected faults FNOT,k(j).

In the following we will use FDk(i) and FPEk(i) to denote
the fault coverage figures of the test sequences TDk(i) and
TPEk(i), correspondingly, where i is the length of the test
sequence.

Procedure 1: Estimation of the length of the deterministic
test set TDk.
1. Calculate, by fault simulation, the fault coverage

functions FDk(i), i = 1, 2, …, |TDF
k|, and FPEk(i), i = 1, 2,

…, |TPEF
k|. The patterns in TDF

k are ordered in such the
way that each pattern put into the sequence contributes
with maximum increase in fault coverage.

2. For each i* ≤ |TPEF
k|, find the fault coverage value F*

that can be reached by a sequence of patterns (P1, P2, …,
Pi*) ⊆ TPEk (see Figure 3).

3. By solving the equation FDk(i) = F*, find the maximum
integer value j* that satisfies the condition FDk(j*) ≤ F*.
The value of j* is the length of the deterministic sequence
TDk that can achieve the same fault coverage F* .

4. Calculate the value of |TDE
k(i*)| = |TDF

k| - j* which is the
number of test patterns needed from the TDF

k to reach to
the maximum achievable fault coverage.

The value |TDE

k(i*)|=|TDF
k|- j*, calculated by the Proce-

dure 1, can be used to estimate the length of the deterministic
test sequence TDk in the hybrid test set THk = {TPk, TDk} with
i* efficient test patterns in TPk, (|TPEk|= i*).

By finding |TDE
k(j)| for all j = 1, 2, …, |TPEF

k| we get the
cost function estimate COSTE

D,k(j). Using COSTE
D,k(j), other

cost function estimates COSTE
M,k(j), COSTE

T,k(j) and
COSTE

M,k = fkE(COSTE
T,k) can be created according to the

Definitions 3 and 7.
Finally, by adding cost estimates COSTE

M,k = fkE(COSTE
T,k)

of all cores, we get the hybrid BIST cost function estimate
COSTE

M = fE(COSTE
T) for the whole system.

5. Test Length Minimization Under Memory

Constraints
As described above, the exact calculations for finding the

cost of the deterministic test set COSTM,k = fk(COSTT,k) are
very time-consuming. Therefore we will use the cost
estimates, calculated by Procedure 1 in Section 4, instead.
Using estimates can give us a quasi-minimal solution for the
test length of the hybrid test at given memory constraints.
After obtaining a quasi-minimal solution, the cost estimates
can be improved and another, better, quasi-minimal solution

i

F

F D k (i) F P E k (i)

i *

F*

| T D E
k (i*) |

100%

| T D F k | j*

Figure 3. Estimation of the length of the

deterministic test sequence

can be calculated. This iterative procedure will be continued
until we reach the final solution.
Procedure 2: Test length minimization.
1. Given the memory constraint COSTM,LIMIT, find the

estimated total test length COSTE*
T as a solution to the

equation fE(COSTE
T) = COSTM,LIMIT.

2. Based on COSTE*
T, find a candidate solution J* = (j*1,

j*2,…, j*n) where each j*k is the maximum integer value
that satisfies the equation COSTE

T,k(j*k) ≤ COSTE*
T.

3. To calculate the exact value of COST*M for the candidate
solution J*, find the set of not yet detected faults
FNOT,k(j*k) and generate the corresponding deterministic
test set TD*k by using an ATPG algorithm.

4. If COST*M = COSTM,LIMIT, go to the Step 9.
5. If the difference |COST*M - COSTM,LIMIT| is bigger than

that in the earlier iteration make a correction ∆t = ∆t/2,
and go to Step 7.

6. Calculate a new test length COSTE,N
T from the equation

fEk(COSTE
T) = COST*

M, and find the difference ∆t =
COSTE,*

T - COSTE,N
T .

7. Calculate a new cost estimate COSTE,*
T = COSTE,*

T + ∆t
for the next iteration.

8. If the value of COSTE,*
T is the same as in an earlier

iteration, go to Step 9, otherwise go to Step 2.
9. END: The vector J* = (j*1, j*2,…, j*n) is the solution.

To illustrate the above procedure, in Figures 4 and 5 an
example of the iterative search for the shortest length of the
hybrid test is given. Figure 4 represents all the basic cost
curves COSTE

D,k(j), COSTE
P,k(j), and COSTE

T,k(j), as functions
of the length j of TPEk where jmin denotes the optimal solution
for a single core hybrid BIST optimization problem [3].
Figure 5 represents the estimated generic cost function
COSTE

M = fE(COSTE
T) for the whole system. At first (Step 1),

the estimated COSTE*
T for the given memory constraints is

found (point 1 on Figure 5). Then (Step 2), based on COSTE*
T

the length j*k of TPEk for the core Ck in Figure 4 is found.
This procedure (Step 2) is repeated for all the cores to find the
characteristic vector J* of the system as the first iterative
solution. After that the real memory cost COSTE*

M is
calculated (Step 3, point 1* in Figure 5). As we see in Figure
5, the value of COSTE*

M in point 1* violates the memory
constraints. The difference ∆t1 is determined by the curve of
the estimated cost (Step 6). After correction, a new value of
COSTE*

T is found (point 2 on Figure 5). Based on COSTE*
T ,

a new J* is found (Step 2), and a new COSTE*
M is calculated

(Step 3, point 2* in Figure 5). An additional iteration via
points 3 and 3* can be followed in Figure 5.

It is easy to see that Procedure 2 always converges. By
each iteration we get closer to the memory constraints level,
and also closer to the minimal test length at given constraints.
However, the solution may be only near-optimal, since we
only evaluate solutions derived from estimated cost functions.

COST T

COST M

Real cost

Estimated cost

Memory
constraint

 1

1*

2
3

2*
3*

∆t1

Correction for ∆ t 1

∆M

∆t2
 Correction for ∆ t 2

E

E

Figure 5. Minimization of the test length

6. Experimental Results
We have performed experiments with several systems

composed from different ISCAS benchmarks as cores. The
results are presented in Table 1.

In Table 1 we compare our approach where the test length
is found based on estimates, with an exact approach where
deterministic test sets have been found by manipulating the
fault tables for every possible switching point between
pseudorandom and deterministic test patterns. As it can be
seen from the results, our approach can give significant
speedup (more than order of magnitude), while retaining
acceptable accuracy (the biggest deviation is less than 9%
from the exact solution, in average 2.4%).

Table 1. Experimental results

Total Test
Length
(clocks)

CPU Time
(seconds)

Total Test
Length
(clocks)

CPU Time
(seconds)

20 000 222 223 199.78
10 000 487 487 57.08
7 000 552 599 114.16
14 000 207 209 167.3
5 500 540 542 133.84
2 500 1017 1040 200.76
7 000 552 586 174.84
3 500 3309 3413 291.40
2 000 8549 8 556 407.96

S2 7 3433.10

S3 5 10143.14

Our approach

S1 6 3772.84

System Number
of cores

Memory
Constraint

(bits)

Exact approach

COST P,k

COST

 j min

COST

E*
T

j* k

Solution

COST T,k E

COST D,k
E

j

Figure 4. Cost curves for a given core Ck

In Figure 6 we present the estimated cost curves for the
individual cores and the estimated and real cost curves for the
system S2. We also show in this picture a test solution point
for this system under given memory constraint that has been
found based on our algorithm. In this example we have used a
memory constraint MLIMIT = 5500 bits. The final test length
for this memory constraint is 542 clock cycles and that gives
us a test schedule depicted in Figure 7.

7. Conclusions

We have presented an approach to the test time
minimization problem for multi-core systems that are tested
with a hybrid BIST strategy. A heuristic algorithm was
proposed to minimize the test length for a given memory
constraint. The algorithm is based on the analysis of different
cost relationships as functions of the hybrid BIST structure.
To avoid the exhaustive exploration of solutions, a method
for the cost estimation of the deterministic component of the
hybrid test set was proposed. We have also proposed an
iterative algorithm, based on the proposed estimates, to
minimize the total test length of the hybrid BIST solution
under the given memory constraints. Experimental results
show very high speed of the algorithm, compared to the exact
calculation method.

As a future work we would like to investigate possibilities
to apply the same approach also for sequential cores with full
scan (STUMPS architecture) and partial scan. Additionally
we would like to investigate more complex test architectures
and include power constraints into the test time minimization
algorithm.

8. References
[1] B. T Murray, J. P. Hayes, “Testing ICs: Getting to the core of
the problem,” IEEE Transactions on Computer, Vol. 29, pp. 32-39,
November 1996.
[2] Y. Zorian, E. J. Marinissen, S. Dey, “Testing Embedded Core-
Based System Chips,” IEEE International Test Conference (ITC’98),

pp. 130-143, 1998.
[3] G. Jervan, Z. Peng, R. Ubar, “Test Cost Minimization for
Hybrid BIST,” IEEE Int. Symp. on Defect and Fault Tolerance in
VLSI Systems (DFT’00), pp.283-291, 2000.
[4] M. Garg, A. Basu, T. C. Wilson, D. K. Banerji, and J. C.
Majithia, A New Test Scheduling Algorithm for VLSI Systems,
Proceedings of the CSI/IEEE Symposium on VLSI Design, pp. 148-
153, 1991.
[5] Y. Zorian, “A distributed BIST control scheme for complex
VLSI devices”, Proceedings of the IEEE VLSI Test Symposium
(VTS), pp. 4-9, 1993.
[6] R. Chou, K. Saluja, and V. Agrawal, Scheduling Tests for
VLSI Systems Under Power Constraints, IEEE Transactions on
VLSI Systems, Vol. 5, No. 2, pp. 175-185, June 1997.
[7] K. Chakrabarty, “Test Scheduling for Core-Based Systems”,
Proceedings of IEEE/ACM International Conference on Computer
Aided Design (ICCAD), page 391-394, 1999.
[8] M. Sugihara, H. Date, H. Yasuura, “Analysis and
Minimization of Test Time in a Combined BIST and External Test
Approach,” Design, Automation & Test In Europe Conference
(DATE 2000), pp. 134-140, 2000.
[9] V. Muresan, X. Wang, V. Muresan, and M. Vladutiu, A
Comparison of Classical Scheduling Approaches in Power-
Constrained Block-Test Scheduling, IEEE International Test
Conference (ITC’2000), pp. 882-891, 2000.
[10] K. Chakrabarty, “Test Scheduling for Core-Based Systems
Using Mixed-Integer Linear Programming”, IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, Vol. 19,
No. 10, pp. 1163-1174, October 2000.
[11] E. Larsson, Z. Peng, “An Integrated Framework for the Design
and Optimization of SOC Test Solutions”, Journal of Electronic
Testing; Theory and Applications (JETTA), for the Special Issue on
Plug-and-Play Test Automation for System-on-a-Chip, Vol. 18, no.
4/5, pp. 385-400, August 2002.
[12] G. Jervan, Z. Peng, R. Ubar, H. Kruus, “A Hybrid BIST
Architecture and its Optimization for SoC Testing,” IEEE 3rd
International Symposium on Quality Electronic Design (ISQED'02),
pp. 273-279, 2002.
[13] R. Ubar, G. Jervan, Z. Peng, E. Orasson, R. Raidma, “Fast
Test Cost Calculation for Hybrid BIST in Digital Systems”,
Euromicro Symposium on Digital Systems Design, pp. 318-325,
2001.

0

2000

4000

6000

8000

Mem ory usage: 5357 bits

1000 1500500

5500

542

M
em

or
y

(b
it

s)

Memory usage:

1353
480

1025
363

2136
0
0

Core nam e:

c499
c880
c1355
c1908
c5315
c6288
c432

 Determ inistic
time:

33
8
25
11
12
0
0

Total Test Lenght (clocks)

Estimated Cost
R eal Cost

Cost Estim ates
for Individual C ores

Memory C onstrain t

56

31

8

19

33

25

12

11

8

453

486

511

523

534

542

542

0 100 200 300 400 500

c499

c1355

c5315

c1908

c880

c6288

c432
Deterministic

Pseudorandom

Total Test Length: 542

Figure 6. The final test solution for the system S2
(MLIMIT = 5 500)

Figure 7. Test Schedule for the system S2
(MLIMIT = 5 500)

