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Abstract—Many embedded control systems are im-
plemented on execution platforms with several com-
putation nodes and communication components. Dis-
tributed embedded control systems typically com-
prise multiple control loops that share the avail-
able computation and communication resources of
the platform. It is well known that such resource
sharing leads to complex delay characteristics that
degrade the control quality if not properly taken into
account at design time. Scheduling in computation
nodes and communication infrastructure, as well as
execution periods of the controllers impact the delay
characteristics and, consequently, the control quality.
In addition, mapping of tasks on computation nodes
affect both scheduling of tasks and messages, and
the assignment of periods of the control applications.
Therefore, control synthesis must be considered dur-
ing mapping, scheduling, and period assignment in
order to achieve high control quality. This paper
presents a control-quality optimization approach for
integrated mapping, scheduling, period selection, and
control synthesis for distributed embedded control
systems.

I. Introduction and Related Work

The development of embedded control systems com-
prises two main activities. First, control algorithms are
developed and their rates of execution are decided.
Second, the control applications are implemented as
periodic tasks on a given platform, which in most mod-
ern systems comprises several computation nodes and
appropriate communication interfaces. These periodic
tasks perform sampling and measurements, as well as
computation and actuation of the control signal; the
tasks may also implement other required operations
(e.g., any application-specific data processing on the
inputs and outputs). Automotive and avionics systems
are two typical representatives of application domains
in which multiple controllers execute on a shared, dis-
tributed computation platform. Traditionally, the two
mentioned activities have been treated separately, and
in practice even by different engineering teams.

The control algorithm—also referred to as the control
law—is developed based on a model of the physical
process or plant to be controlled [1]. The sampling and
actuation period is decided based on the dynamics of the
plant and possibly also by the available computation and
communication bandwidth. The control law is typically

synthesized and customized for the chosen sampling
period. Although a constant sampling–actuation delay
can be taken into account during control-law synthesis,
delays and their runtime variation may degrade quality
of control, and in the worst-case jeopardize stability.
The two implementation-related timing properties that
affect the control quality are the sampling period and
delay characteristics (e.g., average and variance of the
delay) [2], [3].

Once control algorithms and their execution periods
are decided, all control tasks are implemented on a
distributed platform. First, each task is mapped to a
computation node, and second, schedule parameters of
tasks and messages are decided for the scheduling policy
and communication protocol of the platform. If time-
triggered execution and communication is supported by
the platform [4], then the scheduling step is to synthesize
schedule tables with start times for task executions and
message transmissions. For platforms with fixed-priority
scheduling [5] and a CAN bus [6], this step involves an
assignment of task and message priorities.

In addition to the computation delay of a control
application itself, resource sharing and communication
contribute to the delay in the control loop signifi-
cantly. It is well known that not only the average delay
impacts the control quality, but also the variance of
the delay at runtime [7]. The delay characteristic and
its contribution to the overall control quality of the
system can be considered during various steps in the
development process. During the integration of several
control applications on a distributed embedded plat-
form, mapping and scheduling of tasks and messages
should be guided by their impact on control delays and
quality. Also, feedback of the delay characteristics from
these steps can be used to design control laws that are
customized for the actual delays in the system. Such
methods that integrate traditional control design with
system mapping and scheduling have been demonstrated
to improve control quality compared to the traditional
separated development process [8]. Integrated control
and computer systems design has become an important
research direction. Further, the interaction between con-
trol, computation, and communication has recently been
even more emphasized in the context of cyber-physical
systems [9], [10].
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Several researchers have contributed towards inte-
grated design approaches for embedded control systems.
Seto et al. [11] studied uniprocessor systems that execute
several control tasks. They solved the problem of optimal
period assignment to each controller, with timing con-
straints given by two common scheduling policies: rate-
monotonic and earliest-deadline-first scheduling [5]. The
optimization goal is to maximize the performance of the
running controllers. In that context, no delays were ac-
counted for, until Bini and Cervin [12] extended the work
to consider delays according to their proposed response-
time analysis. Ben Gaid et al. [13] considered static
scheduling of control signals, given one single control
loop, which is closed over a communication channel, and
the sampling period of the controller. The plant to be
controlled, with given initial state, is assumed to be noise
free. The result of the optimization is a finite sequence
of control signals and start times for their transmis-
sions over the communication channel to the actuator.
Di Natale and Stankovic [14] proposed a simulated
annealing-based approach that, given the application
periods, constructs static schedules that minimize the
jitter in distributed embedded systems with precedence
and timing constraints. They did not, however, consider
the impact of the schedules on the control performance.
Scheduling for control systems with workload variations
has been proposed by Cervin et al. [15] but in the context
of uniprocessor systems.

In our previous work [16], we presented an integrated
design-optimization method for distributed embedded
control systems. The design parameters are the con-
trol algorithms, sampling periods, and the schedule for
task executions and message transmissions (or priorities
for systems with fixed-priority scheduling and CAN
communication). The mapping of tasks to computa-
tion nodes has been considered given, as it has been
in the other related work we have mentioned. This
paper addresses mapping optimization of distributed
embedded control systems. We propose a control-quality
optimization heuristic based on genetic algorithms. To
our knowledge, this is the first work that combines task
mapping, scheduling and communication synthesis, pe-
riod selection, and control-law synthesis in an integrated
manner.

This paper is organized as follows. In the next section
we present the system model, i.e. plant, platform and
application models. In Section III, the metric which is
used for control-quality will be mentioned. Section IV
includes motivational examples that indicate mapping
as an important design parameter for optimizing control-
quality. In Section V, we will formulate the problem. Our
proposed design flow will be discussed in Section VI and
the experimental results will be in Section VII. Finally,
the paper will be concluded in Section VIII.

1
N

2
N

1a
τ(2)

1s
τ(5)

2s
τ(2)

2a
τ(2)

1c
τ(7)

2c
τ(6)

1sc
(8)γ

2sc
(3)γ

1ca
(1)γ

2ca
(5)γ

CC CC
Bus

Figure 1. An example of mapping two applications on two different
nodes (Communication between tasks is done through bus.)

II. System Model

A. Plant Model

Let us consider a given set of plants P. Each plant Pi

is modeled by a continuous-time linear system

ẋi = Aixi +Biui + vi,

yi = Cixi + ei,
(1)

where xi and ui are the plant state and control law,
respectively. The additive plant disturbance vi is a
continuous-time white-noise process with zero mean and
given covariance matrix R1i. The output signal is de-
noted by yi and is measured periodically by a control
application. The plant outputs are sampled periodically
at discrete time instants—the measurement noise ei is a
discrete-time white-noise with zero mean and covariance
R2i. The control signal will be updated periodically with
some delays at discrete time instants and is held constant
between two updates by a hold-circuit in the actuator [1].

As an example, let us consider an inverted pendu-
lum [17] that can be modeled using Equation 1 with

Ai =
[

0 1
−g/li 0

]
, Bi =

[
0 g/mili

2
]T

, and Ci =[
1 0

]
, where g ≈ 9.81 m/s2 is the gravitational

constant and li and mi are the length and mass of

pendulum Pi respectively. The two states in xi =
[
φi
φ̇i

]
are pendulum position φi and speed φ̇i. For plant dis-
turbance and measurement noise, we have R1i = BiB

T
i

and R2i = 0.1, respectively.

B. Platform and Application Model

The platform in this paper consists of several compu-
tation nodes distributed in a system and a single bus
for communication between nodes. Moreover, there are
several control applications which control some plants in
this distributed system. We indicate each computation
node by Ni ∈ N, where N denotes the set of nodes. Each
plant Pi ∈ P has a corresponding control application
Λi ∈ Λ in the system. The application set Λ can also
contain a set of other applications (e.g., safety-critical
applications which have strict timing constraints, or
monitoring applications).
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Each application is modeled as a task graph. Each task
graph consists of a number of tasks and the communica-
tion between them. Thus, we model an application as a
directed acyclic graph Λi = (Ti,Γi), where Ti denotes
the set of task and Γi ⊂ (Ti × Ti) denotes the set of
communications between tasks. Task j in application Λi

is indicated by τij ∈ Ti. A message between tasks τij
and τik is indicated by γijk = (τij , τik) ∈ Γi.

A control system can typically give satisfactory per-
formance over a range of sampling periods. This range
is given by rules of thumb based on the dynamics of the
plant under control [1]. The available computation and
communication resources, as well as the impact of the
period on mapping, schedules, and control performance,
are important to consider when selecting the sampling
period of each control application. Each application Λi

executes with a period hi ∈ Hi, where Hi is a given set
of possible periods an application can be executed with.

Let us now consider constraints related to task map-
ping. Each task τij can be mapped on one of the nodes
mij ∈Mij ⊆ N, where Mij is the set of possible nodes
that task τij can be mapped on. An example for mapping
constraints can be a temperature sensor which is placed
in a specific location in a system, and the task which is
going to read the temperature should be mapped on one
of the nodes which the sensor is connected to. Another
example is that certain tasks require application-specific
instructions or hardware accelerators that are available
only on some computation nodes. Thus, possible map-
ping nodes for each task τij , given by Mij , are part of the
design specification, based on design constraints. Hence,
we have a mapping function

map(τij) = mij ∈Mij ,

that maps each τij on one of the possible mapping nodes.
The communication between tasks is mapped on the bus
if and only if two communicative tasks are mapped on
different nodes. Thus, the set of messages on the bus is

Γbus = {γijk ∈ Γi | map(τij) 6= map(τik)} .

Otherwise the communication will be done locally, and
its time overhead is considered to be part of the compu-
tation time for each task.

Figure 1 shows an example of a distributed embedded
control system, where we have two computation nodes
N1 and N2 and a communication bus. We have two con-
trol applications and each of them has three tasks, where
τis, τic, and τia indicate the sensation, computation, and
actuation tasks of control application Λi, respectively.
For communication, γisc is the communication between
tasks τis and τic, whereas γica is between tasks τic and
τia. If the communicative tasks are mapped on different
nodes, then these communications will be done over
the bus. The numbers in the parentheses determine the

communication delay for a message over the bus or
execution time for a task.

III. Control Quality and Synthesis

In order to measure the quality of control for the con-
troller Λi for plant Pi we use the quadratic cost [1]

JΛi
= lim

T→∞

1

T
E

{∫ T

0

[
xi

ui

]T
Qi

[
xi

ui

]
dt

}
. (2)

The weight matrix Qi is given by the designer, and is
a positive semi-definite matrix with weights that deter-
mine how important each of the states or control inputs
are in the final control cost, relative to others (E {·}
denotes the expected value of a stochastic variable).

For a given sampling period hi and a given, constant
sensor–actuator delay (i.e., the time between sampling
the output yi and updating the controlled input ui),
it is possible to find the control law ui that minimizes
the cost JΛi

[1]. Thus, optimal control can be achieved
if the delay is constant at each periodic instance of the
control application. However, the sensor–actuator delay
is typically not constant at runtime because of inter-
ference experienced by other applications competing for
execution on nodes or transmission over bus. The quality
of a controller is degraded (its cost JΛi

is increased) if
the sensor–actuator delay distribution is different from
what was assumed during the control-law synthesis.
In order to synthesize the controller and compute the
quadratic control cost JΛi

for the constructed controller
and a certain sensor–actuator delay distribution, we use
MATLAB and the Jitterbug toolbox [2].

IV. Motivational Example

In this section, we shall motivate the need of mapping
optimization in the context of integrated control and
computer systems design. We present two examples:
The first example shows that different task mappings
lead to different delay characteristics and, consequently,
different levels of control quality. We also illustrate that
it is not only important to have small average delays
but, in addition, the variance and jitter of the delay is a
decisive parameter in the overall control quality that is
achieved. The second example illustrates the need of a
proper exploration of the space of possible mappings to
achieve high control performance. This is illustrated by a
comparison to two straightforward mapping approaches:
The first straightforward approach balances the load
on the computation nodes, whereas the second finds a
mapping that minimizes the amount of communication
on the bus.

For the examples in this section, we consider the
weight matrix Qi = diag

(
CT

i Ci, 0.01
)

for each appli-
cation Λi. All time quantities are given in milliseconds
(ms) throughout this section. Static-cyclic scheduling
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Figure 2. Two alternative mapping of the same control application
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Figure 3. Corresponding schedules for two alternative mapping of the same control application

was used to schedule both tasks and messages in these
examples. Control laws are synthesized assuming a delay
equal to the average delay in the execution schedule.
The actual important parameter related to control per-
formance is the sampling–actuator delay distribution of
the system. Thus, although we are considering static-
cyclic scheduling in the examples, the conclusions of this
section are also valid for priority-based scheduling and
other communication protocols, which are supported by
our design tool [16], [18].

A. Example 1

In this example, we will use two control applications.
There are two computation nodes and each task can be
mapped on each of them. The first control application
consists of four tasks and the second control application
consists of three tasks. The period for the first control
application is equal to 50 ms, whereas the period for the
second control application is 25 ms. The hyperperiod is
thus 50 ms.

One possible mapping of the tasks is shown in Fig-
ure 2(a). For this mapping, we have run our scheduling
and synthesis tool [16] to obtain schedules, control laws,
and periods for the two control applications. Figure 3(a)
shows the obtained schedule. The schedule is shown
in three rows for node N1, the bus, and node N2,
respectively. Each box depicts either a task execution (if
it is on one of the nodes) or a message transmission (if it
is on the bus). Boxes in white correspond to application

Λ1, whereas the gray boxes show execution of tasks and
transmission of messages for application Λ2. Each box
has a label which specifies the corresponding task or
message. For instance, the box which is labeled c1c2 in
Figure 3(a) is in white color and on the bus; therefore,
it is the message between task τ1c1 and task τ1c2 in
application Λ1. Control laws have been synthesized for
the two applications, assuming a constant runtime delay
between sampling–actuation delay. This delay is chosen
to be the average delay given by the schedule. The
two controllers have been evaluated in Jitterbug [2],
considering the actual delay distribution given by the
schedule. This leads to a total control cost of 4.5, where
the first and second control applications have costs 3.4
and 1.1, respectively.

Now, let us change the mapping according to Fig-
ure 2(b). The corresponding schedule for the new map-
ping is shown is Figure 3(b). As a result of change in
mapping and consequently schedule, the control cost is
decreased to 3.8. If we consider each control application
separately, we will see that for the first control appli-
cation, the cost was decreased from 3.4 to 3.0, and it
is because the sensor–actuator delay was decreased in
the second mapping. However, if we consider the second
control application, the average sensor–actuator delay
was increased from 12.5 ms to 15 ms, but the jitter
was decreased from 15 ms to zero (i.e., we achieve a
constant-delay execution of the controller). The control
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Figure 4. Different mapping approaches for the same control application
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Figure 5. Corresponding schedules for different mapping approaches

cost for the second control application is decreased from
1.1 to 0.8, which is an improvement of 27%. This example
illustrates the fact that not only the average delay is a
key factor in the control quality, but also the variance
of the delay at runtime (i.e., a larger but less varying
delay can be better than a solution with a small average
sensor–actuator delay and with large amounts of jitter).

B. Example 2

Let us consider two control applications, each com-
prising four tasks: τis, τic1, τic2, and τia. There are
two computation nodes and each task can be mapped
on any of the two nodes. The period for both control
applications is equal to 50 ms. We shall discuss three
different mappings and discuss their quality in terms of
control quality.

First, let us consider a task mapping that balances
the computational load on the two nodes. The intuition
here is that such a task mapping would yield good
control quality, as the load is distributed evenly on the
computation nodes in the system. Thus, we have tasks
τ1s, τ1a, τ1c1, and τ2c1 mapped on N1, whereas tasks τ1c2,
τ2s, τ2c2, and τ2a are mapped on N2. The mapping of

tasks, including data dependencies as well as computa-
tion and communication times, are shown in Figure 4(a).
The constructed schedule for this mapping is shown in
Figure 5(a). In this example, the sum of execution time
on each node is equal to 15 ms. Considering that all
tasks run with the same period of 50 ms, we observe that
the computational load is equal on the two nodes. For
this mapping, and the constructed schedule and control
laws [16], we computed the total control cost to 6.0.

Next, let us consider a task mapping that minimized
the amount of communication on the bus. The intuition
here is that less communication on the bus leads to
smaller delays in the control loop, thus giving possibili-
ties to construct good controllers. Figure 4(b) shows the
new mapping of the two control applications. Since all
tasks of controller one are mapped on N1 and all tasks
of controller two are mapped on N2, we have the least
possible amount of communication. Figure 5(b) shows
the corresponding schedule for this example. We have
constructed a schedule and control laws for this new
mapping [16], and obtained a solution with a control
cost of 4.6, which is a better solution in terms of control
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quality compared to the previous mapping with load
balancing (i.e., a decrease of 1.4 in the total control cost).

Finally, let us consider that tasks τ1s, τ1c2, and τ1s are
mapped on node N1, whereas tasks τ1c1, τ2s, τ2c1, τ2c2,
and τ2a are mapped on N2. The corresponding mapping
and schedule are shown in Figures 4(c) and 5(c), respec-
tively. We computed the total control cost for this final
solution to 3.5, indicating 42% an 24% improvements in
control quality compared to load balancing and commu-
nication minimization, respectively.

Thus, we can conclude that neither load balancing
nor communication minimization will necessarily lead
to a high control performance, though in general they
are better than a purely random mapping. However, a
good mapping algorithm should consider both balancing
the load and minimizing the communication at the same
time, as well as the direct relation between mapping,
scheduling, controller synthesis, and quality of control.
Let us again consider our three mappings discussed in
this section. For the first mapping, the load was perfectly
balanced and communication overhead was the main
problem. In contrast, for the second mapping, commu-
nication was removed but the load was not balanced at
all. In the last mapping, the load was less balanced in
comparison with the first mapping, and the communica-
tion was more than the second mapping. This trade-off
lead to the best control quality out of the mappings that
we have studied in this section.

Finally, let us assume 35 ∈ H1,H2. As Figure 5(c)
shows, we can decrease the period of the schedule from
50 ms to 35 ms for the last mapping. We have modi-
fied the solution for the last mapping accordingly and
obtained a design solution with the control cost 2.6.
Hence, we conclude that the mapping, scheduling, period
selection, as well as the actual control laws all impact the
final control quality that is achieved by the system.

V. Problem Formulation

The inputs to the mapping problem are
• a set of plants P to be controlled,

• a set of applications Λ among which a subset of
them are the controllers for the plants,

• a set of computation nodes N connected to a bus,

• a set of available sampling periods Hi for each
control application Λi and the release period hj for
the other applications Λj ,

• a set of nodes Mij that each task task τij ∈ Ti can
be mapped to,

• deadlines of a subset of the tasks (possibly no
deadlines),

• a scheduling policy for the tasks and messages, and

• execution–time distributions of the tasks and com-
munication times of messages.

The outputs of the tool are a mapping of each task
τij ∈ Ti, controller periods hi ∈ Hi, schedule table
for the nodes and the bus (or priorities if fixed-priority
scheduling and CAN communication is used), and the
control law ui for each plant Pi ∈ P. The outputs related
to the controller synthesis are the period hi ∈ Hi and the
control law ui for each plant Pi. The outputs for static-
cyclic scheduling is a schedule table with start times
of the job executions and the communications on the
bus. It must be guaranteed that task deadlines are met
at runtime. As mentioned before, there exists a control
application Λi ∈ Λ corresponding each plant Pi ∈ P
and the final cost is the weighted sum of the individual
control costs JΛi (Equation 2) of all control applica-
tions Λi ∈ Λ. Hence, the cost function to be minimized
is ∑

Pi∈P

wΛi
JΛi

, (3)

where the weights wΛi are determined by designer.

VI. Mapping Approach

In this section, first we discuss the overall structure of
our tool. After that, we elaborate on effects of mapping
on control quality. In the last part of this section, we
present the genetic algorithm-based mapping algorithm
that is implemented in our design tool.

A. Overall Solution

Figure 6 illustrates the overall structure of our tool.
This flowchart shows iterations of a genetic algorithm
over four steps until the the algorithm is terminated
by the stopping condition. The genetic algorithm-based
mapping approach considers, in each iteration, a pop-
ulation of members, where each member is a solution
candidate. At each iteration, a population is evaluated
in terms of its control quality, followed by a modification
of the population before the next iteration. In the first
step, for each member of the current population, we have
a task mapping and periods for the control applications,
which all satisfy the imposed constraints related to
mapping and period assignment. Thus, the vector that
indicates each member in the genetic algorithm includes
both mapping of tasks and periods of controllers. In our
previous work [16], we only considered periods; thus, a
member was characterized only by periods, as the task
mapping was assumed to be given as an input. Hence,
the genetic algorithm chooses vectors

v = (h1, ..., h|Λ|,m11, ...,m|Λ||TΛ|) ∈
|Λ|∏
i=1

Hi×
|Λ|∏
i=1

|Ti|∏
j=1

Mij ,

where hi ∈ Hi is the selected period for application
Λi and mij ∈ Mij is the node which task τij ∈ Ti of
application Λi is mapped on.
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In the second step, the tool schedules the tasks and
messages according to the selected periods and the
given data dependencies. Also, if other hard real-time
applications co-exist with the control applications, we
have timing constraints given by the hard deadlines.
In the last two steps, the constructed schedule, which
corresponds to a certain mapping and period assignment
v, is evaluated. First, for each application, a controller is
constructed for the given period and the average sensor–
actuator delay in the constructed schedule. After this
control-law synthesis, we compute the control cost Jv for
each mapping and period assignment v of the population
by using the Jitterbug toolbox [2] and providing as
inputs the constructed controller and the delay distri-
bution given by the schedule.

B. How does mapping affect control quality?

Having introduced the overall approach, let us proceed
with a discussion about how mapping affects control
quality. As it is visualized in Figure 7, the mapping
process has a direct effect on both period assignment
and scheduling. In other words, a good mapping can
lead to a better schedule and period assignment (from
the point of view of control quality) and consequently
higher control performance which cannot be achieved
with another mapping. Further, the assigned periods
affect the schedule.

The selected periods together with the average sensor–

Periods

Periods

Sensor−actuator delay distributions

Average sensor−actuator delays

Controllers

Mapping

Period assignment

Cost computation

Controller synthesis

Scheduling

Figure 7. Visualization of mapping impact on quality of control

actuator delay extracted from schedule are used to con-
struct the controller. Finally, the sensor–actuator delay
distribution extracted from schedule will be used to
compute control cost for constructed controllers. Thus,
as we have already seen in the second motivational
example, mapping indirectly have noticeable impacts
on control cost. In the context of Figure 7, the period
and mapping exploration is performed according to our
proposed approach in this paper. The scheduling is
performed by our existing design tool [16] based on a list-
scheduling based heuristic. The synthesis of the control
law, as well as the computation of the control cost is
done in MATLAB and Jitterbug [2].

C. Genetic Algorithm-Based Heuristic

Mapping of tasks over several computation nodes is
a combinatorial NP-complete problem and exhaustive
search techniques are not feasible for this kind of prob-
lems since the number of solutions will grow exponen-
tially with problem size and an optimal algorithm has
unaffordable runtime for reasonably large problem sizes.
We have developed a genetic algorithm-based heuris-
tic [19] for the exploration of mappings and periods.

The size of the population is fixed and remains con-
stant throughout all iterations of the genetic algorithm.
The size depends on the size of the application set Λ,
maximum size of mapping sets Mij of all tasks, and
maximum size of period sets Hi of all applications.

For the initial population in our genetic algorithm,
we generate a set of vectors randomly according to the
mapping constraints. In each iteration (also referred to
as generation) and for each member, we construct a
schedule and control laws, followed by computation of
the control cost for that member. Next, we select a
number of members that shall survive and move to the
next generation. This selection is based on their control
cost—the smaller the control cost is, the higher is the
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Table I
Comparison between our proposed approach and

load-balancing heuristic

Number of Percentage of tests LB Improvement

tasks could find a solution
(

JLB−JGA
JLB

)
× 100

10 100% 10%
15 95% 26%
20 77% 40%
25 35% 56%
30 16% 54%
35 1.6% (1 case) 33%
40 2.8% (2 cases) 92%

probability of being included in the next generation.
Moreover, crossover and mutation are used to create
offsprings that are included in the next population,
together with the already selected members from the
previous generation.

For the mutation, a task’s mapping or a controller’s
period is changed according to mapping and period con-
straints randomly (i.e., hnew

i ∈ Hi, m
new
ij ∈ Mij). The

mutation probability is equal to 0.15 and will decrease
when the number of applications increases. The reason
behind this is that the probability of a member to be
modified grows with number of tasks.

The crossover is done based on several crossover points
and preserves the mapping constraints. As an example,
let us assume we want to do the single-point crossover
for two members v and v′:

v = (h1, h2, ..., h|Λ|,m11, ...,m|Λ||TΛ|)

v′ = (h′1, h
′
2, ..., h

′
|Λ|,m

′
11, ...,m

′
|Λ||TΛ|).

For simplicity of presentation, let us assume that the
crossover point is between h1 and h2 (h′1 and h′2). Then
we change the place of h1 with h′1, leading to two
offsprings:

v = (h′1 |, h1, ..., h|Λ|,m11, ...,m|Λ||TΛ|)

v′ = (h1 |, h′2, ..., h′|Λ|,m
′
11, ...,m

′
|Λ||TΛ|).

The crossover for the part related to mapping is done in a
similar manner by first generating a crossover point ran-
domly. Thus, our crossover implementation uses multiple
crossover points to generate offsprings with different
periods and mappings. The probability for crossover is
equal to 0.4 and has been decided based on experiments.

The average distance between members in the popu-
lation was used as a stopping condition to measure the
homogeneity of the population. The distance between
two members is defined as the number of individual
components of the vectors that are different. If the
average distance between members of a population is less
than bound ∈ [0.04, 0.28] of the length of each member’s
vector for more than 10 consequent iterations, and the
algorithm did not find a better solution for 50 genera-

Table II
Comparison between our proposed approach and

communication minimization heuristic

Number of Percentage of tests CM Improvement

tasks could find a solution
(

JCM−JGA
JCM

)
× 100

10 100% 18%
15 90% 22%
20 63% 25%
25 60% 27%
30 62% 25%
35 53% 30%
40 52% 30%

tions, then the design-space exploration terminates and
the best solution in terms of control quality is provided.

VII. Experimental Results

In order to study the improvements that can be achieved
by our tool, several experiments were performed. The
results of the experiments are organized in the fol-
lowing manner. In the first part we will compare our
genetic algorithm-based approach with an exhaustive
search of all possible mappings. Further, we compare our
heuristic with two straightforward mapping approaches
that balance the load and minimize bus communication,
respectively. In the last part of this section, we discuss
the runtime of our proposed approach.

A. Comparison with optimal mapping

In this section, we compare our genetic algorithm-
based approach (GA) with optimal mapping (OM) with
regard to runtime and control quality. Due to the design-
space complexity, we could not afford to run OM for
test cases with more than 10 tasks. For some cases with
15 tasks, for example, OM took more than 30 hours to
explore the set of all possible mappings. By studying the
relative difference between the control costs obtained by
the GA and OM approaches, we observed that our GA
approach is 2.8% away from the minimum cost obtained
by OM.

B. Comparison with straightforward approaches

We have defined two straightforward design ap-
proaches for mapping: load balancing (LB) and com-
munication minimization (CM). These shall serve as
baselines for comparison.

1) Load-balancing (LB): The load-balancing approach
is a greedy algorithm and tries to balance the load
on the computation nodes as much as possible. This
heuristic finds the task which has the least possible
options for mapping (i.e., the most constrained task
in terms of the number of possible nodes it can be
mapped on). This task is then mapped on the node
that has currently the least amount of load and that
satisfies the mapping constraints for that task. Then
the heuristic proceeds in a similar manner for the set
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Figure 8. Improvement of our method compared to the load-
balancing approach for 25 tasks running on varying number of
computation nodes

of unmapped tasks. The heuristic terminates when
all tasks are mapped.

2) Communication minimization (CM): The
communication-minimization approach minimizes
the communication of tasks over the bus. This
heuristic considers each control application
separately and minimizes the communication of
each control application by mapping tasks which
need to communicate with each other, on the same
node, if it is possible with regard to mapping
constraints.

For the evaluation of our genetic algorithm-based
approach we have used 265 benchmarks with varying
number of plants and computation nodes. The number
of plants is between 2 to 8 and taken from a set of
inverted pendulums, ball and beam processes, DC servos
and harmonic oscillators [1]. Such benchmarks are rep-
resentatives of realistic control problems and are used
extensively for experimental evaluation. For each plant,
we generated a control application with 5 tasks and with
different structures related to data dependencies. The
number of allowed mapping nodes for each task can be
as large as the number of computation nodes. For com-
parison between the genetic algorithm-based approach
(GA) and a straightforward (SF), we are interested in
the relative cost improvement JSF−JGA

JSF
, where JSF is

the cost obtained by either of the two straightforward
approaches LB or CM, and JGA is the cost of the design
solution obtained by our proposed approach based on
genetic algorithm.

The results are shown in Table I and Table II. There
are two columns for each of the two straightforward
approaches (LB and CM). The first column indicates the
percentage of the cases in which straighforward approach
could find a valid solution (i.e., schedulable and stable).
The second column indicates the improvement in con-
trol quality achieved by our approach compared to the
corresponding straightforward approach. It is important
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Figure 9. Runtime of our genetic algorithm-based mapping
heuristic

to note that our GA could find valid solutions for all the
benchmarks.

For the LB heuristic we can observe a clear trend in
the experimental results. As the size and complexity of
the test cases increase, the number of benchmarks that
can be handled by the LB approach decreases. Besides
that, the improvement of our approach is increasing
when the size and complexity of the benchmarks in-
crease. For the CM heuristic, in general, the percentage
of the benchmarks for which CM could find a solution
is decreasing with the increase in problem size and
complexity. We also observe a notable improvement in
control quality (e.g., 30% for systems with 40 tasks).

C. Varying number of nodes for a fixed number of con-
trollers

To further evaluate our proposed optimization ap-
proach, we performed experiments on a system with
a fixed number of 25 tasks, but with platforms with
varying number of computation nodes. The number of
computation nodes vary between 2 and 8. The results
are shown in the Figure 8. On the horizontal axis, we
show the number of nodes in the system, whereas on
the vertical axis we show the relative improvement in
control quality compared to a solution obtained by the
load-balancing heuristic. When the number of nodes are
increased, the improvement increases. This is due to the
fact that if we have several nodes then load balancing is
not the only issue to consider during optimization and
our optimization approach finds other combinations of
mapping, scheduling, periods, and controllers that are
superior in terms of their control quality. For systems
with 5 nodes or larger, the improvement saturates. This
is because the amount of computation power in the
platform is more than what is needed to achieve high
control quality for the system with 25 tasks.

D. Runtime of our proposed approach

We measured the runtime of our mapping approach,
running on a PC with a quad-core CPU running at 2.83
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GHz with 8 GB of RAM and Linux. The average runtime
of our proposed approach, based on number of tasks is
shown in the Figure 9. As can be observed, our design
tool can be used to construct a design solution (mapping,
schedule, and controllers) with high control quality for
large systems of 40 tasks in less than 32 minutes.

VIII. Conclusions

In this paper, we have demonstrated that task mapping
has an important and complex relation to the quality
of control for distributed embedded systems running
multiple feedback-control loops. Efficient heuristics are
needed to handle the complex design space related
to mapping, scheduling, period selection, and control
synthesis. We proposed a control-quality driven map-
ping approach for distributed embedded control systems.
Our experimental results show that our optimization
approach, which considers mapping, scheduling, period
selection, and control synthesis in an integrated manner,
is essential to construct distributed embedded control
systems with high quality.
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