
A Heuristic for Concurrent SOC Test Scheduling with
Compression and Sharing
Anders Larsson, Erik Larsson, Petru Eles, and Zebo Peng

Embedded Systems Laboratory
Linköpings Universitet

SE-582 83 Linköping, Sweden

Abstract1-The increasing cost for System-on-Chip (SOC)
testing is mainly due to the huge test data volumes that lead to
long test application time and require large automatic test
equipment (ATE) memory. Test compression and test sharing
have been proposed to reduce the test data volume, while test
infrastructure and concurrent test scheduling have been
developed to reduce the test application time. In this work we
propose an integrated test scheduling and test infrastructure
design approach that utilizes both test compression and test
sharing as basic mechanisms to reduce test data volumes. In
particular, we have developed a heuristic to minimize the test
application time, considering different alternatives of test
compression and sharing, without violating a given ATE
memory constraint. The results from the proposed Tabu
Search based heuristic have been validated using benchmark
designs and are compared with optimal solutions.

I. INTRODUCTION

The increasing complexity of modern electronic systems
together with a shorten production cycle has forced the designers
to employ reuse based design approaches. System-on-Chip
(SOC) is an example of such reuse based design approach where
pre-designed and pre-verified blocks of logic so called cores are
integrated into a system. The SOC design approach eases the task
of the system designers. However, testing of SOCs has been
shown to be a costly step in the manufacturing process due to
huge test data volume that requires large automatic test
equipment (ATE) memory and long test application times.

Several techniques have been proposed to reduce the cost of
SOC testing. Test architecture design and test scheduling
techniques that reduce the test application times have been
proposed in [1, 2, and 3]. The problem of reducing the required
test data volume has been targeted by using compression
methods in [4, 5, and 6] or by using test sharing as proposed in
[7, 8, and 9].

Traditionally, only one or few of the above mentioned
techniques are considered when reducing the cost of SOC testing.
Therefore, an integrated approach has been proposed by us in
[10] where both compression and sharing, together with test
architecture design and scheduling are used. For the work

presented in [10], however, the following two limitations can be
identified; first, only sequential transportation of test data is
allowed, which can lead to underutilization of the test access
mechanism (TAM). Second, only small and medium sized
instances of the problem can be solved due to the long
optimization time required by the Constraint Logic Programming
(CLP) [11] technique used to generate optimal solutions. In this
work we solve the problem of TAM underutilization by allowing
multiple tests to be transported concurrently and the problem of
long optimization times for large designs is solved by generating
a suboptimal solution using a Tabu search based heuristic.

The rest of this paper is organized as follows. In Section II the
used SOC test architecture is described and in Section III a
motivational example is presented. The problem is formulated in
Section IV and in Section V the Tabu Search based heuristic for
minimizing test application time is described. The experimental
results are presented in Section VI and conclusions are in
Section VII.

II. SOC TEST ARCHITECTURE

In this section the SOC test architecture for test compression
and sharing is described.

We assume given a fixed number of W TAM wires, which are
connected to the ATE, as illustrated in Fig. 1. Also illustrated in
Fig. 1 is the placement of the decoder and comparator. The
decoder is used for the decompression of compressed tests and
the evaluation of the produced responses is performed using the
comparator. The TAM wires are used to transport test stimuli and
test responses to and from the cores. The cores are scan tested and
the scanned elements at each core are formed to wrapper chains
that are connected to the TAM wires. Each core ci is associated
with one dedicated test Ti, which is assumed to be given. These
dedicated tests are used to generate new test alternatives for the
cores by using compression and/or sharing, as illustrated in
Fig. 1.

1. The research is partially supported by the Strategic Integrated
Electronic Systems Research (STRINGENT) program, financed by the
Swedish Foundation for Strategic Research. Fig. 1. Test architecture and ATE memory organization.

Core

TAM wires

c1 c2

SOCATE memory

cn

Decoder &

...

comparator
Test stimuli

Expected responses

Mask

{T1, T2, ..., Tn}

{TA1, TA2, ...,TAj, ..., TAh}

Initially given tests

Generated test alternative

W

Compression and/or sharing

1-4244-1161-0/07/$25.00 ©2007 IEEE

In this work we make use of an architecture proposed in [12],
which can handle test application of compressed tests without
requiring additional logic such as multiple-input signature-
register (MISR). The general idea of the test architecture in [12]
is to store compressed test stimuli, compressed expected
responses, and compressed masks in the ATE memory, as
illustrated in Fig. 1. The mask is used to identify the positions of
the specified bits in the expected responses. The compressed test
stimuli, expected responses, and masks are all sent to the SOC
under test and decompressed on the chip.

In contrast to using a processor core for test data
decompression [12], we make use of an on-chip decoder based
on the fixed-length Nine-Coded Compression (9C) technique
proposed in [13]. (A detailed description of the test application
using 9C can be found in [10]). The 9C compression is done by
generating code words that are stored in the ATE memory. The
code words are transported from the ATE to the decoder using the
ATE frequency fATE and the decompressed stimuli are
transported and applied to the wrapper chains using the scan
frequency fscan. The decoder is bypassed if the test is not
compressed. When compression is used the test stimuli is applied
with a frequency fscan, which is lower than the frequency of the
ATE, fATE. The reason for this is the reduction of on-chip control
signals. The value of fscan is given as follows:

where 9CConst is given by the number of test bits that each
codeword contain (K=8) [13], which is divided by he maximum
number of clock cycles needed to apply the longest codeword
that the 9C coding uses (12+8) [13]. The scan frequency fscan is
used to calculate the test application time for a test or test
alternative, at core ci as follows:

where sii and soi are the length of the longest wrapper scan-in and
scan-out chain of core ci respectively and l is the number of test
sequences. The test responses from the core are evaluated using
the expected responses and the mask using a comparator.

Let us use a small example to illustrate the test architecture
when sharing is used. The example depicted in Fig. 2 consists of
two cores, c1 and c2. The example illustrated in Fig. 2(a) shows
how the wrapper chains are connected to TAM wires when the
cores are tested using dedicated tests, i.e., no sharing is used.
Fig. 2(b) shows the connections when the core c1 and c2 is tested
using a shared test that is broadcasted. In order to separate the

different produced responses from different cores the produced
responses from each core is transported on separate TAM wires.

The number of wrapper chains wi for a test or alternative test
depends on the number of cores z that shares the test, and is given
by:

If no sharing is used (z=1) , which means that half
of the TAM width is used for the transportation of test stimuli and
the second half is used for produced responses as illustrated in
Fig. 2(a). In the case when two cores share a test
(z=2) ; one third of the TAM width is occupied
transporting the test stimuli that are broadcasted to both cores and
two thirds are used for the produced responses, one third for each
core separately as illustrated in Fig. 2(b).

III. MOTIVATIONAL EXAMPLE

In [10], sequential transportation of tests is used and
concurrent test application is only achieved by sharing one test
between several cores. One problem with using a sequential
approach is the potential underutilization of the TAM wires. Such
underutilization of the TAM wires occurs when the number of
wrapper chains that a test uses is small. A small number of
wrapper chains is used when a core has a small number of scan
chains or if the scan chains are unbalanced, i.e., have a large
difference in length, which may lead to few balanced wrapper
chains [2]. Another example of when a small number of wrapper
chains may be used is when so called hard cores are utilized. By
allowing multiple tests to be transported, and applied,
concurrently, the TAM will be utilized more efficiently and the
test time can be reduced.

How the test application time can be reduced is illustrated
using a small example presented in Fig. 3. The design in Fig. 3
consist of three cores each with its number of scan chains sc1, sc2,
and sc3 that are formed into a number of wrapper chains. In the
example we assume that no compression or sharing is used. The
width of the TAM W is set to 20. The number of wrapper chains
that a test uses is determined such that half of the TAM wires are
used for transportation of test stimuli and the second half for the
produced responses. Core c1 has 15 scan chains that are grouped
into 10 wrapper chains and will occupy the full bandwidth of the
TAM, however, c2 has only 6 scan chains which means that only
twelve of the TAM wires will be used when T2 is transported, the
other 8 TAM wires will not be used.

In Fig. 3(a) sequential scheduling is used and the

fscan

fATE, without using compression

9CConst fATE× , with compression
= (1)

τi

τi 1 max sii soi,{ }+() l× min sii soi,{ }+() fscan⁄ ,= (2)

Fig. 2. Test architecture (a) without sharing and (b) with sharing [10].

c1 c2

f

b e

c1 c2

f

a

g

e

TAM...

d g

a

c

a) b)

...

TAM

Wrapper
chain

Scan chain

b

d

c

wi W z 1+()⁄= (3)

wi W 2⁄=

wi W 3⁄=

Fig. 3. Motivational example (a) sequential scheduling and (b)
concurrent scheduling.

a)

c1

WTAM =20

c2 c3

20 12 16

b)

c1

WTAM =20

c2 c3

20 12 8

20
16
12
8
4

20 40 60 80

TAM

Time

T1
T2

T3

sc1 =15 sc2=6 sc3=8
Underutilization

20
16
12
8
4

20 40 60 80

TAM

Time

T1
T2

T3

τtot 70=

τtot 60=
sc1 =15 sc2=6 sc3=8

underutilization of the TAM is demonstrated. The test application
time for the system using sequential scheduling will be equal
to 70ms. A better utilization of the TAM is illustrated in Fig. 3(b)
where the scan chains of core c3 in this case are grouped into 4
wrapper chains. By reducing the number of wrapper chains the
test application time of T3 will be longer, however, the test
application time for the schedule will be reduced from 70ms
to 60ms since T3 can now be scheduled at the same time as T2.

IV. PROBLEM FORMULATION

Given a system with n cores, , where for each core
ci the following is given:
 • sci - the number of scan chains,
 • ffij - the number of flip-flops in scan chain j,
 • wii - the number of input wrapper cells,
 • woi - the number of output wrapper cells,

 • - the total number of flip-flops,

 • - an initially given dedicated test
consisting of test stimuli TSi, expected responses ERi, and a
test mask Mi,

 • - a sequence of l test stimuli patterns,
where tsik consists of bits and each bit can be 0, 1,
or x,

 • - a sequence of l expected response
patterns, where erik consists of bits and each bit
can be 0, 1, or x,

 • - a sequence of l mask patterns, where
mik consists of bits and each bit can be 0 or 1. A 1
indicates that the corresponding bit in the produced
responses is a care bit and should be checked with the
expected responses otherwise it is a don’t-care bit and
should be masked.

Also given for the system is the number of TAM wires, W. For
the ATE the number of bits that can be stored in the ATE memory
M and the clock frequency of the ATE fATE are given.
Furthermore, a compress, and a share function are available in
order to generate alternative tests. The tests (or test alternatives)
are scheduled concurrently such that the TAM width constraint W
is not violated.

Given the above, our problem is to select one test alternative2

for each core ci and to determine the architecture (the TAM wire
usage) and start time ti such that the test application time is
minimized without exceeding the memory constraint M. The test
application time for a schedule with n tests is given as:

where is the test time of core ci and ti is the start time when
the test is applied to core ci.

V. TEST APPLICATION TIME OPTIMIZATION

In this section the Tabu search based algorithm used to solve
the problem defined in Section IV is described.

The Tabu search algorithm takes as input a list of test

alternatives. This list is generated by using the initially given
tests at a pre-process stage in which the compress,
and share functions are used. The share function [10] takes two
tests as input and generate a new test. The compress function [10]
takes one test as input and generate a new test. The generated
tests are added to the list of alternative tests.

The Tabu search based heuristic is used to search for the
optimal solution, i.e., the solution with the shortest test
application time. Tabu search [14] is a form of local
neighborhood search, which at each step evaluates the
neighborhood of the current solution and the best solution is
selected as the new current solution. Unlike local search which
stops if no improved new solution is found, Tabu search
continues the search from the best solution in the neighborhood
even if that solution is worse than the current one. To prevent
cycling, the most recently visited solutions are marked as tabus
meaning that they are not allowed to be repeated until the tabu
status has expired.

The pseudo code for the proposed Tabu search based
algorithm is presented in Fig. 4 and Fig. 5. Fig. 4 presents the
initial solution and the inner loop of Tabu search and in Fig. 5, the
outer loop is presented. The initial solution is generated using the
dedicated tests for each core (line 2 and 3 in Fig. 4). Since no
compression is used, this initial solution is likely to violate the
ATE memory limit. In such a case, the initial solution is modified
by randomly changing some of the dedicated tests to a
compressed test. This change is done using a random function
that is repeated for a maximum given number
MAX_ITERATIONS of times (line 5 to 9).

When a valid initial solution has been found, the Tabu search
will continue the search for a better solution by exploring the
neighborhood (line 11 to 48). Here follows a description of the
neighborhood and the search for improved solutions.

Each core will be assigned a list of tests, a core_test_list. The
core_test_list consists of those tests that can be used to test a
core. A solution consists of n tests where each position in the
solution is associated with a specific core and contains one test
from that cores core_test_list. In our algorithm, the
neighborhood is determined by the possible changes of test for
each core and is defined as follows: A test Ti(k), where k is used
to denote the position of the test in the core_test_list, can be
replaced with either the test at position k-1 or at position k+1.
The neighborhood and the corresponding moves are further
illustrated in Fig. 6 using the example system in Fig. 3. In Fig. 6
the current solution contains T1, T9, and T6, which are used to test
c1, c2, and c3, respectively. Fig. 6 also shows the core_test_list
for c2. The core_test_list shows that the possible moves for the
test T9 is T7 (k-1) and T11 (k+1). The same principle is applied for
all positions in the current solution, which means that each test in
the current solution will be associated with two possible moves.

The reason for using this neighborhood is that it will lead to
small changes of the current solution, hence, the search will
continue in the same region of the solution space. For example,
one shared test is likely to be changed to another shared test. An
alternative neighborhood could be to randomly select a test. Such
random move, however, will lead to a bigger change of the2. From here and through the rest of the paper we use Ti to denote a given

dedicated test or an alternative test.

τtot

τtot

c1 c2 … cn, , ,

nffi ffij
j 1=

sci

=

Ti TSi ERi Mi, ,{ }=

TSi tsi1 … tsil, ,()=

nffi wii+

ERi eri1 … er, i l,()=
nffi woi+

Mi mi1 … m, il,()=
nffi woi+

τtot

τtot max i i,∀ 1 2 … n, , ,{ }=() ti τi+()(),= (4)

τi

T1 T2 … Tn, , ,

current solution.
When a move has been applied, it is marked as a tabu and is

stored in a tabu list. The tabu list will have a length of
MAX_TABUS, hence, a move will be marked as tabu for
MAX_TABUS iterations.

For each move, a delta_tat value is calculated (line 13) that
corresponds to the decrease of the test application time when that
move is applied to the current solution. The moves are then
sorted decreasingly according to the delta_tat value (line 14). If

delta_tat is less than zero a new solution is generated (line 18).
In order to make the search efficient, solutions that violates the
ATE memory constraint can be accepted but are penalized using
a mem_penalty parameter (line 20). The mem_penalty parameter
is defined as follows:

If the move is not in the tabu list or if the move would generate
a solution better than the best solution found so far, the current
solution is assigned the new solution (line 24). In such case the
frequency, i.e., the number of times the move has been applied,
is increased, and the solution is accepted (line 40 to 48).

If no improving move is found the search continues by
recalculating the delta_tat considering the frequency of the
moves. In this step, moves with a high frequency are considered
to likely be part of a good solution, hence, they will get priority
when the search continues (line 28 to 36). If no improving move
can be found, the move that lead to the smallest increase of the
test application time is assigned to the current solution (line 37),
which means that an uphill move will be applied. The inner loop
is stopped if no improving move is found for
MAX_INNER_LOOP consecutive tries.

While the inner loop is used to search for a solution by making
small changes to the current solution, the outer loop, presented in
Fig. 5, will diversify the search by generating a new solution,
which is dramatically different from the current solution. This
diversification will force the search into a new region of the
solution space that is not reachable using the inner loop. The
outer loop is executed for a maximum of MAX_OUTER_LOOP
iterations (line 2 in Fig. 5). The value of MAX_OUTER_LOOP is
defined as follows:

1) tabu_search_bld (Part one)
//Generate initial solution

2) for each core ci
3) solution {Ti}
4) iterations = 0
5) while memory_exceeded(solution)
6) random_compress_solution(solution)
7) iterations++
8) if iterations > MAX_ITERATIONS then
9) return“No solution found“
10) best_solution = solution

// Start the inner loop
11) Start:
12) moves[] = generate_neighborhood_solutions(solution)
13) calculate_delta_tat(solution, moves)
14) sort_according_to_delta_tat(moves)
15) for each move mj
16) delta_tat = get_delta_tat(mj)
17) if delta_tat < 0 then
18) new_solution = get_new_solution(solution, mj)
19) if memory_exceeded(new_solution) then
20) delta_tat = delta_tat + mem_penalty
21) if mj not in tabu_list or get_tat_bld(new_solution)
22) < get_tat_bld(best_solution) then
23) incr_frequeny(mj)
24) solution = new_solution
25) goto Accept
26) for each move mj
27) update_move_tat(mj, get_frequency(mj))
28) for each move mj
29) new_solution = get_new_solution(solution, mj)
30) if memory_exceeded(new_solution) then
31) delta_tat = delta_tat + mem_penalty
32) if mj not in tabu_list or get_tat_bld(new_solution)
33) < get_tat_bld(best_solution) then
34) incr_frequeny(mj)
35) solution = new_solution
36) goto Accept
37) m1 = get_move_from_tabu_list(tabu_list)
38) new_solution = get_new_solution(solution, m1)
39) incr_frequeny(m1)
40) Accept:
41) if get_tat_bld(solution) < get_tat_bld(best_solution) and
42) !memory_exceeded(solution) then
43) iterations_without_better = 0
44) best_solution = solution
45) else
46) iterations_without_better++
47) if iterations_without_better < MAX_INNER_LOOP then
48) goto Start

∪

Fig. 4. Tabu search heuristic (initial solution and inner loop).

1) tabu_search_bld (Part two)
//Outer loop (diversification)
2) if restarts < MAX_OUTER_LOOP then
3) restarts++
4) iterations_without_better = 0
5) if cycles_detected(solution) then
6) goto Stop

//Generate diversified solution
7) no_to_change = n*divers_ratio/100
8) while(divers_count < no_to_change)
9) gen_diversified_solution(solution, divers_count)
10) divers_count++
11) goto Start
12) Stop:
13) return best_solution

Fig. 5. Tabu search heuristic (outer loop).

mem– penalty MEM– CONST τTot×= (5)

Fig. 6. Neighborhood definition.

T1
Current solution T9 T6

c1 c2 c3

T11 ...T7 T9...T2core_test_list for c2
k k+1k-1

......T1T3

MAX– OUTER– LOOP α β n×+= (6)

where and are two parameters. The reason for not having
a fixed value of max_outer_loop is to allow the search to be
executed for longer time for large examples.

The diversification is done by randomly changing a number of
the tests in the current solution (line 7 to 10). How many tests that
are changed is controlled by a variable divers_ratio, which
ranges from 0 to 100, divers_ratio=100 means that all tests in the
solution will be replaced, divers_ratio=50 means that 50% of the
tests will be replaced. The divers_ratio will have a large value in
the beginning, which means that solutions from different regions
of the solution space will be generated. The diversified solution
is then used in the inner loop where it is improved. The outer loop
also has a mechanism to detect if a cycle has occurred (line 5). If
a cycle is detected in the outer loop, the algorithm is stopped.
When the Tabu search terminates, the solution with the shortest
test application time is returned (line 13).

The selected tests are then scheduled and assigned to TAM
wires according to a Bottom-Left-Decreasing (BLD) algorithm
[15], which has been implemented in the get_tat_bld function
used to acquire the test application time for a solution. The
pseudo code for the BLD algorithm is presented in Fig. 7 (b).
First, the tests for the solution, which is given as input to the
algorithm, are sorted decreasingly according to their TAM usage
(line 4). The tests that occupy the full bandwidth of the TAM will
be placed first. At this point, all redundant, shared, tests are
removed leaving n_tests distinct tests to be scheduled.

Each test is then scheduled as early as possible while leaving
as much empty TAM wires as possible, therefore the name, BLD.
The first test will be selected and scheduled at time zero. If the
TAM wires are not fully utilized a new loop is used to search for
a test, which can be scheduled at the same time. Once a test has
been scheduled the test application time is updated (line 12). The
search is repeated until the bandwidth is fully utilized or no other
test can be scheduled. When all tests have been scheduled the test
application time is returned.

VI. EXPERIMENTAL RESULTS

For the experiments, the following ITC’02 benchmark designs
have been used: d695, g1023, p34392, and p93791 [16]. The
characteristics of the benchmark designs are collected in Table I.
The name of the design is listed in Column one, while columns

two and three contain the number of input tests and required ATE
memory. The last column, Column four, lists the number of
available TAM wires. The required ATE memory is the amount
of memory required to store the initially given tests, i.e., without
using compression or sharing. The number of available TAM
wires has been given by us.

For the design d695, the test stimuli and expected responses
(with don’t cares marked) are given in [17]. We have randomly
generated the test stimuli and expected responses for the other
designs, g1023, p34392, and p93791, using 95% don’t cares [18].
It is assumed that the designs are tested using an ATE running at
fATE of 100MHz. The parameters used in the Tabu search
heuristic have been determined, using extensive experiments, as
follows:
 • MAX_ITERATIONS = 1000,
 • MAX_TABUS = 15,
 • MAX_INNER_LOOP = 10,
 • = 50,
 • = 3,
 • MEM_CONST = 0.4.

Since the number of possible test alternatives h will be huge,
we restrict the sharing of tests to only two tests, i.e., if two tests
have been shared and a new shared test generated, this new
shared test will not be shared with another test. To further reduce
the number of test alternatives a maximum share ratio is
defined as follows [10]:

where size(TAi) is the number of bits in a test alternative. By
setting a limit on the MSR during the pre-process stage it is
possible to avoid those alternatives that have little possibility to
be part of the optimal solution and therefore will not be explored
during the optimization. After extensive experiments the
parameter MSR is set to 35%.

For each design, two experiments are performed. First, using
an ATE memory constraint of 1/3 of the required ATE memory
(Table I, Column 3), and second with an ATE memory constraint
of 2/3 of the required ATE memory.

The experimental results are presented in Table II. Column
one lists the designs, Column two lists the number of test
alternatives considered during the optimization, and Column
three lists the ATE memory constraint. Column four to nine lists
the test application time and optimization time (cpu time) for
three different optimization strategies. Column four to seven
contains the results obtained using sequential scheduling
optimized using CLP and our proposed Tabu search respectively.
Column eight and nine contains the results when concurrent

α β

Fig. 7. BLD scheduling algorithm.

//Calculate the test application time using BLD scheduling
1) get_tat_bld(solution)
2) test_application_time = 0
3) used_TAM = 0
4) tests[n_tests] = sort_tests_TAM(solution)
5) for each test Ti in tests
6) if not_scheduled(Ti) then
7) schedule_test_at_bottom_left(Ti)
8) update(test_application_time, used_tam)
9) while(used_tam < MAX_TAM)
10) Tj = search_test(tests, MAX_TAM- used_tam)
11) schedule_test_at_bottom_left(Tj)
12) update(test_application_time, used_tam)
13) return test_application_time

τtot

 TABLE I
BENCHMARK CHARACTERISTICS

Design No. of input
tests

Memory requirement
(kbit)

No. of TAM
wires (W)

d695 10 3398 48
g1023 14 4789 60
p34392 19 125332 60
p93791 32 1122802 60

α
β

MSR

MSR 100
max size TAi() size TAj(),()

size TAi() size TAj()+
--- 100× ,–= (7)

scheduling is used and optimized using Tabu search and BLD.
The results show that the proposed Tabu search generates

solutions which are close to the optimal solution generated using
CLP. For the design p93791, CLP was not able to find the optimal
solution in reasonable time and therefore a time-out is used to
terminate the algorithm. The timeout is set to 5 hours and when
this time is reached the best solution found so far is reported. In
the case when a small memory is used, CLP was not able to find
any solution for p93791. On average, the test application time
using Tabu search is only 8.2% longer than the optimal solution
(the results from p93791 is not included) and Tabu search
requires much shorter optimization time for medium and large
designs. Only for the smallest design, d695, the CLP outperforms
Tabu search in terms of optimization time. The results also show
an average of 15% decrease of the test application time when
concurrent scheduling is used, compared with using sequential
scheduling.

VII. CONCLUSIONS

Due to huge memory requirements and long test application
times, SOC testing has been shown to be a costly step in the
manufacturing process. In this work, the test application time is
minimized using a concurrent test scheduling approach where
multiple tests can be transported and applied to different cores at
a time. Furthermore, both test compression and test sharing are
used as basic mechanisms to reduce test data volumes. We have
developed a Tabu search based heuristic to minimize the test
application time under a given ATE memory constraint. The
experimental results show that our proposed Tabu search based
heuristic is able to find solutions that are close to the optimal. The
results also show that the test application time can be further
decreased when concurrent scheduling is used compared to
sequential scheduling.

REFERENCES
[1] E. J. Marinissen, S. K. Goel, and M. Lousberg, “Wrapper Design for

Embedded Core Test,” Proceedings of International Test
Conference, pp. 911-920, 2000.

[2] V. Iyengar, K. Chakrabarty, and E. J. Marinissen, “Test Wrapper and
Test Access Mechanism Co-Optimization for System-on-Chip,”
Proceedings of International Test Conference (ITC), pp. 1023–1032,
2001.

[3] U. Ingelsson, S. K. Goel, E. Larsson, and E. J. Marinissen, “Test
Scheduling for Modular SOCs in an Abort-on-Fail Environment,”

Proceedings of IEEE European Test Symposium (ETS), pp. 8–13,
2005.

[4] A. Chandra and K. Chakrabarty, “A unified approach to reduce SOC
test data volume, scan power and testing time,” IEEE Transactions
on CAD of Integrated Circuits and Systems, Vol. 22, Issue 3, pp.
352–363, 2003.

[5] A. Jas, J. Ghosh-Dastidar, M. Ng, and N. Touba, “An Efficient Test
Vector Compression Scheme Using Selective Huffman Coding,”
IEEE Transaction on Computer-Aided Design (TCAD), Vol. 22, pp.
797–806, 2003.

[6] A. Chandra and K. Chakrabarty, “System-on-a-Chip Test-Data
Compression and Decompression Architectures Based on Colomb
Codes,” IEEE Transaction on CAD of Integrated Circuits and
Systems, Vol. 20, Issue 3, pp. 355–368, 2001.

[7] T. Shinogi, Y. Yamada, T. Hayashi, T. Yoshikawa, and S. Tsuruoka,
“Test Vector Overlapping for Test Cost Reduction in Parallel Testing
of Cores with Multiple Scan Chains,“ Digest of Papers of Workshop
on RTL and High Level Testing (WRTLT), pp. 117–122, 2004.

[8] K-J. Lee, J-J. Chen, C-H. Huang, “Broadcasting Test Patterns to
Multiple Circuits,” IEEE Transactions on CAD of Integrated
Circuits and Systems, Vol. 18, Issue. 12, pp. 1793–1802, 1999.

[9] A. Larsson, E. Larsson, P. Eles, and Z. Peng , “SOC Test Scheduling
with Test Set Sharing and Broadcasting,” Proceedings of IEEE
Asian Test Symposium, pp. 162–169, 2005.

[10] A. Larsson, E. Larsson, P. Eles, and Z. Peng, “Optimized Integration
of Test Compression and Sharing for SOC Testing,” Proceedings of
Design, Automation and Test in Europe (DATE), Accepted for
publication, 2007.

[11] J. Jaffar and J.-L. Lassez, “Constraint Logic Programming,”
Proceedings of the 14th. ACM Symposium on Principles of
Programming Languages (POPL), pp. 111–119, 1987.

[12] E. Larsson and J. Persson, “An Architecture for Combined Test Data
Compression and Abort-on-Fail Test,” Proceedins of the 12th Asia
and South Pacific Design Conference (ASP-DAC), pp. 726–731,
2007.

[13] M. Tehranipoor, M. Nourani, and K. Chakrabarty, “Nine-Coded
Compression Technique for Tesing Embedded Cores in SoCs,”
IEEE Transactions on Very Large Scale Integration (VLSI) Systems
,Vol. 13, Issue 6, pp. 719–731, 2005.

[14] C. R. Reeves (Editor), “Modern Heuristic Techniques for
Combinatorial Problems”, Blackwell Scientific Publications, ISBN
0-470-22079-1, 1993.

[15] N. Lesh, J. Marks, A. McMahon, and M. Mitzenmacher,
“Exhaustive Approaches to 2D Rectangular Perfect Packings,”
Elsevier Science Direct, Information Processing Letters, Vol. 90,
Issue 1, pp. 7-14, 2004.

[16] E. J. Marinissen, V. Iyengar, and K. Chakrabarty, “A Set of
Benchmarks for Modular Testing of SOCs,” Proceedings of the
IEEE International Test Conference (ITC), pp. 519–528, 2002.

[17] S. Kajihara and K. Miyase, “On Identifying Don't Care Inputs of
Test Patterns for Combinational Circuits,” IEEE/ACM International
Conference on Computer Aided Design (ICCAD), pp. 364–369,
2001.

[18] E. Larsson, A. Larsson, and Z. Peng, “Linköping University SOC
Test Site,” http://www.ida.liu.se/labs/eslab/soctest, 2006.

 TABLE II
EXPERIMENTAL RESULTS

Design No. of test
alternatives

Memory
constraint

(kbit)

CLP
(sequential scheduling) [10]

Tabu search heuristic
(sequential scheduling)

Tabu search heuristic
(concurrent scheduling)

Test application time
(ms)

CPU time
(s)

Test application time
(ms)

CPU
time (s)

Test application time
(ms)

CPU
time (s)

d695 40
1132 0.44 1.0 0.47 8.4 0.47 12.7
2265 0.36 0.9 0.37 8.7 0.35 11.8

g1023 70
1596 0.94 40.4 1.07 18.9 0.81 29.6
3193 0.55 29.8 0.63 18.4 0.42 17.2

p34392 74
41784 16.43 437.7 19.32 26.6 15.34 50.5
83551 10.93 1902.8 10.95 45.5 9.56 73.2

p93791 214
374267 n.s. 18000.0a 306.09 387.6 306.09 382.0
748534 117.24 18000.0a 175.30 348.7 169.13 363.5

a. Terminated by time-out.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /DetectCurves 0.100000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness true
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings to create PDF documents suitable for IEEE Xplore. Created 15 December 2003.)
 /POL ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [368.504 566.929]
>> setpagedevice

