
Linköping Studies in Science and Technology

Department of Computer and Information Science
Linköpings universitet

SE-581 83 Linköping, Sweden

System-on-Chip Test Scheduling and
Test Infrastructure Design

by

Anders Larsson

Linköping 2005

Thesis No. 1206

Submitted to Linköping Institute of Technology at Linköping University in partial
fulfilment of the requirements for the degree of Licentiate of Engineering

System-on-Chip Test Scheduling
and Test Infrastructure Design

Anders Larsson
-I

ISBN 91-85457-61-2 , ISSN 0280-7971
PRINTED IN LINKÖPING, SWEDEN

BY LINKÖPING UNIVERSITY

COPYRIGHT © 2005 ANDERS LARSSON
0

Abstract

HERE ARE several challenges that have to be
considered in order to reduce the cost of System-on-Chip
(SoC) testing, such as test application time, chip area

overhead due to hardware introduced to enhance the testing,
and the price of the test equipment.

In this thesis the test application time and the test
infrastructure hardware overhead of multiple-core SoCs are
considered and two different problems are addressed. First, a
technique that makes use of the existing bus structure on the
chip for transporting test data is proposed. Additional buffers
are inserted at each core to allow test application to the cores
and test data transportation over the bus to be performed
asynchronously. The non-synchronization of test data
transportation and test application makes it possible to perform
concurrent testing of cores while test data is transported in a
sequence. A test controller is introduced, which is responsible
for the invocation of test transportations on the bus. The
hardware cost, introduced by the buffers and test controller, is
minimized under a designer-specified test time constraint. This
problem has been solved optimally by using a Constraint Logic
Programming formulation, and a tabu search based heuristic

T

I

has also been implemented to generate quickly near-optimal
solutions.

Second, a technique to broadcast tests to several cores is
proposed, and the possibility to use overlapping test vectors
from different tests in a SoC is explored. The overlapping tests
serve as alternatives to the original, dedicated, tests for the
individual cores and, if selected, they are broadcasted to the
cores so that several cores are tested concurrently. This
technique allows the existing bus structure to be reused;
however, dedicated test buses can also be introduced in order to
reduce the test time. Our objective is to minimize the test
application time while a designer-specified hardware constraint
is satisfied. Again Constraint Logic Programming has been used
to solve the problem optimally.

Experiments using benchmark designs have been carried out
to demonstrate the usefulness and efficiency of the proposed
techniques.
II

Acknowledgements

PECIAL THANKS go to my supervisors Zebo Peng, Petru
Eles, and Erik Larsson. Without them this thesis would
not exist and they truly deserve my deepest respect for

their expert knowledge and sharp minds. Their clear guidance
has been very important for the results presented in this work.

Thank you all, present and former colleagues, at ESLAB and
IDA for all the support and contributions to the nice atmosphere
around the office and during the coffee breaks.

I would also like to mention my parents, Birgit and Lars, and
my brother Peter. Their support has always been invaluable to
me. Last but not least, thank you Caroline for all the joy you
have brought to my life.

Anders Larsson

Linköping, November 2005.

S

III

IV

Contents

Abstract... i

Acknowledgements ..iii

1. Introduction ..1
1.1. Test Process for SoC...2
1.2. Problem Formulation ...4
1.3. Contributions..5
1.4. Thesis Overview ...6

2. Background and Related Work.................................7
2.1. Reuse-based SoC Design..8
2.2. Test Challenges ..11
2.3. SoC Test Access..12

2.3.1.Direct Access...12
2.3.2.Bus-based Access..13
2.3.3.Functional Access ...15

2.4. Test Scheduling..16
2.5. Test Set Sharing...18
2.6. Constraint Logic Programming.............................20
2.7. Optimization Heuristics...22
V

3. Preliminaries .. 27
3.1. System Architecture .. 28
3.2. Test Access Mechanism... 29
3.3. Test Scheduling ... 32

4. Buffer and Control-logic Minimization 35
4.1. System Architecture .. 36
4.2. Motivational Example ... 40
4.3. Problem Formulation .. 42
4.4. Constraint Logic Programming Modelling........... 45
4.5. The Tabu Search Based Algorithm....................... 46
4.6. Experimental Results.. 48
4.7. Conclusions .. 53

5. Test Scheduling with Test Set Sharing and
Broadcasting ... 55
5.1. Test Set Sharing .. 56
5.2. System Architecture .. 61
5.3. Motivational Example ... 64
5.4. Problem Formulation .. 67
5.5. Constraint Logic Programming Modelling........... 69
5.6. Experimental Results.. 71
5.7. Conclusions .. 76

6. Conclusions and Future Work................................ 77
6.1. Conclusions .. 77
6.2. Future Work .. 78

References ... 81
VI

INTRODUCTION
Chapter 1
Introduction

HIS THESIS DEALS WITH testing of core based System-
On-Chip (SoC). SoC is a technology that enables the
electronic industry to provide the market with high

complexity products such as mobile phones, PDAs, and DVD-
players, which have a short time to market window, and hence
require a short development time. The development time can be
reduced if a reuse-based design methodology is used. When
designing a SoC different pre-designed and pre-verified blocks of
logic called cores are integrated into a system. The cores are
reused or bought from core vendors and can, for instance, consist
of a processor, a memory block, or an I/O peripheral. A core is
usually delivered with a test set that has to be applied to the
core in order to make sure that the core is free from
manufacturing defects. This first chapter is used to motivate
and introduce the problems of core-based testing of SoCs as well
as the main contributions of this thesis.

T

1

CHAPTER 1
1.1 Test Process for SoC
The trend in integrated circuit (IC) design is to build more and
more complex systems and integrate them on single-chip
packages. This is facilitated by the improvement in
semiconductor manufacturing technology. The trend that Moore
predicted, which says that the number of transistors per chip
doubles every 18 months [Moo65], has now lasted for four
decades. On the other hand, the number of input and output
pins, so called chip terminal pins, on a chip has not been able to
keep up with this trend, which means that the amount of logic
that is reachable from each terminal has grown. This trend has
led to many test related problems since the amount of test data,
which has to be applied to the chip, is becoming very large. It has
been shown that up to 40-50% of the total production cost is
today spent on testing ICs for manufacturing defects [Int03].

The main purpose of testing is to verify the correctness of the
manufacturing process. Testing is performed by applying test
stimuli, consisting of a set of test vectors, to the chip and then
comparing the test responses with the expected responses, as
illustrated in Figure 1.1. The test stimuli are usually applied by
using a special machine called automatic test equipment (ATE).
The same machine is used to compare the test responses with
the expected ones. A difference between the two responses
indicates that a fault has been detected on the IC.

There are two main approaches for testing embedded cores:
Built-in self-test (BIST) and applying and observing pre-
computed test sets at the core terminals. In the case of BIST, an
on-chip engine is responsible for generating the test stimuli and
for observing the responses. Although BIST obviously simplifies
the test task for the system integrator, there are several
limitations: Most cores are not suitable for BIST, i.e. they
contain logic that cannot be tested by randomly generated tests,
2

INTRODUCTION
which are usually assumed in BIST. Another drawback is the
large design effort needed to achieve sufficient fault coverage for
large cores.

The second approach is to use pre-computed test sets,
provided usually by the core vendors, which are applied and
observed via the core's terminals. The core vendor has little or
no information about where their cores will be placed on the
chip. Therefore they assume that all core terminals are directly
accessible. The task of the system integrator is to ensure that
the logic surrounding the core allows the tests to be applied, i.e.
designing a suitable test access mechanism (TAM).

This test infrastructure can be implemented using, if possible,
direct access between the chip I/O and the core terminals. If
direct access is not possible, functional access can be used,
where wires used in functional mode, such as a system bus, are
utilized for test transportation during test mode. Another
approach is to use various types of dedicated bus-based access
mechanisms.

Irrespective of the approach used, BIST or pre-computed test
sets, it is usually required that the order of the test application
(the start times) are determined in such a way that the cost
function for the test process is minimized. This process is called
test scheduling and the cost function minimized is often related

Figure 1.1: Test process.

Test

IC

Test

...

...

ATE

...

...

responsesstimuli

ATE

I/O terminals
3

CHAPTER 1
to the test application time and/or the hardware overhead
introduced from, for instance, BIST logic and wires, such as
routing of a dedicated test bus.

1.2 Problem Formulation
In this thesis two test architectures are proposed, and two
respective optimization problems are formulated. First, a buffer-
based architecture that makes use of the existing functional bus
structure for test data transportation is presented. The scheme
adds buffers at each core and an additional controller. The
buffers are inserted at each core allow test application to the
cores and test data transportation over the bus to be performed
asynchronously. This makes it possible to perform concurrent
testing of cores while test data is transported on the bus. Both
the buffers and the controller contribute to an increased silicon
area, and the problem we solve in this thesis is to minimize this
hardware overhead, without violating a given maximum test
time constraint.

The second approach we propose also allows the existing
functional bus structure to be reused for the test data
transportation. However, in order to decrease the test time,
dedicated test buses may be added to the design. To further
reduce the test time the possibility to share test vectors from the
individual cores tests in the system has been explored. The
shared tests, if selected, are transported to the cores in a
broadcasted manner so that several cores are tested
concurrently. The problem, in this case, is to select appropriate
tests for each core, insert test buses (if required), and schedule
the selected tests on the buses in such way that the test
application time is minimized without exceeding the given
hardware cost constraints.
4

INTRODUCTION
1.3 Contributions
In this thesis, the problem of testing core based SoCs is
addressed. Two test architectures have been proposed and their
respective optimization problems have been solved.

In the first architecture, buffers are introduced between each
core and the functional bus and a test controller is introduced
which is responsible for the invocations of tests [Lar03a],
[Lar05a]. The hardware overhead introduced due to the buffers
and the test controller is minimized such that a given test time
is not exceeded. This problem has been solved by using a
Constraint Logic Programming (CLP) formulation and a tabu
search based heuristic. The experimental results, obtained
using the proposed approach, shows a decrease with 27 to 55% of
the cost, compared to the cost obtained using a straightforward
approach. Since CLP uses an exhaustive search approach,
optimization times can become exceedingly large for complex
systems. The tabu search based heuristic, which is implemented
to overcome the problem of long execution times, produces high
quality results compared with the optimal solutions obtained
using CLP. The experimental results shows that the proposed
heuristic produced results which were only less than 6.1% worse
than those produced by the CLP-based approach.

In the second test architecture [Lar05b], the use of test
sharing and broadcasting of test vectors for core-based SoCs are
proposed. The possibility to merge tests by using shared test
vectors is explored. We have used a CLP technique to select
suitable tests for each core in the system and schedule the
selected tests such that the test application time is minimized
while designer-specified hardware cost constraints are satisfied.
The experimental results indicate that we can, on average,
reduce the test application time with 23%.
5

CHAPTER 1
1.4 Thesis Overview
The rest of the thesis is structured as follows. Chapter 2 gives
background information and description of related work
regarding core-based SoC design and test access mechanisms.
The concepts of test scheduling and test set sharing are also
introduced in this chapter, together with CLP and optimization
heuristics.

Chapter 3 contains preliminaries that are specific for this
work, such as the system model used, the test access
architecture, and the test scheduling technique.

Chapter 4 describes the first test architecture and a
motivational example is presented together with the formal
problem formulation. Hardware overhead minimization under
constrained test time has been modelled and solved using both
CLP and tabu search.

Chapter 5 introduces the second proposed test architecture.
Test set sharing and merging is described together with the test
broadcasting technique with the possibility of adding dedicated
test busses. The test time minimization problem is formulated
and then solved using CLP.

Chapter 6 concludes this thesis and discusses different
possible directions of future work.
6

BACKGROUND AND RELATED WORK
Chapter 2
Background

and
Related Work

HIS CHAPTER INTRODUCES the reuse-based SoC
design flow. The major test challenges that the test
designer faces are introduced and described together

with the concept of test scheduling, test set sharing, and
broadcasting. The test scheduling problems can be solved by
using an exhaustive approach such as CLP, or by using a
heuristc. An introduction to CLP and different optimization
heuristics is given at the end of this chapter. Related work in the
discussed areas is also presented.

T

7

CHAPTER 2
2.1 Reuse-based SoC Design
The complexity of ICs has grown tremendously during the last
decades and this has forced the system integrators to think in a
different way when designing their products. Short time to
market has put a lot of pressure on designers under these
circumstances. Designing a chip with millions of gates using
conventional methods would be too time consuming and the
time to market window may be missed. SoCs and reuse-based
design techniques have been proposed in order to solve this
problem. With the SoC approach the number of components that
have to be considered at design time decreases dramatically. At
the same time, the number of components to be mounted is
reduced, and this significantly reduces both the physical size
and the time to assemble the final product.

The system integrator is the person that designs the system
and decides which components that should be used in the
design. The development of a SoC is in many ways similar to the
development of a System-on-Board (SoB) (Figure 2.1). In a SoB,
ICs from different IC providers are mounted on a printed circuit
board and interconnected into a system. The different ICs such
as processors and memories can without modification easily be
reused in many different systems and products.

In the SoC methodology, system integrators have adopted the
same reuse-based philosophy to license or use in-house pre-
defined cores, which are integrated into a system. The cores are
intellectual property (IP) and can consist of VHDL code or of a
synthesized format such as GDSII [Rub86]. An example of a SoC
is illustrated in Figure 2.2, which shows how different types of
cores, such as memories (ROM, DRAM and SRAM), processors
(DSP), and several ASICs (RF, MPEG, Peripherals) are
integrated in one design.

One of the major differences between developing a SoB and a
SoC is the way testing is performed. This is illustrated in
8

BACKGROUND AND RELATED WORK
Figure 2.1 where the testing in the development process is
shown for SoB in Figure 2.1 (a) and for SoC in Figure 2.1 (b).

In the SoB development process, all chips and components are
manufactured and tested before they are mounted on the
printed circuit board. Finally, after the mounting, the
interconnections between the components on the board are
tested.

Figure 2.1 (b) shows the development and test process in the
SoC methodology. In this case, it is not possible to test the cores
before they are integrated in the system since the whole system

Figure 2.1: Difference between SoB and SoC development and test-
ing [Mar99a].

IC design and
test development

IC manufacturing

IC testing

SoB design and
test development

SoB manufacturing

SoB testing

Core design and
test development

SoC design and
test development

SoC manufacturing

SoC testing

a) SoB development b) SoC development

S
ys

te
m

 in
te

gr
at

or
IC

 p
ro

vi
de

r

C
or

e
pr

ov
id

er
S

ys
te

m
 in

te
gr

at
or
9

CHAPTER 2
is manufactured in a single step. This entails that the testing
has to be postponed until all cores are integrated and connected
and the chip is fabricated. This means that all the test data have
to be applied at one time through the I/O terminals of the chip.

One of the problems that the test designer has to face is
therefore how to transport test data inside the system. Zorian et
al [Zor99] proposed a conceptual infrastructure for SoC test, as
illustrated in Figure 2.2. The test source generates test stimuli
and can be placed on-chip (LFSR, counter, or ROM) or off-chip
(ATE). The test sink compares the test responses to the expected
ones and can also be placed on-chip (signature analyzer) or off-
chip (ATE). The TAM, which is always implemented on-chip, is
used to transport the test from the source to the core under test
(CUT) and from the CUT to the sink. The TAM can either
consist of wires dedicated only for testing or of functional wires
which is used both for transporting functional and test data.

The core test wrapper is an interface used to facilitate plug-
and-play between the functional connections and/or the TAM.
Different wrapper designs of the wrapper have been proposed.
Marinissen et al. [Mar98] proposed a core test wrapper called
TestShell, and Varma and Bhatia [Var98] described a wrapper
called TestCollar. The IEEE 1500 wrapper ([IEE05], [DaS03],
and [Zor97]), has widely been adopted in literature.

DSP
SRAM

SoC

CUT
Wrapper

DRAM
MPEG

ROM

RF

Peripheral
Interface

Source SinkTAM in TAM out

UDL

Figure 2.2: Cores and test infrastructure [Zor99].
10

BACKGROUND AND RELATED WORK
2.2 Test Challenges
There are several challenges that the test integrator faces when
designing the test strategies for a core based SoC. The main
objective is to minimize the cost, , introduced in testing. The
testing should have a short application time without introducing
additional hardware on the chip and still have high quality (high
fault coverage). The overall test cost can be formulated as a sum
of different cost components, and can be computed as follows
[Nag02]:

Here, is a fixed cost of test generation and preparation, and
can, for instance, consist of the cost for test generation and test
program preparation. is the cost of executing the test and
is mainly dependent on the price of the test equipment and the
time each chip has to spend in the ATE. represents the
cost of the additional test hardware on the chip. Finally,
represents the cost of performance degradation during normal
functionality, for instance, by introducing test points on critical
paths, and test escapes.

In order to have a low test cost the test designer must try to
minimize all these components. However, different trade-offs
may be considered. For instance, lowering the execution time by
introducing additional wiring for the transportation of the tests
may reduce since multiple cores may be tested
concurrently. However introducing additional wiring would
increase the area overhead, . The shortest test application
time would be obtained if all cores would be tested in parallel,
this however is almost always impossible in practice since it
would require large overhead due to additional wiring and the
risk of burning the chip due to that the amount of consumed
power will be very large. This is why it is required to schedule
the tests such that the required constraints are satisfied. In this
thesis, our focus will be on the problem of lowering the cost of

Ctest

Ctest Cprep Cexec Csilicon Cquality+ + += (1)

Cprep

Cexec

Csilicon

Cquality

Cexec

Csilicon
11

CHAPTER 2
 (test application time) and (logic and wiring
dedicated for testing).

During the following two sections, the TAM and test
scheduling, which are mmost relevant for this thesis, will be
described in more detail.

2.3 SoC Test Access
The need of a TAM has its origin in the requirement to transport
test stimuli from the test source to the core under test (CUT)
and of test responses to the sink. There are a number of different
solutions proposed in literature that can be used for accessing
the CUT, with direct access, dedicated bus-based access, and
functional access, as examples. In this section, a brief
description of these three architectures is presented.

2.3.1 DIRECT ACCESS

Direct access is a straightforward solution where the core
terminals are directly connected to the chip level pins, which
makes it possible to test the core as if it was the chip itself
[Imm90]. The implementation of direct access is illustrated in
Figure 2.3 where four cores are connected to the chip level pins
Pin and Pout.

One of the drawbacks of this technique is the amount of wiring
overhead, introduced due to the large number of cores and core
terminals in SoCs. Usually the total number of the core
terminals exceeds the number of chip terminals. Another
drawback is that it does not provide access to the logic that is not
directly accessible from the SoC I/O terminals. To solve this
problem Bhatia et al [Bha96] proposed a method, CoreTest,
where test points are introduced in the user defined logic (UDL),
between the cores, to provide sufficient access. This is done by
adding a grid of test points, which are placed around the cores.
Even if the UDL logic can be reused with this method, it

Cexec Csilicon
12

BACKGROUND AND RELATED WORK
introduces hardware overhead due to both the required routing
of the test grid and the additional logic in the testpoints. The
main disadvantage is the disparity between the number of core
terminals and chip level pins.

2.3.2 BUS-BASED ACCESS

A dedicated bus-based access mechanism can consist of one or
several buses that are connected to all cores in the SoC as shown
in Figure 2.4, where two dedicated test buses, bt1 and bt2, are
used to transport test data.

The main characteristic of a bus-based TAM is the sequential
communication where each bus usually is capable of
transporting test data to only one core at a time. Testing several
cores concurrently entails that multiple buses are implemented
or that it is possible to partition the bus wires to be connected to
different cores. The dedicated bus-based access mechanism has
been widely used in literature due to the modularity, and
flexibility on trading off different cost factors offered by this
method [Xu05].

C1

SoC

Core2Core1

Core3 Core4

Figure 2.3: Example of direct access.

Pin Functional bus Pout
13

CHAPTER 2
Aerts and Marinissen [Aer98] described three different bus-
based TAMs. A multiplexed architecture gives each core access
to the full TAM width. This means that only one core can be
tested at a time, which leads to long test time. The second
architecture proposed in [Aer98] is called Daisychain, and it
connects all cores through one long TAM. Bypasses have been
introduced to enable parallel access to multiple cores, which can
reduce the test time compared to the multiplexed architecture.
In the third approach, called distribution architecture, the TAM
bandwidth has been distributed to all the cores and each core is
assigned dedicated TAM lines. In this architecture, all cores are
tested concurrently and the test time for the SoC is the
maximum of the individual core test times.

Varma and Bathia, proposed a combination of a multiplexed
and distributed architecture, called Test Bus [Var98]. In this
work, several multiplexed buses can be used, which then
operate independantly from each other and hence allow tests to
be applied concurrently, however, cores connected to the same
Test Bus can only be tested sequentially.

C1

SoC

Core2Core1

Core3 Core4

Figure 2.4: Example with two dedicated test buses.

Functional busPin Pout

bt1

bt2
14

BACKGROUND AND RELATED WORK
2.3.3 FUNCTIONAL ACCESS

As opposed to the two previous methods (the direct access and
the dedicated bus-based access), the functional access
methodology makes use of the functional wiring, such as the
functional bus or other existing functional paths between the
cores, for transporting test data. Figure 2.5 illustrates the use of
the functional bus for transporting tests. A special bus interface
is introduced between the core and the bus in order to enhance
the application of tests. One of the advantages with this method
is the reduction in wiring overhead.

The Macro Test, introduced by Beenker at al. [Bee86], was
originally developed to improve test quality by using different
strategies to test different circuit architectures such as
memories, PLAs, and register files. Although not originally
intended, the Macro Test was later shown to work in the core
based SoC domain by Marinissen and Lousberg [Mar97].

Another technique, proposed by Ghosh et al. [Gho00], is based
on transparency of the cores in the system. The technique
consists of two parts. The first part consists of core-level design

C1

SoC

Core2Core1

Core3 Core4

Bus interface

Figure 2.5: Example of functional access.

Functional busPin Pout
15

CHAPTER 2
for test and test generation to make the core testable and
transparent. The second part consist of chip level deign for test
where the cores interconnects are analyzed. The technique can
be used to design a SoC such that, the test area overhead is
minimized, the test application time is minimized, or a desired
trade-off between the test area overhead and the test
application time. This approach requires a large design effort at
the core provider side, since they assume that the core providers
offer a catalogue of area/latency versions for their cores.

Harrod demonstrated the use of the AMBA bus for test
purpose [Har99]. In the test mode the AMBA test interface
becomes the bus master and is responsible for applying the test
stimuli and to capture the responses. In functional mode, the
bus is used to transport functional data between the cores in the
system.

2.4 Test Scheduling
When the type of TAM is determined the test integrator is faced
with another problem, namely in which order the tests for the
different cores should be applied.

Test scheduling means that the start time of each test is
determined and is usually done in order to minimize some
predefined cost function, which often is related to the total test
application time. By exploring different start times for each test
it is possible to minimize the cost function while ensuring that
constraints, such as power consumption and/or hardware
overhead, are not violated, as illustrated in Figure 2.6. Different
trade-offs may be considered during the test scheduling. For
example, testing several cores in parallel can usually decrease
the test time; however it will also increase the power
consumption, which potentially will damage the chip [Zor93].

To further explain the scheduling process, a design example
consisting of four cores is used (Figure 2.7). The system is tested
16

BACKGROUND AND RELATED WORK
by applying the tests {Test1, Test2, Test3, Test4} to the cores,
{Core1, Core2, Core3, Core4}, where Test1 is used to test Core1,
Test2 to tests Core2, and so on. It is assumed that each core has
four scan chains, which are connected to a bus-based TAM as
illustrated in Figure 2.7. The TAM is designed in such a way
that it is possible to apply test stimuli to any two cores in
parallel.

test time

resource

Figure 2.6: Illustration of test scheduling [Lar05c].

usage
A

test time

resource

A C
B

limitation

Figure 2.7: Example of dedicated bus-based access.

C1

SoC

Core2Core1

Core3 Core4

8
8

4

4

4

4

Functional busPin Pout
17

CHAPTER 2
In this example, it is assumed that the cost function consists
of the test application time, which will be minimized without
violating the hardware constraint given by the maximum
number of TAM wires.

The scheduling techniques can be divided into [Lar02]:
 • Non-partitioned testing,
 • Partitioned testing with run to completion, and
 • Pre-emptive testing.

The three scheduling techniques are illustrated in Figure 2.8.
Figure 2.8(a) shows an example of a schedule using a non-
partitioned (session based) technique, proposed by Zorian
[Zor93], Chou et al. [Cho97], and Larsson and Peng [Lar01a]. In
non-partitioned scheduling no new test is allowed to start until
all tests in a session are completed. This method produces long
test time due to a lot of idle time.

Figure 2.8(b) shows how the schedule can be improved by
using a partitioned (sessionless) technique proposed by
Chakrabarty [Cha01], Muresan et al. [Mur00], and Larsson and
Peng [Lar01a]. In this technique, each test can be scheduled as
soon as possible, which can decrease the test time.

In order to further optimize the schedule, a pre-emptive
scheduling technique can be used. Such technique has been
proposed by Iyengar and Chakrabarty [Iye01], Larsson and
Fujiwara [Lar02], and Larsson and Peng [Lar03b]. The pre-
emptive scheduling is illustrated in Figure 2.8(c). Here, the test
intended for core 4 is pre-empted and then resumed at a later
point in time using different TAM wires.

2.5 Test Set Sharing
By sharing one test among several cores it is possible to shorten
the test application time significantly [Lee99], since cores that
share tests can receive test vectors concurrently using shared
TAM resources. The efficiency of this test set sharing method
18

BACKGROUND AND RELATED WORK
depends on how large the merged test set is in comparison with
the unmerged sets. It has been shown that the percentage of
don't cares in the test sets is high (78% for un-compacted or
approximately 47% even for compacted tests [Kaj01], [Cha03]).
A high number of don't care bits increases the possibility of
finding vectors from different sets that can be merged.

One important requirement that has to be fulfilled in order for
the test set sharing method to be efficient, is that the size of the

time

time

time
Test1 Test2

Test3

TAM

Test4

Test1 Test2

Test3Test4

Test1 Test2

Test3Test4-1
Test4-2

TAM

TAM

Figure 2.8: Different test schedules for the example given in
Figure 2.7.

a) Non-partitioned

Session1 Session2

b) Partitioned

c) Pre-emptive

idle
8

8

8
4

4

4

19

CHAPTER 2
new combined test set is smaller than the sum of the original
test sets used [Lee98].

In order to benefit from the advantages of test sharing it is
also required that the cores which shares the tests are connected
in such a way that the tests can be broadcasted to them. How
this broadcast of test vectors can be done has been shown by
[Lee99], [Jia03]. The work by Lee et al. [Lee99] considered the
circuits driven by all scan chains as one circuit during the ATPG
process. In this way they can generate one single test that can be
applied to all circuits simultaneously. In [Jia03], a method for
generating common tests for multiple cores directly is proposed.
A fault simulator is used for evaluating the fault coverage. The
tests generated by the method in [Jia03] can also be utilized by
the technique described in this thesis.

One additional problem that occurs when using a broadcast
method is how to transport the test responses. The responses
from different cores cannot be merged in the same way as the
input stimuli since the opportunity to detect a fault may be lost.
In [Lee98] and [Jia03] this problem has been solved by
compressing the test responses by using a multiple input
signature register (MISR).

2.6 Constraint Logic Programming
CLP has been introduced in the middle of the 80s, by Jaffar and
Lassez [Jaf87]. CLP is a combination of logic programming and
constraint solving and is suitable for solving optimization
problems like scheduling, resource planning, and layout
assignment, which all are examples of constrained search
problems. CLP is a declarative method where the programmer
describes the program in terms of conditions and relations and
leaves the order of execution and assignment of variables to the
solver. In short, the programmer specifies what should be
solved, instead of how it should be solved.
20

BACKGROUND AND RELATED WORK
To further explain how CLP works, let us consider the
following small example (from [Mar99b]). In the problem,
named SEND MORE MONEY, each letter represents a digit,
and the problem is solved by assigning integer values, in the
range between 0 and 9, to the variables S, E, N, D, M, O, R, and
Y, where and , such that the following equation holds;

The mapping of values to variables has to be one-to-one, which
means that each variable has to be assigned to a value not used
by any other variable. A word can be modelled as a sum of
different variables, e.g. represents
the word SEND. The problem can be modelled as illustrated in
Figure 2.9. The program will determine that:

which is the first solution for this problem, found by the solver.
This example can be extended into an optimization problem, for
instance, by searching for the minimum sum of the variables.

The CLP methodology consists of three separate steps. The
first is to determine a model of the problem in terms of domain

S 0≠ M 0≠

SEND MORE+ MONEY=

S 1000 E 100 N 10 D+×+×+×

S 9 E 5 N,=, 6 D, 7 M, 1 O, 0 R, 8 andY, 2,= = = = = = =

1 smm(S,E,N,D,M,O,R,Y):-

2 [S,E,N,D,M,O,R,Y] :: [0..9],
3 constrain([S,E,N,D,M,O,R,Y]),
4 labeling([S,E,N,D,M,O,R,Y]).

5
6 constrain([S,E,N,D,M,O,R,Y]):-
7 S =/ =0,

8 M =/= 0,
9 alldifferent_neq([S,E,N,D,M,O,R,Y]),
10 1000*S + 100*E + 10*N + D + 1000*M + 100*O + 10*R +

E = 10000*M + 1000*O + 100*N +10*E + Y.

Figure 2.9: A CLP example [Jaf87].
21

CHAPTER 2
variables. This is the most important step where the problem is
described using a set of domain variables and the values that
these variables can have, for instance, start time, durations, and
resource usage. In the second step, constraints over the domain
variables are defined, such as resource constraints and/or
maximum hardware cost allowed. In the third, and final step, a
definition of the search for a feasible solution is given. This is
usually done by using a built in predicate, such as labeling in
Figure 2.9.

During the execution of the CLP program, the solver will
search for a solution by enumerating all the variables defined in
step one without violating the constraints defined in step two. If
required, CLP can search for an optimal solution using a branch
and bound search to reduce the search space. That is, when a
solution is found, satisfying all the constraints, a new constraint
is added indicating that the optimal cost must be less than the
cost of the current solution. If no other solution is found, the
current solution has the optimal cost and is returned.

CLP has been used by Bieker and Marwedel [Bie95] to
generate test programs for embedded processors. Zeng et al.
[Zen01] uses CLP to generate functional test vectors.

2.7 Optimization Heuristics
In contrast to the CLP methodology, heuristics produce
approximate solutions to optimization problems. They often
build on a strategy of local search, where an initial feasible
solution is iteratively improved by applying local modifications,
so called moves, which slightly changes the solution. The search
space consists of all possible solutions that can be considered
during the search. The neighbourhood structure is a subset of
the search space, which can be obtained by applying a single
local move. The search is stopped if no further improvements
can be made. Often, this local search produces a solution which
22

BACKGROUND AND RELATED WORK
is a local minimum, that can be far from the global optimum, as
illustrated in Figure 2.10. One of the main challenges when
implementing a heuristic is to provide the ability to avoid to be
trapped in such local minima.

In contrast to an exhaustive method, such as CLP, a heuristic
searches only a very small part of the solution space, and does
not guarantee that the optimal solution is found. Instead, the
goal is to produce a solution that is as close to the optimal
solution as possible using a limited computational effort.

There exists a vast variety of different optimization heuristics
and many of them are developed to solve problem specific
optimizations only. However, some are known to be applicable to
a broad range of combinatorial problems. To this category belong
heuristics such as simulated annealing [Kir83], tabu search
[Glo89], [Glo90], and genetic algorithms [Mic96]. Here follows a
brief description of these three heuristics.

Simulated Annealing
Simulated annealing (SA) [Kir83] has been shown to produce

often close to optimal solutions to combinatorial problems,
although not always in reasonable computing time.

The annealing process, which gives the name to this heuristic,
is a technique used to reduce the defects in metals by using
controlled cooling. The goal is to minimize the internal energy
state of the metal. This is done by heating the material past its

Solution

Cost

Local optimum

Global optimum

Figure 2.10: Global and local optimum for a minimization problem.
23

CHAPTER 2
melting point to cause atoms to move from their initial positions.
During this phase the atoms randomly move around in the
material, which corresponds to states with higher energy. The
material is then slowly cooled back into a solid state with lower
internal energy than the initial one. Slow cooling will lead to a
low energy state and fast cooling to a high energy state, hence
there is a trade-off between the initial temperature, the time
spent during cooling and the quality of the result.

In order to apply the SA optimization, the following elements
must be provided. A representation of all feasible solutions (the
solution space). An annealing schedule with an initial state
(temperature) and neighborhood structure that represents the
different moves that can be applied to the current solution. A
generator of random changes is also required. It is used at each
iteration in the algorithm where a random move is allowed.

A random move is always accepted if it is associated with an
improvement. A move, associated with a non-improvement
state, is accepted only with a certain probability. This
probability is reduced, meaning that it is unlikely to accept a
non-improvement move at the end of the search. The probability
corresponds to the temperature in the annealing process. At the
beginning of the execution the temperature is high and large
modifications are possible, while as the temperature decreases
smaller and smaller modifications are allowed. When the user-
defined stopping condition is met the best solution found so far
is returned.

Tabu Search
Glover proposed in 1986 a new approach, called tabu search,

that would overcome the problem of local optima. The main idea
is to avoid local optima by accepting non-improving moves. The
cyclic behavior, that occurs when a previously visited solution is
revisited, is avoided by using a short term memory called tabu-
list. This memory holds a record of the recently visited solutions,
which can be avoided in the next moves. The tabu tenure is a
24

BACKGROUND AND RELATED WORK
measure on how long a move should be marked as tabu. The use
of tabus is effective in preventing cycling. However, it may also
prohibit attractive moves and lead to a slow and time consuming
search.

Genetic Algorithms
Inspired by evolutionary biology, genetic algorithms [Mic96]

offer another approach to solve combinatorial optimization
problems. Techniques such as inheritance, mutation, natural
selection, and recombination (or combinations of these
techniques) are applied to a population of candidate solutions,
called individuals, forcing the optimization problem to evolve
toward a better solution.

Solutions are traditionally represented by a string of '1's and
'0's and the evolution starts from a population of completely
random individuals. In each iteration (generation) the fitness of
the population is evaluated and multiple individuals are
stochastically selected and modified by mutation or
recombination, to form a new population. There are a number of
parameters such as mutation probability and recombination
probability that the designer may use to tune the algorithm and
guide the selection.

Application of Heuristics
Simulated annealing has been used by Larsson et al. in

[Lar01b] where the test scheduling and TAM design are
minimized. A tabu search based heuristic is proposed to
optimize a hybrid BIST test set by Jervan et al. in [Jer02]. In the
work done by Ebadi and Ivanov [Eba01] a genetic algorithm is
used for test access architecture design and test time
minimization.
25

CHAPTER 2
26

PRELIMINARIES
Chapter 3
Preliminaries

HE PURPOSE OF THIS CHAPTER is to introduce the
background information of the rest of this thesis. In the
first section, the system model used is explained, and a

detailed description of how a test is applied to a core is given. It
is assumed that the system consists of a number of cores that
are connected to at least one functional bus. When the system is
in functional mode, the functional inputs and outputs at each
core are connected to the functional bus. When the system is in
testing mode the connectors will receive control signals
indicating when a test vector should be applied.

In the second section, the TAM architecture is presented, and
a description of how the test vectors are transported to the cores
is given. An example that illustrates the advantage of using the
functional bus is also given in this section. In the third section,
the schedule of tests, using the proposed architecture, is
discussed.

T

27

CHAPTER 3
3.1 System Architecture
In this thesis, we assume that the system under test consists of a
number of cores which are connected to at least one functional
bus, as illustrated in Figure 3.1. The bus-based architecture has
been selected since it is the most widely used interconnect
architecture for SoCs [Pol03] and several commercial buses have
been developed such as CoreConnect from IBM [Cor05] and the
Advanced Microcontroller Bus Architecture (AMBA) from ARM
[Amb05]. The system is tested by applying to the cores a number
of tests which are produced by the core providers. Also connected
to the bus are the following two test components: the source
where the test stimuli are generated and the sink, which is used
to compare the test responses to the expected responses.

The design example depicted in Figure 3.1 consists of four
cores, Core1, Core2, Core3, and Core4, which are connected to a
functional bus, bf1. The test stimuli are transported from the
source on the bus, to the core, through the input test pins, tin.
When they have been applied, the test responses are
transported to the sink through the outputs, tout. Both during
normal operation (functional mode) and during testing mode,

SoC

Bus interface

Figure 3.1: Bus-based system.

Source
Sink bf1

Functional bus

tin tout Core2C1Core1

Core3 Core4

Wrapper
28

PRELIMINARIES
the inputs and outputs of each core are connected to the
functional bus. However, when the system is in the testing mode
the bus interface will receive control signals indicating when a
vector should be applied. Test data is then transported to the
wrapper chains.

The cores are assumed to be equiped with scan and to
facilitate interfacing with the functional bus, each core has a
wrapper. The scan elements at a core (scan-chains and wrapper-
cells) are connected into wrapper chains, which are connected to
a bus as illustrated in Figure 3.2. In this example, the core Core1
from Figure 3.1 is connected to a functional bus, bf1. The three
scan chains (sc1, sc2, and sc3), which are of equal length (l=9),
are connected to the bus wires.

The core Core1 is tested by applying the test T1 which consists
of N test vectors, as illustrated in Figure 3.2
where test vector v1 is applied to the cores three scan-chains, sc1,
sc2, and sc3. The bus interface will receive a control signal, tctrl,
which indicate that the data received from the bus is a test and
should be applied to the wrapper chains.

3.2 Test Access Mechanism
In this work we consider the bus-based TAM architecture. The
proposed method allows the existing functional bus structure to
be reused for test data transportation. The advantage of using
the existing functional bus structure is that the amount of
additional, dedicated test wiring is reduced. This can be
illustrated by considering the example in Figure 3.3. It consists
of two cores, Core1 and Core2, which are tested by two tests, T1
and T2, respectively.

Short application time of scan patterns entails a concurrent
scan-in and scan-out phase, that is, when one scan vector is
shifted out, a new vector is shifted in. Therefore it is not possible
to share the same bus wires for the test stimuli and test

v1 v2 … vN, , ,{ }
29

CHAPTER 3
responses of one core; the total number of bus wires used to test
one core is twice the number of scan chains of the core. Both
cores in the example in Figure 3.3 have three scan-chains each,
which means that six wires are needed during the test
transportation.

Figure 3.2: Scan testing.

1 ... 1 1 0v1
v2

...

vN

scan bit

sc1 sc3

0 ... 1 1 0 0 ... 1 0 1
0 ... 1 0 0 0 ... 1 0 0 0 ... 0 1 0

1 ... 0 1 0 1 ... 1 1 1 1 ... 0 0 0

9 ... 3 2 1

...
...

...

9 ... 3 2 1 9 ... 3 2 1

sc2

test vector

T1

...

0

0

1

0

1

1 011

...0 011

1239

1

2

3

9 1

0

1

1

Core1

4

5

6

7

8

sc1

sc2
sc3

1239

Input wrapper cell Output wrapper cell

tin tout

Functional
 connection

Wrapper

bf1

Bus interface

tctrl tctrl

Bus interface

Scan-chain
30

PRELIMINARIES
In Figure 3.3(a) a dedicated test bus bt1 is used for the
transportation of the test data. The test data are transported in
parallel, which is possible since there are dedicated wires for

Figure 3.3: Test transportation.

sc
sc

core1

sc
sc

core2

T2

vN...v2,v1

T1

vM...v2,v1

bf1

sc
sc

core1

sc
sc

core2

bf1

vN...v2,v1

vM...v2,v1

bt1

T2

T1

a) Test transportation on a dedicated test bus

b) Test transportation on a funtional bus
31

CHAPTER 3
each scan-chain (one wire is used for shifting in the input
stimuli and one wire is used for shifting out the responses).
Note, that the functional bus is not utilized during testing in
this design. In Figure 3.3(b), the tests are transported on the
functional bus bf1 and no dedicated test bus is used. The time for
transporting the tests on the functional bus is larger since only
one test can be transported on the bus at a time. To give
exclusive access to the bus for both cores at the same time, and
hence make it possible to apply the test to the cores
concurrently, would significantly decrease the test time.

3.3 Test Scheduling
Using a bus for transporting test data entails usually a
sequential schedule, and hence, only one core is tested at a time,
as illustrated in Figure 3.4. The transportation of tests on the
functional bus is shown in Figure 3.4 (a). The example shows
that the bus is the critical resource; it is fully occupied all the
time. Still, the cores are only activated one after the other
(Figure 3.4 (b)). This makes the scheduling very simple. The
drawback, however, is the long test time obtained since the cores
are not tested in parallel.

The following two chapters, Chapter 4 and Chapter 5, contain
different solutions on how the sequential bus based test
architecture can be improved in order to obtain test parallelism
in the testing of cores. In Chapter 4, a buffer is introduced
between the cores and the bus, which is used to temporarily
store the test data during test application. In Chapter 5, a
connector is used to connect the core test terminal to the
functional bus wires and in contrast to the functional
connection, where the full bus bandwidth often is assigned to
each core, this method proposes an architecture where only a
portion of the bus bandwidth is assigned to a core during testing
mode. The advantage is that only the required bandwidth is
32

PRELIMINARIES
used during testing and the wires not utilized for a certain core
can be used by another core at the same time. Furthermore,
additional test buses can also be introduced to increase the test
concurrency, whenever needed, to shorten the test application
time.

Figure 3.4: Sequential scheduling and application.

Test time

Test1 Test2 Test3 Test4

resource

Functional bus

Test time

Test1

Test2

Test3

Test4

resource

Core1

Core2

Core3

Core4

a) Test transportation on bus bf.

b) Test application
33

CHAPTER 3
34

BUFFER AND CONTROL-LOGIC MINIMIZATION
Chapter 4
Buffer and Control-logic

Minimization

HE PURPOSE OF THIS CHAPTER is to describe a test
architecture in which a buffer is inserted between the
functional bus and each core and the tests are divided
into packages. It means that tests can be applied

concurrently even if the bus only allows sequential
transportation. The additional hardware overhead, introduced
by the proposed method, should be minimized without exceeding
a, designer specified, test time constraint. The problem has been
modelled and optimally solved using CLP. The results
demonstrate that the cost is decreased compared with a
straightforward approach.

Since CLP uses an exhaustive search approach, the
optimization time can become long for complex designs.
Therefore, a tabu search based algorithm is proposed that works
for larger designs, and is compared with the results from the
CLP approach. The results indicate that the technique produces
high quality solutions at low computational cost.

T

35

CHAPTER 4
4.1 System Architecture
The example in Figure 4.1 shows a system consisting of three
cores, core1, core2, and core3, all connected to the functional bus
bf. Each core, corei, is associated with a buffer bui placed between
the core and the bus. Also connected to the bus are two test
components, SRCT and CTRLT. We assume that the tests are all
produced in the test source SRCT and the test controller CTRLT
is responsible for the invocation of transmissions of the tests on
the bus. It is assumed that the core itself handles the evaluation
of the test responses, by, for example, a multiple-input signature
analyser (MISR), and, thus, the cores act as the test sink. The
information needed for the final test result evaluation is also
sent via the bus.

The test controller is a finite state machine sending a signal si
to each core indicating when it will receive a package of test
data. The signal, si, is also sent to the test source, SRCT,
indicating when a test should be transmitted on the bus. When
the core has received the package, it sends a signal ri to the
controller, indicating that the controller can continue to
transmit packages to another core.

The proposed method is based on the assumption that the test
application of a core takes longer time than the test data
transportation. One motivation for this assumption is that the

s1
s2

Figure 4.1: Bus-based architecture.

bu3

Core1 Core2 Core3 SRCT

bu1 bu2 bf

Functional bus

CTRLT s3

r1
r2r3

r1 r2

s1 s2

Test source

Test controller

Buffer
36

BUFFER AND CONTROL-LOGIC MINIMIZATION
number of scan chains in the cores usually is smaller than the
bandwidth of the bus, thus making it possible to transfer more
test data per clock cycle on the bus than what can be applied to
the core. This difference is further illustrated with a small
example (Figure 4.2). Here a 128 bit wide (w=128) functional
bus is connected to a corei, with four scan chains through a
buffer. In only one clock cycle of the bus, the buffer is fed with
128 bits of test data. The test vector is partitioned through a
parallel to serial converter, to four scan chains, each with the
length of 32 bits. During the next cycle, the bus can transport
data to another core, corej while corei is occupied for another 32
clock cycles with the shift-in of the scan chains.

In order to make this approach more efficient the test set for
each core is divided into small packages of test vectors, as
illustrated in Figure 4.3. Here the test to Core1 has been divided
into two separate packages, p11 and p12, which then are
scheduled in order but without a fixed interval between the
packages. This leads to a more flexible schedule, which also
contributes to a possible decrease of the total test application
time.

bus ...

Buffer

. . .

1-32
33-64
65-96
97-128

1-
12

8

sc
sc

sc
sc

. . .
. . .

. . .

w

Figure 4.2: Bus and buffer connected to a core with four
scan chains.

Corei
37

CHAPTER 4
Each test Ti can be divided into mTi
 packages (each being a set

of test vectors). There are two reasons for dividing tests into
packages. As mentioned earlier, the transportation time ti

send-p

for a package on the bus is shorter than the application time
ti

appl-p. The size of the buffer does not have to be equal to the size

Test application

MISR

Figure 4.3: Test scheduling and application of test
packages with buffers.

bf

Core1

bu1

sc
sc

MISR
Core2

bu2

sc
sc

bf

Core1
Core2

Test time

Test transportation

Test applicationp11 p12

p11 p12bf

Core1
Core2

Test time

Test transportation

a) Test architecture with buffers and signature analyzers (MISR).

b) Test schedule and application with buffers.

c) Test schedule and application of test packages with buffers.
38

BUFFER AND CONTROL-LOGIC MINIMIZATION
of the packages. This is explained by the fact that the test data
in a package can be applied immediately when it arrives at the
core. The buffer size bsi, associated to a core corei, is calculated
with the following formula:

where the constant ki represents the rate at which the core can
apply the test, the time tstartij is the scheduled start time of the
application of the package j from test Ti at the core, and tsendij is
the start time for sending the package on the bus. The constant
∆i represents the leftover package size, which is the size of the
test vectors that remain in the buffer after the transportation of
the package terminates. This constant ∆i is determined by the
difference between ti

appl-p
and ti

send-p
, which is multiplied by the

constant ki.
The calculation of the buffer size is illustrated in Figure 4.4,

which shows the bus schedule and the application of a test T1 to
core c1, with t1

appl
=60, t1

send
=30, mT1

=3, and k1=1. In this
example the core has not finished the testing using the package,
p12, sent at time point tsend12=10 before the package, p13, sent at
tsend13=20 arrives at the core. This forces the buffer size to be
increased. For this example the buffer size will be equal
to , which is the difference between the
termination of applying the last test package and the end point
of transporting the corresponding package.

bsi max ki τstartij
τsendij

–()× ∆i+() j 1 mTi
,()∈,= (2)

1 40 20–()× 10+ 30=

τsend13
20=

0 20 40 60

τstart13
40=bf

core1 time

Figure 4.4: Example to illustrate time to transport and
time to apply test.

p11 p12

p11

p13

p12 p13
39

CHAPTER 4
4.2 Motivational Example
The following example illustrates the minimization of the buffer
size and the test controller complexity. We make use of the
system example in Figure 4.1, which consists of three cores
core1, core2, and core3 which are tested with three tests, T1, T2,
and T3, respectively. We have divided the tests into a total
number of eight packages, all with the same application time
and minimum package size, but different transportation times
(Table 4.1). We assume that the maximal test application time,
Tmax, for the system is given by the designer. In this example the
time is 90 time units, which is the minimal time for applying
these tests. This is the sum of the transportation times plus the
smallest value of all ∆i.

Three different schedules for the eight packages derived from
the three tests are illustrated in Figure 4.5(a-c). In Figure 4.5(a)
the packages are sent in such a way that the application of the
previous package has finished before a new one arrives. This
leads to small buffers since every package can be applied
immediately as they arrive, that is tstartij-tsendij=0 for all
packages. The buffer sizes for this schedule are,
(), , and . A finite state machine
is used to capture the complexity of the test controller. For
realizing the schedule in Figure 4.5(a) it is required that the test
controller has eight different control states.

In the second schedule, Figure 4.5(b), some packages are
grouped together in pairs, which will produce larger buffers,

Table 4.1: Test characteristics.

Test
Nr.
packages

Application
time (ti

appl)
Transportation
time (ti

send) ∆i

T1
3 60 30 10

T2
2 60 20 10

T3
3 60 30 10

bs1 10=

bs1 1 0()× 10+= bs2 20= bs3 10=
40

BUFFER AND CONTROL-LOGIC MINIMIZATION
0 20 40 80 10060

0 20 40 80 10060

Test3

Test1

Test2

τsend

τstart

bf

core3

core1

core2

s1 s8
s2 s4s3 s6 s7s5

s1 s2 s3
s4 s5

time

time

s1
s2

s5s2 s3 s4

s1 s2 s3 s4 s5 s6 s7 s8

Start

Start

r1 r2 r3 r1 r3 r2 r1

r1 r2 r3 r1

Figure 4.5: Scheduling examples.

a) Schedule with small buffers but a high number of control states.

b) Schedule with large buffers and few control states.

0 20 40 80 10060

s1 s2 s3

time

s2

s1 s2 s3

Start r1 r2

c) Schedule with large buffers and minimal number of control states.

Τmax

Τmax

Τmax

Τmax exceeded

bf

core3

core1

core2

bf

core3

core1

core2
41

CHAPTER 4
 (), , and , however,
the schedule in this example can be realized using only five
states in the test controller.

The minimal number of control states needed for this example
is three, one for each test. By using only three states it is
impossible to schedule the packages in such way that the
maximum allowed test application time is not exceeded, as
illustrated in Figure 4.5(c).

This example illustrates the trade-off between the complexity
of the test controller, given by the number of states, and the
buffer size. Small buffer size requires many states in the test
controller while a small controller with few states require large
buffers.

4.3 Problem Formulation
The problem is formulated precisely as follows. Given is a
system consisting of a set of N cores C = {c1, c2, ..., cN}, and each
core, ci, has a buffer bui where bsi is the buffer size (initially bsi
is not determined). The maximal allowed test time for the
system, tmax, is given as a constraint. Also given is the set of
tests T={T1, T2, ...,TN}, where Ti is a set of test vectors, which is
to be applied to the core ci. For each test Ti, the following
information is given:
 • the application-time ti

appl is the time needed to apply the
test to core ci,

 • the transportation-time ti
send is the time needed to transport

Ti from the test source SRCT via the bus to core ci,
 • the size sTi is the number of test vectors in test Ti.

A test Ti, is divided into a number of mTi
 packages, each of

equal size sTi- p. The package size sTi- p for a test Ti is
determined as follows1:

bs1 20= bs1 1 70 60–()× 10+= bs2 40= bs3 20=

s
Ti p– s

Ti

mTi

----------= (3)
42

BUFFER AND CONTROL-LOGIC MINIMIZATION
The time ti
appl-p to apply a package belonging to test Ti is

calculated as:

Associated to each package pij of test Ti where , are
three time points, τstartij

, τsendij
, and τfinishij

. The time to
send,τsendij

, represents the start of the transmission of package,
pij, on the bus. The time, τstartij

, is the time to start the
application of the test at the core ci. Finally, τfinishij

 is the time
when the whole package has been applied. The finish time,
τfinishij

, is given by the following formula:

The objective of our technique is to find τstartij
and τsendij

 for
each package in such way that the total cost is minimized while
satisfying the test time constraint, tmax. The total cost for the
test is computed by a cost function, that consists of the system’s
total buffer size and the complexity of the controller given as
follows:

where α and β are two coefficients used to set the weights of the
controller and the buffer cost. The cost of the buffers is given as:

and the controller:

where the constants k1
C and k1

B are constants reflecting the
base cost, which is the basic cost for having a controller and
buffers, respectively, and k2

C and k2
B are design-specific

1. The last test package may have a smaller number of test vectors than ti
size-p. We

assume that this package is filled with arbitrary vectors.

ti
appl p– ti

appl

mTi

-------------= (4)

1 mTi
,()∈

τfinishij
τstartij

ti
appl p–

+= (5)

CostTot α Cost× Controller β Cost× Buffer+= (6)

CostBuffer k1
B k2

B BufferSize×+= (7)

CostController k1
C k2

C CF1×+= (8)
43

CHAPTER 4
constants that represent the implementation cost parameters
for the number of states and the buffer size. The buffer size is
translated into estimated silicon area expressed by the number
of NAND gates used.

The total buffer size in the system is given by:

The complexity of the test controller CTRLT is given by the
following formula described in [Mit93]:

where Ni is the number of inputs, No the number of outputs, Ns
the number of states and Nt the number of transitions. The
formula estimates the complexity of a finite state machine in
equivalent two-input NAND gates. In this work the number of
inputs Ni and outputs No is equivalent to the number of cores
and the number of transitions Nt is equal to the number of states
Ns.

Our problem is similar to the NP-complete multiprocessor
resource constrained scheduling problem [Gar79], which is
formulated as follows:

Given a set, A, of tasks, each having length l(t)=1, a number of
m processors, a number of r resources, resource bounds Bi,
where , resource requirement Ri(t), , for each
task a and resource i, and an overall deadline, D.

Is there an multiprocessor schedule, , for A that meets the
overall deadline D without violating the resource constraints,
Bi?

The problem formulated in this section can be translated into
the above multiprocessor resource constrained scheduling
problem if tasks are translate into tests, T, processors translated
into cores, C, and the resources translated into hardware used to

BufferSize bsi

i 1=

N

∑= (9)

CF1 K × Ni No 2
2
Nlog s×+ +() Nt 5 ×

2
Nlog s+×{ }= (10)

1 i r≤ ≤ 0 Ri t() Bi≤ ≤

σ

44

BUFFER AND CONTROL-LOGIC MINIMIZATION
transport the tests, which in our formulation is the bus. The
resource constraint is the designer specified maximum overall
test application time.

With these transformations, the objective is to find the
schedule that minimizes the hardware cost without violating the
resource constraint. In our formulation the overall deadline will
be transformed into the test-time, which should not be exceeded.

4.4 Constraint Logic Programming Modelling
We have first modelled the system in a CLP program, consisting
of two main components, Test and Package [Lar03a]. The Test
component contains all given information for the tests and is
used as the input to the program. In order to find a feasible
solution that minimizes the total cost, the program ensures that
a number of different constraints are fulfilled. These constraints
are:
 • the packages belonging to the same test have to be sent in a

given order, i.e. ,

 • the start time of a package should be later or equal to the
time of transmission on the bus: ,

 • the time when a package has been completely applied to the
core is equal to the time it starts the application plus the
time used for application: ,

 • the finish time of any test can not exceed the total test time
limit, Tmax: .

The buffer size at a core is determined by the formula presented
in Section 4.1 (Eq. 2), and the cost of a solution is given by the
formula in Section 4.3 (Eq. 6).

With the above constraint set, the constraint solver searches
for a solution that minimizes the cost of the test.

tstartij 1+
tfinishij

≥

tstartij
tsendij

≥

tfinishij
tstartij

Ti
appl p–

+≥

tfinishij
Tmax≤
45

CHAPTER 4
4.5 The Tabu Search Based Algorithm
We have also implemented a tabu search based optimization
heuristic for the problem described in Section 4.3 [Lar05a]. The
main reasons for using tabu search, and not, for instance,
simulated annealing or genetic algorithms, was tabu search’s
proven efficiency in solving scheduling problems, the relatively
straightforward implementation, and the ability to handle
additional constraints not captured in the original problem
formulation.

The algorithm (Figure 4.6), consists of three steps: in step one
(lines 1-9) an initial schedule is built, which is further improved
in step two (10-14) and step three (15-35). The algorithm takes
as additional input a minimal test time possible for the tests,
tmin, which is the theoretical minimal time needed for
transportation and application of the tests, with unlimited
buffer and controller cost. This value can be computed by a CLP
model in a very short time (less than one second for each of the
experiments used in this work).

In the initial step, the tests are sorted according to their
application time, ti

appl, and then the initial schedule is built.
The slack, which is the difference between the end time of the
schedule and tmax, is calculated. In step two, the initial schedule
is improved by distributing the slack between the packages,
hence, decreasing the buffer size. After this step the slack is
zero. The schedule is then further improved in step three, where
a tabu search based strategy is used to find the best solution.

In our algorithm the neighborhood is determined by the
possible points of improvements in the schedule. These can be
points which decrease the buffer size by splitting a package, or
decrease the controller cost by merging packages. Each possible
improvement point is defined as a move, which, after it has been
applied, is marked as a tabu. How a move is preformed is
46

BUFFER AND CONTROL-LOGIC MINIMIZATION
1 Step1: if tmax < tmin return Not schedulable
2 sort the tests T in increasing order of ti

appl

3 until all packages are applied do
4 apply package from Ti

5 until time < ti
appl-p do

6 apply package from Ti+1

7 time = time +ti+1
send-p

8 repeat

9 repeat
10 Step2:doMark()
11 until Slack is 0

12 Delay package from MarkList
13 repeat
14 best_cost = compCost(Sched0)

15 Step3:start:
16 doMark()
17 for each pos in MarkList

18 build new schedule Schedi

19 delta_costi = best_cost - compCost(Schedi)

20 repeat
21 for each delta_costi< 0, in increasing order of delta_costi do
22 if not tabu(pos) or tabu_aspirated(pos)

23 Sched0 = Schedi

24 goto accept
25 end if

26 repeat
27 for each pos in MarkList
28 delta_costi’ = delta_costi + penalty(pos)

29 repeat
30 for each delta_costi’ in increasing order of delta_costi’ do
31 if not tabu(pos) goto accept

32 repeat
33 accept:
34 if iterations since previous best solution < 10 goto start

35 return Sched0

Figure 4.6: Algorithm for test cost minimization
47

CHAPTER 4
illustrated in Figure 4.7. In Figure 4.7(a), the different possible
points of improvements are shown and one is selected. The
move, which is selected, will reduce the number of control states
since two packages will be merged. After the move selected in
Figure 4.7(a) has been applied, the new schedule and the new
possible points of improvements, are illustrated in Figure 4.7(b).
Figure 4.7(c) shows the schedule after the move, selected in
Figure 4.7(b), has been applied. The move, selected in each
iteration, is the one which reduces the cost the most, however, a
move that increase the cost is accepted if no other move is
possible.

The tabu tenure, that is the number of iterations when a move
is kept as tabu, is set to seven. This value has to be long enough
to prevent cycling without driving the solution away from the
global optimum. Extensive experiments were carried out to find
this value of the tenure. The tabu is aspirated if the cost of the
obtained schedule is the best obtained so far. In order to find a
good solution, an outer loop iterates until no further
improvement is made for 10 consecutive tries. Also this number
has been set on the basis of extensive experiments.

When the tabu search terminates, the solution with the lowest
cost is returned.

4.6 Experimental Results
In our experiments we have used the following four designs;
Ex1, Asic Z [Zor93], [Cho97], Kime [Kim82], and System L
[Lar01a]. The main characteristics of the four designs, from the
point of view of the problem addressed in this chapter, are
presented in Table 4.2. More detailed information can be found
in [Lar05d].
48

BUFFER AND CONTROL-LOGIC MINIMIZATION
Test3

Test1

Test2

Figure 4.7: Scheduling using proposed algorithm (Step3).

a) Schedule before applying a move.

0 20 40 80 10060

τsend

τstart

b

c3

c1

c2

{

time

s1 s2 s3 s4 s5 s6 s7 s8

Τmax

Possible inprovements points

b) Schedule after applying the move selected in a).

0 20 40 80 10060

τsend

τstart

b

c3

c1

c2

{

time

s2 s3 s4 s5 s6 s7

Τmax

Possible inprovements points

s1

0 20 40 80 10060

τsend

τstart

b

c3

c1

c2

{

time

s2 s4 s5 s6

Τmax

Possible inprovements points

s1 s3

c) Schedule after applying the move selected in b).
49

CHAPTER 4
We have used the CLP-tool CHIP (V 5.2.1) [Chi96] for the
implementation. The experiments have been performed in two
steps. In the first step the minimal test time is obtained
assuming no division of the tests into packages, which
corresponds to the traditional approach assumed by several
existing test scheduling techniques. For experimental purposes
the obtained test time from step one is used as the time
constraint, tmax, in the second step, where the cost is minimized
using the CLP approach.

The experimental results of the CLP solution are presented in
Table 4.3, where the cost of our approach has been compared to
the cost obtained by a straightforward approach. Column 1 lists
the four designs and the maximum test time, tmax, in Column 2.
The total cost from the two approaches is presented in Column 3
and Column 4 and the cost comparison in Column 5. The results

Table 4.2: Design characteristics

Design
Nr.
cores

Nr.
tests

Nr.
packages

Min
buffer size

Max
buffer size

Ex1 3 3 8 80 200

Kime 6 6 20 186 680

Asic Z 9 9 38 222 838

System L 14 13 39 560 1976

Table 4.3: Experimental results.

Design tmax

Straightforward
approach

Our
approach

Cost
comparison

Ex1 111 116 92 -27.1%

Kime 257 625 460 -35.9%

Asic Z 294 472 319 -48.0%

System L 623 1843 1182 -55.9%
50

BUFFER AND CONTROL-LOGIC MINIMIZATION
shows a decrease with 27 to 55% of the cost, which shows that
our approach can decrease the cost by minimizing the buffer and
controller, without exceeding the test time limitation.

Since CLP uses an exhaustive search approach, the
optimization time using CLP can become large. For the largest
benchmark, System L, the optimization time was more than 18
hours. In order to solve this problem a tabu search based
heuristic is proposed that works for larger designs. In order to
estimate the quality of the results produced by our heuristic
(Section 4.5) we have compared them with those generated by
solving the same optimization problem using the CLP
formulation (Section 4.4). The experimental results using the
CLP approach is collected in Table 4.4 where the results using
our approach, also presented in Table 4.3, is complemented with
the optimization time, and using the proposed heuristic in
Table 4.5. The optimization time (CPU time) is presented in
Column 3 and the total cost is presented in Column 4. The total
cost obtained from the CLP approach is compared with the total
cost from the tabu search based algorithm. As can be seen from
the comparison (Table 4.6), our heuristic produced results which
were only less then 6.1% worse then those produced by the CLP-
based approach. However, the heuristic proposed in this paper
take 3s for the largest example, while the CLP-based solver was
running up to 18 hours and produced results that, on average,
were only 3.8% better.

Table 4.4: Experimental results using CLP.

Design tmax CPU time (s) Total cost

Ex1 111 160 92

Kime 257 27375 460

Asic Z 294 47088 319

System L 623 64841 1182
51

CHAPTER 4
We have also compared our results with the results produced
by the CLP solver after the same time as our proposed algorithm
needed, i.e. 1s for design Ex1, 2s for design Kime and Asic Z, and
finally 3s for System L. For this experiment, the CLP is used as
a heuristic where a timeout is used to stop the search and the
best solution found so far is returned. This comparison showed
that our tabu search based algorithm on average produced
solutions that were 10.2% better.

Table 4.5: Experimental results using the proposed algortihm.

Design tmax CPU time (s) Total cost

Ex1 111 <1 92

Kime 257 2 486

Asic Z 294 2 330

System L 623 3 1254

Table 4.6: Experimental results.

Design
Cost obtained
using CLP

Cost obtained
using the proposed
algorithm Cost comparison

Ex1 92 92 0%

Kime 460 486 +5,7%

Asic Z 319 330 +3,4%

System L 1182 1254 +6.1%
52

BUFFER AND CONTROL-LOGIC MINIMIZATION
4.7 Conclusions
In this chapter we have proposed a technique to make use of the
existing functional bus structure in the system for test data
transportation. The advantage is that a dedicated bus for test
purpose is not needed hence we reduce the cost of additional test
wiring. We insert buffers and divide the tests into packages,
which means that tests can be applied concurrently even if the
TAM only allows sequential transportation. We have proposed a
tabu search based algorithm where the test cost, given by the
controller and buffer cost, is minimized without exceeding the
given maximum test time. We have implemented and compared
our technique with the results from a CLP approach. The results
indicate that the proposed heuristic produces high quality
solutions at low computational cost.
53

CHAPTER 4
54

TEST SCHEDULING WITH TEST SET SHARING AND BROADCASTING
Chapter 5
Test Scheduling with Test

Set Sharing and
Broadcasting

HE PURPOSE OF THIS CHAPTER is to describe a
method where the existing functional bus may be reused
for the test data transportation. In order to decrease the

test time, we allow dedicated test buses to be added if this does
not exceed the given maximum hardware cost constraint. We
have also made use of a technique to share and broadcast test
sets to generate better test schedules.

The first section in this chapter describes a method for test set
sharing. This is followed by a description of the test architecture
and a motivational example, which is used to illustrate the
problem. The problem is modelled and solved using CLP.
Experiments show that the overall test time can be significantly
reduced when broadcasting of tests is used.

T

55

CHAPTER 5
5.1 Test Set Sharing
Decreasing the test application time of a SoC entails a method
that allows different cores to be tested concurrently. This can be
done by, for instance, using multiple test buses. Another method
would be possible if several cores use or share the same test set,
which is transported and applied to the cores concurrently.
There are two requirements that have to be satisfied before this
method can be used. First, the cores must share the test set.
This can be done by merging two or several test sets into one test
set. Second, the TAM used to transport the shared test set must
support broadcasting so that the cores that share the test
receive it simultaneously.

A test set that can be shared among several cores can be
obtained by merging the dedicated tests for the cores. This can
be done by using overlapping (identical) test vectors from the
dedicated original tests. It is required that it is possible to find
overlapping test vectors since the efficiency of this method
depends on how large the merged test set is, in comparison with
the unmerged sets. If no vectors can be merged, the new test set
will have the same size as the sum of the original test sets, and
the test transportation and test application time will be
unchanged. The possibility of finding overlapping test vectors is
increased if the vectors contain unspecified bits, so called don’t
cares, which can be set to either ‘1’ or ‘0’. It has been shown that
the amount of don’t cares in the test sets is high, 78% for un-
compacted tests [Kaj01], [Cha03].

We have performed experiments to investigate the
relationship between the number of don’t care bits and the size
of the merged test set [Lar05b]. For this purpose we use a
straightforward pattern matching algorithm that takes two test
sets, T1 and T2, as input and generates a new test set T’. This is
illustrated in Figure 5.1 where two cores, core1 and core2, are
tested by two tests, T1 and T2, respectively. Test T1 consists of N
test vectors, {v1, v2,..., vN}, and test T2 of M test vectors, {v1,
56

TEST SCHEDULING WITH TEST SET SHARING AND BROADCASTING
v2,..., vM}. In this example, both cores have two scan chains, sc1
and sc2, with equal length, l. The cores are connected to a bus
with bandwidth w.

Merging one test vector vi from Test T1 with a test vector vj
from T2, where and , is done by comparing
each position in the two test vectors. As long as both have the
same value or one is marked as a don´t care (x), the vectors can

c) Application of broadcasted test.

Figure 5.1: Merging and application of tests.

X ... X 1 0
1 ... X 0 1

X ... X 0 1

1 ... X 1 X
1 ... 1 X 0

1 ... 1 X X

v1
v2
...

vN

scan bit ... 123l... 123l

1 ... X 0 1

0 ... X 0 1

1 ... 1 1 0

1 ... 1 1 X

... 123l1

1 ... 0 1 X 0 ... 0 1 0

0 ... 0 1 0

1 ... 0 1 X

0 ... 0 1 0
1 ... 0 1 X

w

... 23l
v1
v2
...

vN’

T’T1

... 123l

X ... X 1 0

1 ... X 1 X

X ... X 1 0
1 ... X 1 X

w

... 123l

core1 core2

0 ... 0 1 X
X ... 0 1 X

v1 to c1

v1 to c1 and c2

0 ... 0 1 X
1 ... X 0 1

0 ... X X 1

X ... 0 1 X
X ... 1 1 0

X ... 1 X 1

v1
v2
...

vM

... 123l... 123l

T2

0 ... 0 1 0

1 ... 0 1 X

... 123l

0 ... 0 1 X

X ... 0 1 X

... 123l

v1 to c2

sc1 sc2

sc1 sc2

sc’1 sc’2

core1 core2

sc2

sc1

sc2

sc1

sc2

sc1

sc2

sc1

T1 T2

T’

a) Merging two test sets.

b) Sequential test application.

i 1 N,()∈ j 1 M,()∈
57

CHAPTER 5
be merged as illustrated in Figure 5.1(a). If it is not possible to
merge vi with vj, the next test vector, vj+1, is tried until all test
vectors have been investigated, i.e. when j=M. This process is
then repeated for all vi, i.e. when i=N. The test vectors, which
are not possible to merge are kept intact and the size of the new
test set T’ is increased. In cases when the cores have scan chains
with different length, the one with shorter length will be filled
with don’t cares.

Figure 5.1(b) shows how the cores are connected to a test bus.
In this example the tests T1 and T2 are transported and applied
sequentially. How the merged test, T’, is transported and
applied is illustrated in Figure 5.1(c) and since it consists of
vectors from test T1 and T2, both core c1 and c2 will be tested
concurrently.

This pattern matching algorithm has been applied to the
benchmark design d695 [Cha01]. The test data is presented in
Table 5.1. The test vectors (with don’t cares marked) have been
extracted by Kajihara and Miyase in [Kaj01]. The results from
this experiment are presented in Figure 5.2(a), which shows 10
different combinations of the tests and the sizes of the merged
tests. The sizes of the merged tests are compared with the size of
the largest test used and the result shows an increase in size
with on average only 10.94%. To illustrate the relationship
between the number of don´t cares and the size of the merged
test set, a number of randomly generated tests where created
and merged. The results depicted in Figure 5.2(b) show that
when the number of care bits is in the range of 0 to 45 % the size
of the merged set is still reasonably small, within an increase of
50%.

There is a relation between the possibility of merging two
tests and the density of don't cares present in the tests. If the
tests are compressed so that only a small percent of don't cares
remains, the merging capability will significantly decrease. How
the compression ratio is affected by the density of don't cares has
been studied by Kinsman et al. [Kin05]. To cope with a situation
58

TEST SCHEDULING WITH TEST SET SHARING AND BROADCASTING
where the compression reduces the number of don't cares so that
it is not possible to merge tests, the test designer can set a limit
on the amount of compression of a test, so that it is still possible
to use it for merging.

In order to apply the merged tests, it is required that the
cores, which share the tests are connected in such a way that the
tests can be broadcasted to the cores. In this work the test
responses from each core will be transported on wires different
from those which transported the test stimuli (on the
architecture description in the following section).

Table 5.1: Test data for d695.

Circuit
(core)

Nr. test
patterns

Nr. scan
chains

Percentage of
don’t cares

c6288 12 - 0

c7552 73 - 54.31%

s838 75 1 60.93%

s9234 105 4 68.70%

s38584 110 32 80.83%

s13207 234 16 92.02%

s15850 95 16 77.22%

s5378 97 4 73.11%

s35932 12 32 36.20%

s38417 68 32 73.09%
59

CHAPTER 5
1 2 3 4 5 6 7 8 9 10
100

110

120

130

140

150

160

170

180

190

200

Combined sets

S
iz

e
of

 c
om

bi
ne

d
se

t (
%

)

1. s13207, s15850
2. s9234, s5378
3. s13207, s9234
4. s38584, s13207
5. s15850, s5378
6. s38584, s15850
7. s13207, s5378
8. s15850, s838
9. s9234, s838
10. s35932, s838

0 10 20 30 40 50 60 70 80 90 100
100

110

120

130

140

150

160

170

180

190

200

Number of care−bits (%)

S
iz

e
 o

f
co

m
b

in
e

d
 s

e
t

(%
)

Figure 5.2: Merging of test sets [Lar05b].

b) Random sets with increasing number of don’t cares.

a) Different combinations from design d695.
60

TEST SCHEDULING WITH TEST SET SHARING AND BROADCASTING
5.2 System Architecture
In this section we discuss the architecture that is used for test
data transportation. First, we introduce the general
architecture by considering a system example consisting of a set
of cores (e.g. core1, core2, core3, and core4 in Figure 5.3), which
are connected by one or several buses (bf1 and bt1 in Figure 5.3).
The bus wires are connected to an ATE, which is used to apply
test vectors and to analyze the responses of the tests.

A connector consisting of the logic needed for the
communication and application of test data is introduced
between each core and the bus. For example, o4,1 is the connector
connecting core4 with bus bf1, as shown in Figure 5.3. It is
assumed that the buses are connected to the input and output
pins of the chip, and hence, directly accessible and controlled
from the ATE.

The functional bus is used to transport test data from the ATE
to the cores. However, if the bandwidth of the functional bus is
not enough for transporting the test data in reasonable time, one
or several dedicated test buses may be added to the design. A
dedicated test bus for the transportation of test data will
increase the transportation capacity and shorten the test time.
It also offers the possibility of a trade-off between the test time
and the number of wires used. A high number of wires require
however large silicon area to be implemented.

Figure 5.3: Bus based architecture.

Bus (Test bus)

A

T

E

A

T

E

Bus (Functional)

Connector

bt1

o3,1

Core1 Core2 Core3 Core4

o4,2

o1,1 o2,1

bf1

o4,1

o1,2
61

CHAPTER 5
The transportation of tests to the cores is illustrated in
Figure 5.4 by considering cores core1 and core2 from Figure 5.3.
It is assumed that both cores have three wrapper chains each,
which are connected to the bus as illustrated in Figure 5.4. The
test stimuli are transported from the ATE on the bus to the core
through the input test pins, tin. When the test stimuli have been
applied, the test responses are transported back to the ATE
through the outputs, tout. When the system is in the functional
mode, the functional inputs and outputs at each core are
connected to the functional bus. When the system is in the
testing mode the connectors will receive control signals, tctrl,
indicating when a vector should be applied.

Figure 5.4: Test transportation.

1 ... 1 1 0v1
v2

...

vN

scan bit
sc1 sc3

0 ... 1 1 0 0 ... 1 0 1
0 ... 1 0 0 0 ... 1 0 0 0 ... 0 1 0

1 ... 0 1 0 0 ... 1 1 1 1 ... 0 0 0

9 ... 3 2 1

...
...

...

9 ... 3 2 1 9 ... 3 2 1

sc2

test vector

T2

0 ... 1 1 0v1
v2

...

vN

sc1 sc3

1 ... 1 0 0 0 ... 1 1 1
0 ... 1 0 1 0 ... 0 0 0 1 ... 1 1 0

0 ... 0 0 1 1 ... 0 0 1 1 ... 0 0 0

9 ... 3 2 1

...
...

...

9 ... 3 2 1 9 ... 3 2 1

sc2

2

sc
sc

bf1

core1

sc
sc

core2

0 ... 1 0 0
0 ... 1 0 0
0 ... 0 1 0

1 ... 0 1 0
0 ... 1 1 1
1 ... 0 0 0

0 ... 1 0 1
0 ... 0 0 0
1 ... 1 1 0

0 ... 0 0 1
1 ... 0 0 1
1 ... 0 0 0

v1

1 ... 1 1 0
0 ... 1 1 0
0 ... 1 0 1

0 ... 1 1 0
1 ... 1 0 0
0 ... 1 1 1

v2vN ...

1

T3

o2,1

tctrl

o3,1

tin tout
62

TEST SCHEDULING WITH TEST SET SHARING AND BROADCASTING
Short application time of scan vectors entails a concurrent
scan-in and scan-out phase, that is, when one scan vector is
shifted out, a new vector is shifted in. Therefore it is not possible
to share the same bus wires for the test stimuli and test
responses of one core; the total number of bus wires used to test
one core is twice the number of scan chains of the core, as
illustrated in Figure 5.5.

The application of tests in Figure 5.5 can only be done
sequentially, as long as the cores are connected to the same bus
wires. To give exclusive access to the bus for both cores at the
same time, and hence make it possible to apply the test to the
cores concurrently, would significantly decrease the test time.
However, in the example in Figure 5.6, the bandwidth of the bus
is not enough and the two cores are forced to use the same wires
for several connections. If the tests are applied in parallel under
this situation they will overlap and hence give an impossible
schedule as illustrated in Figure 5.6. If we consider that the two
cores, core1 and core2, use a shared test set, as described in
Section 5.1, which is broadcasted, the number of wires will be

sc
sc

bf1

sc
sc

o2,1 o3,1

Figure 5.5: Connections and sequential schedule.

Test time

core1 core2

} Input wires

bf1

} Output wires
63

CHAPTER 5
enough for transporting both the test stimuli and test responses
and both cores will be tested concurrently. This is possible since
the input wires will be shared by the cores and only the output
responses require dedicated wires for each core, as shown in
Figure 5.7.

This example illustrates that by using shared test sets, which
are broadcasted, it is possible to get a shorter test time
compared to a sequential application and still use a smaller
amount of wires compared with a parallel application.

5.3 Motivational Example
Let us consider an example design consisting of four cores, core1,
core2, core3, and core4, connected to one functional bus bf1 with
the help of the test connectors (o1,1, o1,2, o1,3, and o1,4), as shown
in Figure 5.8. Each core has one test: core1 is tested by T1, core2
by T2, core3 by T3, and core4 by T4. The dedicated test set to

Figure 5.6: Connections where parallel schedule is not
possible.

} Shared
wires

sc
sc

bf1

sc
sc

o2,1 o3,1

Test time

core2 core3

bf1
64

TEST SCHEDULING WITH TEST SET SHARING AND BROADCASTING
these cores has been extended with one additional test T’5,
which is a combination of the tests T3 and T4 for core core3 and
core4. If T’5 is selected, it is broadcasted to core3 and core4.

For the sake of simplicity it is assumed that each test will
occupy the whole bandwidth of the bus, which means that a
single bus configuration will lead to a sequential application of
the tests. In the first schedule shown in Figure 5.8(a) the shared
test (T’5) is not used, while in the second schedule, Figure 5.8(b),
T’5 is introduced and, since it can be applied to two cores, core3
and core4, concurrently, the test time is decreased.

The test time may be further decreased if a dedicated test bus,
bt1 is introduced as illustrated in Figure 5.8(c and d). It will
enable concurrent application of tests. Figure 5.8(c) shows an
example of a mapping of cores to buses. In this example only one
core is tested through the test bus and the test time has
decreased compared with the example where only one bus was
used. Since core4 is tested through the test bus it is not possible

Figure 5.7: Connections and broadcasted test.

sc
sc

bf1

sc
sc

o2,1 o3,1

Test time

bf1

core2 core3
65

CHAPTER 5
Figure 5.8: Test scheduling for different bus architectures.

bt1

o3,1

bf1 Test time
bt1

Test time

c) Architecture and test schedule, alternative1.

d) Architecture and test schedule, alternative2.

Test timebf1

T1
T2
T3

T4
T’5

bf1

b) Test scheduling on one bus with broadcasting.

Test time

a) Test scheduling on one bus without broadcasting.

Core1 Core2 Core3 Core4

bf1

o4,1

o1,1 o2,1 bf1

bt1

bt1

o3,1

Core1 Core2 Core3 Core4

o4,1

o1,1 o2,1 bf1

o3,1

Core1 Core2 Core3 Core4

o4,1o1,1 o2,1 bf1
66

TEST SCHEDULING WITH TEST SET SHARING AND BROADCASTING
to make use of the broadcast capability between core3 and core4.
However, by connecting core3 and core4 to the same bus, as
shown in Figure 5.8(d), the test time can be further reduced.

5.4 Problem Formulation
In this section a precise problem formulation is given as follows.
Given is a system consisting of:
 • a set of N cores C = {c1, c2, ..., cN},
 • a set of M functional buses where each

bus has the bandwidth, .

Given for each core ci, where i = {1,2,...N}, is:
 • ui the number of wrapper-chains and
 • li the length of the longest wrapper chain.

Given is also a set of test sets where each
test set ={T1, T2, ...,TH}. For a test Tk is a given number of
vectors, sTk. Each core in the system is associated with a set of
test sets. This is explained by considering the following example
where core c1 and c2 have two associated test sets each,

 and . Core c1 is
fully tested by either applying both T1 and T2 or only T3. T3 is
used to test both c1 and c2, which means that it is shared and
should be broadcasted.

The test time, for applying a test, Tk at core ci is:

The number of wires wk that a test makes use of when
transported on a bus depends on the number of cores, z, that
shares the test. If no sharing is used (z=1), wi wires are used to
transport test stimuli to the core, and wi wires are used to
transport test responses from the core. In total wires are
needed when z=1. In the case of broadcasting, wi wires are used

BF bf1 bf2 … bfM,,,{ },=

bfi w
bfi

Ψi Γ1
i Γ2

i … ΓX
i, , ,{ },=

Γi
j

Ψ1 T1 T2,{ } T3{ },{ },= Ψ2 T4 T5,{ } T3 T5,{ },{ }=

τk

τk 1 li
+() s

Tk× li
+= (11)

2 w× i
67

CHAPTER 5
to transport test stimuli to the cores, but each core requires wi

wires to transport test responses from the core. In total
. This is given by the following formula:

In order to apply them, the tests are transported from the
ATE to the cores. For this purpose, the existing functional bus
structure can be used or test buses can be added. If a test shall
make use of the functional bus, a connector must be inserted
between the bus and the core. If a dedicated test bus is used, the
bus must have been inserted, and a connector is added between
the test bus and the core. We introduce test buses and the bus
connectors:
 • a set of G test buses where bus bti has

the bandwidth ,
 • test connectors oi,j between core ci and bus bfj (or btj).

The following hardware cost factors are considered:
 • kfi,j is the cost of inserting a connector oi,j between core ci

and functional bus bfj,
 • kti,j is the cost of inserting a connector oi,j between core ci

and test bus btj,
 • is the base cost of inserting test bus bti.

The total hardware cost HWTot is given by:

The following constraints are specified:
 • the total bandwidth of the functional buses and inserted test

buses does not exceed the bandwidth, wATE, of the ATE, that
is;

wi w+
i

z×

wk
2 wi, when z =1×

wi wi z× , when z + 2≥

= (12)

BT bt1 bt2 … btG,,,{ }=

w
bti

k
bti

HWTot kfi j, kti j,

j 1=

G

∑
i 1=

N

∑ k
btj

j 1=

G

∑+ +

j 1=

M

∑
i 1=

N

∑= (13)

w
bfi w

btj wATE≤
j 1=

G

∑+

i 1=

M

∑ (14)
68

TEST SCHEDULING WITH TEST SET SHARING AND BROADCASTING
where M is the number of functional buses and G the number
of added test buses, and

 • the totel hardware cost does not exceed the designer
specified hardware overhead, Kmax, that is;

The optimization objective is to minimize the test application
time. This is done by:
 • select tests for each core,
 • insert test buses (if required),
 • insert connectors between cores and buses, and
 • schedule the selected tests on the buses

in such a way that each core is fully tested and without violating
any constraints.

5.5 Constraint Logic Programming Modelling
We have formulated our test scheduling problem as a CLP
problem (Figure 5.9) [Lar05b]. The cores, their connections and
information about the tests regarding the size and number of
wrapper chains, are first given as input (line 2 and 3 in
Figure 5.9). A number of variables used to describe a solution
are then defined (4...10).

In order to find a feasible solution that minimizes the total
test time (16) the program ensures that the following
constraints are fulfilled (11...15):
 • Each core must be connected to at least one bus (11).
 • Each core must be fully tested (12).
 • The hardware cost does not exceed the given maximum

hardware cost (14), (Eq. 15).
 • The total number of wires does not exceed the given

maximum limit imposed by the bandwidth of the ATE (Eq.
14) and tests do not make use of the same wires concurrently
(15).

HWTot Kmax≤ (15)
69

CHAPTER 5
We have used the following built in predicates in the CLP tool
CHIP [Hen91], [Chi96], to ensure that all constraints are
satisfied and the optimal solution is found:
 • Cumulative (15), ensures that, at any given time, the total

amount of resources does not exceed a given limit.
 • Min_max (16), implements a depth-first branch and bound

search for a solution with the minimal cost.
 • Labeling (16), is used to assign values to variables.

Since a test Ti can be listed for several cores, a special
constraint is implemented so that Ti is not scheduled more than
one time as long as the cores are connected to the same bus.

1 run:-
2 Cores({1,2,3,... ,NrCores}), % Get input data
3 Tests({1,2,3,... ,NrTests}),

4 NrBuses::1..MaxNrBuses, % Define variables
5 Cost::1..MaxCost,
6 TestTime::1..MaxTestTime,

7 ListOfTests::0..NrTests,
8 ListOfCores::0..NrCores,
9 Schedule::0..NrTests*NrBuses,

10 Tam::1..MaxTam,
11 connect_all(Cores), % Set up constraints
12 complete_cores(Cores,Tests),

13 count_costs(Cores,Costs,Cost),
14 Cost #< MaxCost,
15 cumulative (Schedule, Duration, Resource, Tam, TestTime),

16 min_max((labeling(Schedule)),TestTime). % Find optimal solution

Figure 5.9: CLP formulation in CHIP for test time
minimization.
70

TEST SCHEDULING WITH TEST SET SHARING AND BROADCASTING
5.6 Experimental Results
In our experiments we have used the following eight designs:
SOC_(1..7), which are randomly generated, and the benchmark
design d695 [Cha01]. The main characteristics of the eight
designs can be found in Table 5.2. This table contains
information about the number of cores, tests, and the minimum
required hardware constraint needed. The minimum hardware
constraint is the hardware cost needed in order to connect each
core to a functional bus. If this constraint is not satisfied the core
will not be fully accessed or tested.

The hardware cost, such as wiring and control logic needed to
connect a core to a bus or to add a test bus, is assumed to be
given by the designer. In the experiments, the cost of connecting
a core to a functional bus is set to 10 units, the cost to connect a
core to a test bus to 20 units, and the cost of adding a test bus to
the system is set to 100 units. This means that adding one test
bus and connect one core to it will be associated with a hardware
cost of 120 units. In these designs it is also assumed that each

Table 5.2: Design characteristics

Design Nr. cores Nr. tests
Min. HW
constraint

SOC_1 4 5 40

SOC_2 7 9 70

SOC_3 10 12 100

SOC_4 12 15 120

SOC_5 18 20 180

SOC_6 24 28 240

SOC_7 30 34 300

d695 10 12 100
71

CHAPTER 5
system has a 64 bit wide functional bus and that each test bus, if
added to the system, has a width of 32 bits.

We have used the CLP tool CHIP (V 5.2.1) [Chi96] for the
implementation and we have compared the results in the cases
when broadcasting is not used and when broadcasting is used.

The results when broadcasting is not used are collected in
Table 5.3, and when broadcasting is used in Table 5.4. Column 1
lists the eight different designs and in the hardware constraints
are listed in Column 2 . These constraints have been set so that
it is possible to add at least one test bus for each design. The
following four columns, Column 3 to Column 6, contain the
results: the number of added test buses in Column 3, the
number of test vectors used inColumn 4, the minimized test
time in Column 5, and the optimization time in Column 6.

Table 5.5. shows the comparison in test time between the two
approaches. The experiments show that broadcasting of tests
between cores can shorten the test time. The test time is
decreased with 23.72% on average.

Table 5.3: Experimental results without broadcasting

Design
Hardware
constraint

Nr. added
test buses

Tot. nr.
vectors used

Test
time

CPU
time (s)

SOC_1 250 1 275 8271 14

SOC_2 350 1 440 22361 76

SOC_3 400 2 539 37943 391

SOC_4 450 2 753 51946 624

SOC_5 500 2 2316 86301 1028

SOC_6 500 3 15017 1167250 2734

SOC_7 600 3 18779 1602862 4893

d695 350 2 881 24219 235
72

TEST SCHEDULING WITH TEST SET SHARING AND BROADCASTING
Table 5.4: Experimental results with broadcasting

Design
Hardwar
constraint

Nr. added
test buses

Tot. nr.
vectors used

Test
time

CPU
time (s)

SOC_1 250 1 209 6755 76

SOC_2 350 1 297 18421 132

SOC_3 400 2 423 29364 572

SOC_4 450 2 687 37526 1517

SOC_5 500 2 1723 61730 39843

SOC_6 500 3 11483 869195 62087

SOC_7 600 3 14021 1187512 95274

d695 350 2 802 18522 586

Table 5.5: Experimental results

Design

Test time without
using
broadcasting

Test time when
using
broadcasting

Test time
comparison

SOC_1 8271 6755 -18.33%

SOC_2 22361 18421 -17.62%

SOC_3 37943 29364 -22.61%

SOC_4 51946 37526 -27.76%

SOC_5 86301 61730 -28.47%

SOC_6 1167250 869195 -25.53%

SOC_7 1602862 1187512 -25.91%

d695 24219 18522 -23.52%
73

CHAPTER 5
Experiments have also been made to show the impact on the
test time at different hardware constraints. The test time
minimization has been made with different values of the
hardware constraint for two examples, SOC_1 and the
benchmark design d695. The results collected in Table 5.6 show
how the test time for the different designs decreases as
additional test buses are added. For SOC_1 a saturation point is
met when the hardware constraint reaches a point where all
cores can be tested concurrently (HW constraint = 400). In
Figure 5.10 the curves from this experiment showing the test
application time for different hardware constraints are depicted.
Figure 5.10(a) shows the graph for design SOC_1 and
Figure 5.10(b) the graph for d695.

Table 5.6: Test time for different hardware constraints

Design
HW
constraint

Nr. added
test wires Test time

SOC_1

40 0 7514

150 32 6421

200 32 6221

300 64 6155

400 96 4329

500 96 4329

d695

100 0 26071

250 32 22718

300 64 20382

400 64 18522

500 96 13712

600 128 12633

700 160 11791
74

TEST SCHEDULING WITH TEST SET SHARING AND BROADCASTING
0 50 100 150 200 250 300 350 400 450 500
4000

4500

5000

5500

6000

6500

7000

7500

8000

Hardware constraint

Te
st

 a
pp

lic
at

io
n

tim
e

100 200 300 400 500 600 700
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8
x 10

4

Hardware constraint

Te
st

 a
pp

lic
at

io
n

tim
e

Figure 5.10: Test time for different hardware
constraints.

a) SOC_1.

b) d695.
75

CHAPTER 5
5.7 Conclusions
Decreasing the test application time for SoCs requires efficient
test data transportation and concurrent test application. In this
chapter a scheme to explore the high amount of don't cares
present in the test sets in order to merge different tests, is
proposed. The shared test set can be used as alternative to the
original dedicated test for the cores.

The proposed method allows the existing functional bus
structure to be reused for the test data transportation. However,
in order to decrease the test time, dedicated test buses may be
added to the design. The problem formulated is to select
appropriate tests for each core, insert test buses, and schedule
the selected tests on the buses in such way that the test
application time is minimized without exceeding the given
hardware cost constraints.

We have modelled the problem and implemented it using CLP
and experiments show that the overall test time can be
significantly reduced when broadcasting of tests is used.
76

CONCLUSIONS AND FUTURE WORK
Chapter 6
Conclusions

and
Future Work

HIS CHAPTER summarises the thesis and gives a
description of possible directions of future work.

6.1 Conclusions
As a first approach in this thesis, a technique to make use of the
existing functional bus structure of the system for test data
transportation is proposed. A buffer is inserted between each
core and the functional bus, and the tests are divided into
packages, such that they can be scheduled concurrently even if
the bus only allows sequential transportation.

A tabu search based algorithm is proposed where the
hardware overhead captured by the controller and buffer cost, is
minimized without exceeding a given, designer-specified,
maximum test time. The technique has been implemented and

T

77

CHAPTER 6
is compared with the results from a CLP-based approach. The
results indicate that the proposed heuristic produces high
quality solutions at low computational cost.

In the second problem addressed, a scheme is proposed to
explore the high amount of don't cares present in the test sets in
order to merge different tests, which can be used as alternative
to the original dedicated test for the cores. The proposed method
allows the existing functional bus structure to be reused for the
test data transportation. However, in order to decrease the test
time, dedicated test buses may be added to the design. The
problem formulated is to select appropriate tests for each core,
insert test buses, and schedule the selected tests on the buses in
such way that the test application time is minimized without
exceeding the given hardware cost constraints. The problem has
been modelled and implemented using CLP and experiments
show that the overall test time can be significantly reduced
when broadcasting of tests is used.

6.2 Future Work
The problem addressed in Chapter 5 is solved by using a CLP
formulation. Since CLP uses an exhaustive search approach,
optimization times can become large for complex designs. A
natural extension of the work is to find a heuristic that would
work for larger designs.

The two techniques proposed in this thesis can be extended to
include additional constraints such as power consumption, and
test conflicts that occur when one part of a system has to be used
while another part is tested.

Another direction would be to address the test transportation
problem in NoC. NoC is gaining popularity in literature as
communication platform [Ben02], [Jan03]. This is due to the
limited scalability when using buses and switches in SoC. There
are several interesting test transportation and test scheduling
78

CONCLUSIONS AND FUTURE WORK
problems that can be defined for NoC. For instance, routing of
test data using the NoC infrastructure, while minimizing the
test application time. Another problem would be to determine
the placement of test sources and test sinks inside the NoC in
such way that the routing cost and/or test time is minimized.
79

CHAPTER 6
80

REFERENCES
References

[Aer98] J. Aerts, E. J. Marinissen, “Scan Chain Design for
Test Time Reduction in Core-based ICs”, Proceedings
of International Test Conference (ITC), pp. 448 - 457,
1998.

[Amb05] AMBA Specification Overview, ARM, web site:
www.arm.com/products/solutions/
AMBAHomePage.html, 2005.

[Bee86] F. Beenker, K. van Eerdewijk, R. Gerritsen, F.
Peacock, M. van der Star, “Macro testing: Unifying
IC and Board Test”, IEEE Design and Test of
Computers, Vol. 3, No. 4, pp. 26-32, 1986.

[Ben02] L. Benini, G. De Micheli, “Networks on chips: a new
SoC paradigm”, Computer, Vol. 35, No. 1, pp. 70 - 78,
2002.

[Bha96] S. Bhatia, T. Gheewala, P. Varma, “A Unifying
Methodology for Intellectual Property and Custom
Logic Testing”, Proceedings of International Test
Conference (ITC), pp. 639 - 648, 1996.
81

[Bie95] U. Bieker, P. Marwedel, “Retargetable Self-Test
Program Generation Using Constraint Logic
Programming”, Proceedings of Design Automation
Conference (DAC), pp. 605-611, 1995.

[Cha01] K. Chakrabarty, “Optimal Test Access Architectures
for System-on-a-Chip”, ACM Transactions on Design
Automation of Electronic Systems, Vol. 6, pp. 26-49,
2001.

[Cha03] A. Chandra, and K. Chakrabarty, “A Unified
Approach to Reduce SOC Test Data Volume, Scan
Power and Testing Time,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and
Systems, Vol. 22 , No 3, pp. 352-363, 2003.

[Chi96] CHIP, System Documentation, COSYTEC, 1996.

[Cho97] R. M. Chou, K. K. Saluja, V. D, Agrawal, “Scheduling
Tests for VLSI Systems Under Power Constraints”,
IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, Vol. 5, Issue 2, pp. 175 - 185, 1997.

[Cor05] CoreConnect Bus Architecture, IBM, web site:
www.chips.ibm.com/products/coreconnect, 2005.

[DaS03] F. DaSilva, Y. Zorian, L. Whetsel, K. Arabi, R. Kapur,
“Overview of the IEEE P1500 Standard”,
Proceedings of International Test Conference (ITC),
Vol. 1, pp. 988 - 997, 2003.

[Eba01] Z. S. Ebadi, A. Ivanov, “Design of an Optimal Test
Access Architecture using a Genetic Algorithm”,
Proceedings of Asian Test Symposium (ATS), pp. 205-
210, 2001.

[Gar79] M. R. Garey and D. S. Johnson, ”Computers and
Intractability: A Guide to the Theory of NP-
Completeness”, W. H. Freeman And Company, New
York, 1979.
82

REFERENCES
[Gho00] I. Ghosh, S. Dey, N. K. Jha, “A fast and low-cost
testing technique for core-based system-chips”, IEEE
Transactions on Computer-Aided Design of
Integrated Circuits and Systems, Vol. 19, No. 8, pp.
863 - 877, 2000.

[Glo89] F. Glover, “Tabu search - part I”, ORSA Journal on
Computing, Vol. 1, pp. 190-260, 1989.

[Glo90] F. Glover, “Tabu search - part II”, ORSA Journal on
Computing, Vol. 2, pp. 4-32, 1990.

[Har99] P. Harrod, “Testing Reusable IP - A Case Study”,
Proceedings of International Test Conference (ITC),
pp. 493 - 498, 1999.

[Hen91] P. Van Hentenryck, "The CLP language CHIP:
constraint solving and applications," Compcon
Spring '91. Digest of Papers, pp. 382 -387, 1991.

[IEE05] “IEEE Std 1500-2005 Standard Testability Method
for Embedded Core-based Integrated Circuits”, pp. 1-
117, 2005.

[Imm90] V. Immaneni, S. Raman, “Direct Access Test Scheme
- Design of Block and Core Cells for Embedded
ASICs”, Proceedings of International Test Conference
(ITC), pp. 488-492, 1990.

[Int03] “The International Technology Roadmap for
Semiconductors. 2003 Edition (ITRS2003)“,
Semiconductor Industry Association, 2003.

[Iye01] V. Iyengar, K. Chakrabarty, “Precedence-Based,
Preemptive, and Power-Constrained Test Scheduling
for System-on-a-Chip”, Proceedings of VLSI Test
Symposium (VTS), pp. 368 - 374, 2001.
83

[Jaf87] J. Jaffar, and J.-L. Lassez, “Constraint Logic
Programming”, Proceedings of ACM Symposium on
Principles of Programming Languages (POPL), pp.
111-119, 1987.

[Jan03] A. Jantsch, H. Tenhunen (editors), “Networks on
Chip”, Kluwer Academic Publishers, ISBN-1-4020-
7392-2, 2003.

[Jer02] G. Jervan, Z. Peng, R. Ubar, and H. Kruus, “A Hybrid
BIST Architecture and its Optimization for SoC
Testing”, Proceedings of International Symposium on
Quality Electronic Design, pp. 273 - 279, 2002.

[Jia03] J. H. Jiang, W-B. Jone, S-C. Chang, S. Ghosh,
“Embedded Core Test Generation Using Broadcast
Test Architecture and Netlist Scrambling”, IEEE
Transactions on Reliability, Vol. 52, Issue 4, pp.435 -
443, 2003.

[Kaj01] S. Kajihara, K. Miyase, “On Identifying Don't Care
Inputs of Test Patterns for Combinational Circuits“,
IEEE/ACM International Conference on Computer
Aided Design (ICCAD), pp. 364 - 369, 2001.

[Kim82] C. R. Kime, “Test Scheduling in Testable VLSI
Circuits”, Proceedings of International Symposium
on Fault-Tolerant Computing, pp. 406 - 412, 1982.

[Kin05] A. B. Kinsman, N. Nicolici, “Time-Multiplexed Test
Data Decompression Architecture for Core-Based
SOCs with Improved Utilization of Tester Channels”,
Proceedings of European Test Symposium (ETS), pp.
196 - 201, 2005.

[Kir83] S. Kirkpatrick, C. D. Gelatt Jr., M. P. Vecchi,
“Optimization by Simulated Annealing”, Science, Vol.
220, No. 4598, pp. 671-679, 1983.
84

REFERENCES
[Lar01a] E. Larsson, Z. Peng, “An Integrated System-on-Chip
Test Framework”, Proceedings of the Design,
Automation and Test in Europe (DATE), pp. 138 -
144, 2001.

[Lar01b] E. Larsson, Z. Peng, G. Carlsson, “The Design and
Optimization of SOC Test Solutions”, Proceedings of
the International Conference on Cumpter Aided
Design (ICCAD), pp. 523 - 530, 2001.

[Lar02] E. Larsson, H. Fujiwara, “Power Constrained
Preemptive TAM Scheduling”, Proceedings of
European Test Workshop (ETW), pp. 119 - 126, 2002.

[Lar03a] A. Larsson, E. Larsson, P. Eles, Z. Peng, “Buffer and
Controller Minimisation for Time-Constrained
Testing of System-On-Chip”, Proceedings of IEEE
International Symposium on Defect and Fault
Tolerance in VLSI Systems (DFT), pp. 385-392, 2003.

[Lar03b] E. Larsson, Z. Peng, “A Reconfigurable Power-
Conscious Core Wrapper and its Application to SOC
Test Scheduling”, Proceedings of International Test
Conference (ITC), Vol. 1, pp. 1135 - 1144, 2003.

[Lar05a] A. Larsson, E. Larsson, P. Eles, Z. Peng,
“Optimization of a Bus-based Test Data
Transportation Mechanism in System-on-Chip”,
Proceedings of Euromicro Conference on Digital
System Design (DSD), pp. 403-409, 2005.

[Lar05b] A. Larsson, E. Larsson, P. Eles, Z. Peng, “SOC Test
Scheduling with Test Set Sharing and Broadcasting”,
To be published in proceedings of Asian Test
Symposium (ATS), 2005.
85

[Lar05c] E. Larsson, “Introduction to Advanced System-on-
Chip Test Design and Optimization”, FRONTIERS
IN ELECTRONIC TESTING, Vol. 29, Springer,
2005.

[Lar05d] E. Larsson, A. Larsson, and Z. Peng, “Linkoping
University SOC Test Site“, http://www.ida.liu.se/labs/
eslab/soctest/, 2005.

[Lee98] K-J. Lee, J-J. Chen, C-H. Huang, “Using a Single
Input to Support Multiple Scan Chains,” IEEE/ACM
International Conference on Computer-Aided Design
(ICCAD), pp. 74 - 78, 1998.

[Lee99] K-J. Lee, J-J. Chen, C-H. Huang, “Broadcasting Test
Patterns to Multiple Circuits,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and
Systems, Vol.18, No.12, pp.1793-1802, 1999.

[Mar97] E.J. Marinissen, M. Lousberg, “Macro Test: A Liberal
Test Approach for Embedded Reusable Cores”, Digest
of Papers of IEEE InternationalWorkshop on Testing
Embedded Core-Based Systems (TECS), Paper 1.2,
1997.

[Mar98] E. J. Marinissen, R. Arendsen, G. Bos, H.
Dingemanse, M. Lousberg, C. Wouters, “A Structured
and Scalable Mechanism for Test Access to
Embedded Reusable Cores”, Proceedings of
International Test Conference (ITC), pp. 284-293,
1998.

[Mar99a] E. J. Marinissen, Y. Zorian, “Challenges in Testing
Core-based System ICs”, IEEE Communications
Magazine, Vol. 37, pp.104-109, 1999.

[Mar99b] K. Marriott, P. J. Stuckey, “Programming with
Constraints - An Introduction”, MIT Pres, 1999.
86

REFERENCES
[Mit93] B. Mitra, P.R. Panda, and P.P Chaudhuri,
“Estimating the Complexity ofSynthesized Designs
from FSM Specifications”, Design & Test of
Computers, Vol 10, pp. 30-35, 1993.

[Mic96] Z. Michalewicz, “Genetic Algorithm + Data Structure
= Evolutionary Programs”, 3d Edition, Springer
Verlag, 1996.

[Moo65] G. E. Moore, “Cramming More Components Onto
Integrated Circuits”, Electronics, Vol. 38, No. 8, pp.
114-117, 1965.

[Mur00] V. Muresan, W. Xiaojun, M. Vladutiu, “A Comparison
of Classical Scheduling Approaches in Power-
Constrained Block-Test Scheduling”, Proceedings of
International Test Conference (ITC), pp. 882 - 891,
2000.

[Nag02] P. K. Nag, A. Gattiker, W. Sichao, R. D. Blanton, W.
Maly, “Modeling the Economics of Testing: a DFT
Perspective”, IEEE Design & Test of Computers, Vol.
19, Issue 1, pp. 29 - 41, 2002.

[Pol03] F. Poletti, D. Bertozzi, L. Benini, A. Bogliolo,
“Performance Analysis of Arbitration Policies for SoC
Communication Architectures”, Kluwer Journal on
Design Automation for Embedded Systems, Vol. 8,
No. 2, pp. 189-210, 2003.

[Rub86] S. M. Rubin, “Computer Aids for VLSI Design”, The
Addison-Wesley VLSI System Series, Vol. 6, 1986.

[Var98] P. Varma, S. Bathia, “A Structured Test Re-Use
Methodology for Core-Based System Chips”,
Proceedings of International Test Conference (ITC),
pp. 294-302, 1998.
87

[Xu05] Q. Xu, N. Nicolici, “Resource-Constrained System-on-
a-Chip Test: A Survey”, IEE Proceedings- Computers
and Digital Techniques, Vol. 152, No. 1, pp. 67 - 81,
2005.

[Zen01] Z. Zeng, M. Ciesielski, B. Rouzeyre, “Functional test
generation using constraint logic programming”, In
Proceedings of IFIP International Conference on Very
Large Scale Integration (IFIP VLSI-SOC 2001), pp,
375-387, 2001.

[Zor93] Y. Zorian, “A Distributed BIST Control Scheme for
Complex VLSI Devices”, VLSI Test Symposium
(VTS), pp. 4-9, 1993.

[Zor97] Y. Zorian, “Test Requirements for Embedded Core-
Based Systems and IEEE P1500”, Proceedings of
International Test Conference (ITC), pp. 191 - 199,
1997.

[Zor99] Y. Zorian, E. J. Marinissen, S. Dey, “Testing
Embedded-Core-Based System Chips”, Computer,
Vol. 32, No. 6, pp. 52-60, 1999.
88

	System-on-Chip Test Scheduling and
	Test Infrastructure Design
	by
	Anders Larsson
	Linköping 2005
	Thesis No. 1206
	Submitted to Linköping Institute of Technology at Linköping University in partial fulfilment of t...
	System-on-Chip Test Scheduling and Test Infrastructure Design
	Anders Larsson
	ISBN 91-85457-61-2 , ISSN 0280-7971 Printed in Linköping, Sweden by Linköping University Copyrigh...

	Abstract
	here are
	T
	several challenges that have to be considered in order to reduce the cost of System-on-Chip (SoC)...

	Acknowledgements
	pecial thanks
	S
	Anders Larsson
	Linköping, November 2005.
	Contents
	1. Introduction 1
	1.1. Test Process for SoC 2
	1.2. Problem Formulation 4
	1.3. Contributions 5
	1.4. Thesis Overview 6

	2. Background and Related Work 7
	2.1. Reuse-based SoC Design 8
	2.2. Test Challenges 11
	2.3. SoC Test Access 12
	2.3.1. Direct Access 12
	2.3.2. Bus-based Access 13
	2.3.3. Functional Access 15
	2.4. Test Scheduling 16
	2.5. Test Set Sharing 18
	2.6. Constraint Logic Programming 20
	2.7. Optimization Heuristics 22

	3. Preliminaries 27
	3.1. System Architecture 28
	3.2. Test Access Mechanism 29
	3.3. Test Scheduling 32

	4. Buffer and Control-logic Minimization 35
	4.1. System Architecture 36
	4.2. Motivational Example 40
	4.3. Problem Formulation 42
	4.4. Constraint Logic Programming Modelling 45
	4.5. The Tabu Search Based Algorithm 46
	4.6. Experimental Results 48
	4.7. Conclusions 53

	5. Test Scheduling with Test Set Sharing and Broadcasting 55
	5.1. Test Set Sharing 56
	5.2. System Architecture 61
	5.3. Motivational Example 64
	5.4. Problem Formulation 67
	5.5. Constraint Logic Programming Modelling 69
	5.6. Experimental Results 71
	5.7. Conclusions 76

	6. Conclusions and Future Work 77
	6.1. Conclusions 77
	6.2. Future Work 78

	Chapter 1 Introduction
	his thesis deals with
	T
	testing of core based System- On-Chip (SoC). SoC is a technology that enables the electronic indu...
	1.1 Test Process for SoC

	The trend in integrated circuit (IC) design is to build more and more complex systems and integra...
	Figure 1.1: Test process.
	1.2 Problem Formulation

	In this thesis two test architectures are proposed, and two respective optimization problems are ...
	1.3 Contributions

	In this thesis, the problem of testing core based SoCs is addressed. Two test architectures have ...
	1.4 Thesis Overview

	The rest of the thesis is structured as follows. Chapter 2 gives background information and descr...

	Chapter 2 Background and Related Work
	his chapter introduces
	T
	the reuse-based SoC design flow. The major test challenges that the test designer faces are intro...
	2.1 Reuse-based SoC Design

	The complexity of ICs has grown tremendously during the last decades and this has forced the syst...
	Figure 2.1: Difference between SoB and SoC development and testing [Mar99a].
	Figure 2.2: Cores and test infrastructure [Zor99].
	2.2 Test Challenges

	There are several challenges that the test integrator faces when designing the test strategies fo...
	(1)

	Here, is a fixed cost of test generation and preparation, and can, for instance, consist of the c...
	2.3 SoC Test Access

	The need of a TAM has its origin in the requirement to transport test stimuli from the test sourc...
	2.3.1 Direct Access

	Direct access is a straightforward solution where the core terminals are directly connected to th...
	Figure 2.3: Example of direct access.
	2.3.2 Bus-based Access

	A dedicated bus-based access mechanism can consist of one or several buses that are connected to ...
	Figure 2.4: Example with two dedicated test buses.
	2.3.3 Functional Access

	As opposed to the two previous methods (the direct access and the dedicated bus-based access), th...
	Figure 2.5: Example of functional access.
	2.4 Test Scheduling

	When the type of TAM is determined the test integrator is faced with another problem, namely in w...
	Figure 2.6: Illustration of test scheduling [Lar05c].
	Figure 2.7: Example of dedicated bus-based access.

	The scheduling techniques can be divided into [Lar02]:
	2.5 Test Set Sharing

	By sharing one test among several cores it is possible to shorten the test application time signi...
	Figure 2.8: Different test schedules for the example given in Figure�2.7.
	2.6 Constraint Logic Programming

	CLP has been introduced in the middle of the 80s, by Jaffar and Lassez [Jaf87]. CLP is a combinat...
	The mapping of values to variables has to be one-to-one, which means that each variable has to be...
	1 smm(S,E,N,D,M,O,R,Y):-
	2 [S,E,N,D,M,O,R,Y] :: [0..9],
	3 constrain([S,E,N,D,M,O,R,Y]),
	4 labeling([S,E,N,D,M,O,R,Y]).
	5
	6 constrain([S,E,N,D,M,O,R,Y]):-
	7 S =/ =0,
	8 M =/= 0,
	9 alldifferent_neq([S,E,N,D,M,O,R,Y]),
	10 1000*S + 100*E + 10*N + D + 1000*M + 100*O + 10*R + E = 10000*M + 1000*O + 100*N +10*E + Y.

	which is the first solution for this problem, found by the solver. This example can be extended i...
	2.7 Optimization Heuristics

	In contrast to the CLP methodology, heuristics produce approximate solutions to optimization prob...
	Figure 2.10: Global and local optimum for a minimization problem.

	Simulated Annealing
	Tabu Search
	Genetic Algorithms
	Application of Heuristics

	Chapter 3 Preliminaries
	he purpose of this chapter
	T
	3.1 System Architecture
	In this thesis, we assume that the system under test consists of a number of cores which are conn...
	Figure 3.1: Bus-based system.
	3.2 Test Access Mechanism

	In this work we consider the bus-based TAM architecture. The proposed method allows the existing ...
	Figure 3.2: Scan testing.
	Figure 3.3: Test transportation.
	3.3 Test Scheduling

	Using a bus for transporting test data entails usually a sequential schedule, and hence, only one...
	Figure 3.4: Sequential scheduling and application.

	Chapter 4 Buffer and Control-logic Minimization
	he purpose of this chapter
	T
	4.1 System Architecture
	The example in Figure�4.1 shows a system consisting of three cores, core1, core2, and core3, all ...
	Figure 4.1: Bus-based architecture.
	Figure 4.2: Bus and buffer connected to a core with four scan chains.
	Figure 4.3: Test scheduling and application of test packages with buffers.
	(2)

	where the constant ki represents the rate at which the core can apply the test, the time tstartij...
	Figure 4.4: Example to illustrate time to transport and time to apply test.
	4.2 Motivational Example

	The following example illustrates the minimization of the buffer size and the test controller com...
	Figure 4.5: Scheduling examples.
	Table 4.1: Test characteristics.
	4.3 Problem Formulation

	The problem is formulated precisely as follows. Given is a system consisting of a set of N cores ...
	(3)
	(4)
	(5)
	(6)

	where a and b are two coefficients used to set the weights of the controller and the buffer cost....
	(7)

	and the controller:
	(8)

	where the constants k1Cand k1B are constants reflecting the base cost, which is the basic cost fo...
	(9)
	(10)

	where Ni is the number of inputs, No the number of outputs, Ns the number of states and Nt the nu...
	4.4 Constraint Logic Programming Modelling

	We have first modelled the system in a CLP program, consisting of two main components, Test and P...
	The buffer size at a core is determined by the formula presented in Section 4.1 (Eq. 2), and the ...
	4.5 The Tabu Search Based Algorithm

	We have also implemented a tabu search based optimization heuristic for the problem described in ...
	1 Step1: if tmax < tmin return Not schedulable
	2 sort the tests T in increasing order of tiappl
	3 until all packages are applied do
	4 apply package from Ti
	5 until time < tiappl-p do
	6 apply package from Ti+1
	7 time = time +ti+1send-p
	8 repeat
	9 repeat
	10 Step2:doMark()
	11 until Slack is 0
	12 Delay package from MarkList
	13 repeat
	14 best_cost = compCost(Sched0)
	15 Step3:start:
	16 doMark()
	17 for each pos in MarkList
	18 build new schedule Schedi
	19 delta_costi = best_cost - compCost(Schedi)
	20 repeat
	21 for each delta_costi< 0, in increasing order of delta_costi do
	22 if not tabu(pos) or tabu_aspirated(pos)
	23 Sched0 = Schedi
	24 goto accept
	25 end if
	26 repeat
	27 for each pos in MarkList
	28 delta_costi’ = delta_costi + penalty(pos)
	29 repeat
	30 for each delta_costi’ in increasing order of delta_costi’ do
	31 if not tabu(pos) goto accept
	32 repeat
	33 accept:
	34 if iterations since previous best solution < 10 goto start
	35 return Sched0
	Figure 4.7: Scheduling using proposed algorithm (Step3).
	4.6 Experimental Results

	In our experiments we have used the following four designs; Ex1, Asic Z [Zor93], [Cho97], Kime [K...
	Table 4.2: Design characteristics
	Table 4.3: Experimental results.
	Table 4.4: Experimental results using CLP.
	Table 4.5: Experimental results using the proposed algortihm.
	Table 4.6: Experimental results.
	4.7 Conclusions

	In this chapter we have proposed a technique to make use of the existing functional bus structure...

	Chapter 5 Test Scheduling with Test Set Sharing and Broadcasting
	he purpose of this chapter
	T
	is to describe a method where the existing functional bus may be reused for the test data transpo...
	5.1 Test Set Sharing

	Decreasing the test application time of a SoC entails a method that allows different cores to be ...
	Figure 5.1: Merging and application of tests.
	Table 5.1: Test data for d695.
	Figure 5.2: Merging of test sets [Lar05b].
	5.2 System Architecture

	In this section we discuss the architecture that is used for test data transportation. First, we ...
	Figure 5.3: Bus based architecture.
	Figure 5.4: Test transportation.
	Figure 5.5: Connections and sequential schedule.
	Figure 5.6: Connections where parallel schedule is not possible.
	Figure 5.7: Connections and broadcasted test.
	5.3 Motivational Example

	Let us consider an example design consisting of four cores, core1, core2, core3, and core4, conne...
	Figure 5.8: Test scheduling for different bus architectures.

	to make use of the broadcast capability between core3 and core4. However, by connecting core3 and...
	5.4 Problem Formulation

	In this section a precise problem formulation is given as follows. Given is a system consisting of:
	Given for each core ci, where i = {1,2,...N}, is:
	Given is also a set of test sets where each test set ={T1, T2, ...,TH}. For a test Tk is a given ...
	(11)

	The number of wires wk that a test makes use of when transported on a bus depends on the number o...
	(12)

	The following hardware cost factors are considered:
	The total hardware cost HWTot is given by:
	(13)
	(14)
	(15)

	in such a way that each core is fully tested and without violating any constraints.
	5.5 Constraint Logic Programming Modelling

	We have formulated our test scheduling problem as a CLP problem (Figure�5.9) [Lar05b]. The cores,...
	1 run:-
	2 Cores({1,2,3,... ,NrCores}), % Get input data
	3 Tests({1,2,3,... ,NrTests}),
	4 NrBuses::1..MaxNrBuses, % Define variables
	5 Cost::1..MaxCost,
	6 TestTime::1..MaxTestTime,
	7 ListOfTests::0..NrTests,
	8 ListOfCores::0..NrCores,
	9 Schedule::0..NrTests*NrBuses,
	10 Tam::1..MaxTam,
	11 connect_all(Cores), % Set up constraints
	12 complete_cores(Cores,Tests),
	13 count_costs(Cores,Costs,Cost),
	14 Cost #< MaxCost,
	15 cumulative (Schedule, Duration, Resource, Tam, TestTime),
	16 min_max((labeling(Schedule)),TestTime). % Find optimal solution
	5.6 Experimental Results

	In our experiments we have used the following eight designs: SOC_(1..7), which are randomly gener...
	Table 5.2: Design characteristics
	Table 5.3: Experimental results without broadcasting
	Table 5.4: Experimental results with broadcasting
	Table 5.5: Experimental results
	Table 5.6: Test time for different hardware constraints
	Figure 5.10: Test time for different hardware constraints.
	5.7 Conclusions

	Decreasing the test application time for SoCs requires efficient test data transportation and con...

	Chapter 6 Conclusions and Future Work
	his chapter
	T
	summarises the thesis and gives a description of possible directions of future work.
	6.1 Conclusions

	As a first approach in this thesis, a technique to make use of the existing functional bus struct...
	6.2 Future Work

	The problem addressed in Chapter 5 is solved by using a CLP formulation. Since CLP uses an exhaus...
	References
	[Aer98]
	[Amb05]
	[Bee86]
	[Ben02]
	[Bha96]
	[Bie95]
	[Cha01]
	[Cha03]
	[Chi96]
	[Cho97]
	[Cor05]
	[DaS03]
	[Eba01]
	[Gar79]
	[Gho00]
	[Glo89]
	[Glo90]
	[Har99]
	[Hen91]
	[IEE05]
	[Imm90]
	[Int03]
	[Iye01]
	[Jaf87]
	[Jan03]
	[Jer02]
	[Jia03]
	[Kaj01]
	[Kim82]
	[Kin05]
	[Kir83]
	[Lar01a]
	[Lar01b]
	[Lar02]
	[Lar03a]
	[Lar03b]
	[Lar05a]
	[Lar05b]
	[Lar05c]
	[Lar05d]
	[Lee98]
	[Lee99]
	[Mar97]
	[Mar98]
	[Mar99a]
	[Mar99b]
	[Mit93]
	[Mic96]
	[Moo65]
	[Mur00]
	[Nag02]
	[Pol03]
	[Rub86]
	[Var98]
	[Xu05]
	[Zen01]
	[Zor93]
	[Zor97]
	[Zor99]

