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Abstract—Many embedded systems comprise several
controllers sharing available resources. It is well known that
such resource sharing leads to complex timing behavior
that can jeopardize stability of control applications, if it
is not properly taken into account in the design process,
e.g., mapping and scheduling. As opposed to hard real-time
systems where meeting the deadline is a critical require-
ment, control applications do not enforce hard deadlines.
Therefore, the traditional real-time analysis approaches are
not readily applicable to control applications. Rather, in
the context of control applications, stability is often the
main requirement to be guaranteed, and can be expressed
as the amount of delay and jitter a control application
can tolerate. The nominal delay and response-time jitter
can be regarded as the two main factors which relate the
real-time aspects of a system to control performance and
stability. Therefore, it is important to analyze the impact
of variations in scheduling parameters, i.e., period and
priority, on the nominal delay and response-time jitter
and, ultimately, on stability. Based on such an analysis, we
address, in this paper, priority assignment and sensitivity
analysis problems for control applications considering sta-
bility as the main requirement.

I. Introduction

Many embedded systems, e.g., automotive systems, comprise
several control applications. The design of such systems re-
quires special attention due to the fundamental difference
between such control systems and what we classically under-
stand by hard real-time systems. While in the real-time system
area most of the analysis algorithms assume that applications
have hard deadlines, control applications do not primarily
enforce hard deadlines. As opposed to classical hard real-
time systems, in the control area, stability is the fundamental
requirement considered. The stability of a control application
is directly related to the amount of delay and jitter it can tol-
erate. Therefore, in the context of embedded control systems,
not only the nominal delay, but also the response-time jitter
is an important factor [25]. Ignoring this fact can potentially
lead to suboptimal and/or unstable design solutions.

In this paper, we consider the nominal delay and worst-case
response-time jitter to link the real-time and control areas.
Considering the two metrics, our goal is to analyze the effect of
variation in scheduling parameters, i.e., priorities and periods,
on the stability of control applications. This is done in two
consecutive steps. The first step is to investigate the impact
of this variation on the nominal delay and worst-case response-
time jitter. The second step is to interpret these changes in
the nominal delay and worst-case response-time jitter in terms
of stability of the control application, which is facilitated by
the Jitter Margin toolbox [13], [9], [8].

We show that the worst-case response-time jitter does not
have the monotonicity property, and hence, the existing opti-
mal priority assignment, e.g., [4], and sensitivity analysis, e.g.,
[21], cannot be applied immediately. The problem is addressed
by considering the linear bounds on the exact results. To

this end, we have developed a lower bound on the best-case
response time and used the existing upper bound on the worst-
case response time developed in [6].

The first main contribution of this paper is an optimal
priority assignment similar to Audsley’s algorithm [4] but
dealing with worst-case control quality and stability instead
of worst-case response time and deadline. Thus, the novelty of
our priority assignment is in finding stable design solutions.
The priority assignment algorithm is optimal in the sense that
if there exists any priority assignment policy that can find a
priority order for the considered set of applications such that
all controllers are stable, so can our priority assignment. The
second main contribution of the paper is to perform sensitivity
analysis for sampling frequencies with respect to stability of
control applications. The sensitivity analysis identifies the
shortest distance of an operating point to the border of
feasibility region, i.e., the region within which all control ap-
plications are guaranteed to be stable. This can be regarded as
a metric for quantifying the robustness of different operating
points.

II. System Model

A. Plant Model

Let us consider a given set of plants P. Each plant Pi is
modeled by a continuous-time system of equations [3]

ẋi = Aixi +Biui,

yi = Cixi,
(1)

where xi and ui are the plant state and control signal,
respectively. The control signal is updated at some point in
each sampling period and is held constant between updates.
The plant output, denoted by yi, is sampled with the constant
interval hi.

B. Platform and Application Model

The platform considered in this paper is a uniprocessor. Fixed-
priority preemptive scheduling is considered throughout this
paper assuming a set of independent tasksT. Each task τi ∈ T

is identified by four parameters,

• unique priority denoted by ρi,
• worst-case execution-time denoted by cwi ,
• best-case execution-time denoted by cbi ,
• period denoted by hi (fi =

1
hi
).

Therefore, task τi can be identified by a tuple, τi =
(ρi, c

w
i , c

b
i , hi). Each control application Λi ∈ Λ has a cor-

responding task τi. The set of all applications is captured by
Λ.
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Figure 1. The stability curves generated by the Jitter Margin
toolbox and their linear lower bounds (the area below the curves is
the stable area)

III. Stability Analysis

In order to quantify the amount of delay and jitter a control
application can tolerate before instability, we use the Jitter
Margin toolbox [13], [9], [8]. The Jitter Margin toolbox pro-
vides sufficient stability conditions for a closed-loop system
with a linear continuous-time plant and a linear discrete-time
controller.

The Jitter Margin toolbox provides the stability curve
that determines the maximum tolerable response-time jitter
based on the nominal delay. The solid curves in Figure 1 are
examples of the stability curves generated by the Jitter Margin
toolbox for two different sampling periods. Observe that the
area below each solid curve is the stable area. The graph is
generated for the plant with transfer function P = 1000

s2+s
and

a discrete-time Linear-Quadratic-Gaussian (LQG) controller.
The upper and lower solid curves correspond to sampling
periods 6 ms and 12 ms, respectively.

For a given sampling period, the stability curve can be safely
approximated by a linear function of the nominal delay and
worst-case response-time jitter. The linear stability condition

for control application Λi is of the form Li+αi∆
w
i ≤ βi, where

αi ≥ 1, βi ≥ 0. The nominal delay, denoted by Li, identifies
the constant part of the delay that the control application
Λi experiences, whereas the worst-case response-time jitter,
denoted by ∆w

i , captures the varying part of the delay (see
Figure 2, where Rb and Rw represent the best-case and worst-
case response times, respectively). The linear lower bounds,
depicted by the dashed lines, on the original curves generated
by the Jitter Margin toolbox are shown in Figure 1. Observe
that the linear lower bounds can efficiently capture the stable
area identified by the Jitter Margin toolbox.

IV. Delay and Jitter Analyses

In order to apply the stability analysis discussed in the
previous section, the values of the nominal delay (Li) and
worst-case response-time jitter (∆w

i ) of control application Λi

should be computed. The two metrics are defined based on
the worst-case and best-case response times as follows,

Li = R
b
i ,

∆w
i = R

w
i −R

b
i ,

(2)

where Rw
i and Rb

i denote the worst-case and best-case re-
sponse times, respectively.

R
wb

R

L ∆
w

k
1
h k

2
h

t

Figure 2. Graphical interpretation of the nominal delay and worst-
case response-time jitter

In the following, we give a brief overview on computing
the worst-case, and best-case response times. Further, we
introduce linear bounds on worst-case and best-case response
times and these bounds are used to address the monotonicity
requirements in the analyses.

A. Worst-Case Response Time Analysis

Under fixed-priority preemptive scheduling, assuming dead-
line Di ≤ hi and an independent task set, the exact worst-case
response time of a task τij can be computed by the following
equation [12],

R
w
i = c

w
i +

∑

τj∈hp(τi)

⌈

Rw
i

hj

⌉

c
w
j , (3)

where hp (τi) denotes the set of higher priority tasks for task
τi. Equation 3 is solved by fixed-point iteration starting with,
e.g., Rw

i = cwi .
The worst-case response time for independent task sets with

arbitrary deadlines is given by [14] and [24],

wi(q) = (q + 1)cwi +
∑

τj∈hp(τi)

⌈

wi(q)

hj

⌉

c
w
j ,

R
w
i = max

q
{wi(q)− qhi} .

(4)

Under the assumption of arbitrary deadlines, all instances in
the busy period must be considered in order to obtain the
worst-case response time.

An upper bound for computing the worst-case response time
for a task τi in fixed-priority scheduling suggested by [6] is as
follows,

R
w
i =

cwi +
∑

τj∈hp(τi)
cwj

(

1− uw
j

)

1−
∑

τj∈hp(τi)
uw
j

, (5)

where uw
i =

cwi
hi

is the worst-case utilization of the task τi.

B. Best-Case Response Time Analysis

Under fixed-priority preemptive scheduling, assuming Di ≤ hi

and an independent task set, the exact best-case response time
of a task τi is given by the following equation [22],

R
b
i = c

b
i +

∑

τj∈hp(τi)

⌈

Rb
i

hj

− 1

⌉

c
b
j . (6)

Similar to worst-case response-time analysis, Equation 6 also
has to be solved by iteration, but starting from an initial value
of, e.g., Rb

i = Rw
i . The above equation is also a valid lower

bound for task sets with arbitrary deadlines.
Using techniques similar to [6], we provide a lower bound

for the best-case response time as follows,

R
b
i = max

{

cbi −
∑

τj∈hp(τi)
cbj

(

1− ub
j

)

1−
∑

τj∈hp(τi)
ub
j

, c
b
i

}

, (7)
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Figure 3. Non-monotonicity of response-time jitter with respect to priorities and periods

where ub
i =

cbi
hi

denotes the best-case utilization of task τi (see
Appendix A for the proof).

V. Properties of Exact Delay and Jitter

In this section, we investigate the effect of changing scheduling
parameters, i.e., priorities and periods, on the delay and jitter
a control application experiences. In particular, it will be
shown that the monotonicity property required for performing
priority assignment and sensitivity analysis does not hold for
the response-time jitter obtained based on Equations 3, 4, and
6.

A. Analysis with Respect to Priorities

The nominal delay and worst-case response-time jitter, de-
fined in Equation 2, only depend on the best-case and worst-
case response times. Further, the best-case and worst-case
response times only depend on the set of higher priority tasks.
Therefore, the nominal delay and response-time jitter remain
unchanged as long as the set of higher priority tasks remains
the same and the relative priority order of the higher priority
tasks (and lower priority tasks) is irrelevant.
In addition to the above, we shall consider the effect of

removing a higher priority task from the set of high priority
tasks. It is clear from Equation 6 that removing a higher
priority task results in less or equal nominal delay. As opposed
to the nominal delay, the response-time jitter, however, does
not monotonically change with removing high priority tasks
due to the jumps in the worst-case and best-case response
times as results of the ceiling functions in Equations 3, 4, and
6. This will be illustrated using a small example.
It should be reminded that the worst-case response time

occurs at the critical instant, i.e., when the task under analysis

is released at the same time as all other high priority tasks
[12]. The best-case response time occurs when the task under
analysis is released such that it finishes executing simultane-
ously with the release of all its high priority tasks, i.e., at the
favorable instant [22].

Let us consider three tasks τ1 = (ρ1 = 3, cw1 = 3, cb1 =
3, h1 = 12), τ2 = (2, 1, 1, 9), τ3 = (1, 9.5, 8.5, 100). The worst-
case and best-case scenarios for task τ3, under analysis, are
shown in Figures 3(a) and 3(b). The set of higher priority
tasks is hp (τ3) = {τ1, τ2}. Let us further consider implicit
deadlines for all three tasks. The worst-case and best-case
response times are Rw

3 = 9.5 + 2 × 3 + 2 × 1 = 17.5 and
Rb

3 = 8.5 + 1× 3 + 1× 1 = 12.5, respectively. The worst-case
jitter in the response time of task τ3 is ∆w

3 = 5. Let us remove
task τ2 from the set of higher priority tasks of task τ3, i.e.,
hp (τ3) = {τ1}. Figures 3(c) and 3(d) show the new worst-
case and best-case response times. The dotted lines show the
execution of task τ2 according to the previous scenario. The
worst-case and best-case response times decrease to Rw

3 =
9.5+2×3+0×1 = 15.5 and Rb

3 = 8.5+0×3+0×1 = 8.5. The
worst-case jitter in the response time of task τ3 is, however,
increased to ∆w

3 = 7 by removing high priority task τ2.

B. Analysis with Respect to Periods

The nominal delay, as defined in Equation 2, monotonically
increases with decrease in the period of high priority tasks.
Increasing the periods of higher priority tasks results in less
or equal interference at the favorable instant. In other words,
increasing the periods of higher priority tasks may cause
some instances of these tasks to fall outside the interference
scenario.



While the nominal delay monotonically decreases with in-
creasing the periods of the higher priority tasks, the worst-
case response-time jitter does not monotonically change with
periods. This can be illustrated by an example as follows. Let
us consider the same task set as in the previous example, i.e.,
τ1 = (3, 3, 3, 12), τ2 = (2, 1, 1, 9), τ3 = (1, 9.5, 8.5, 100). The
deadlines are considered to be equal to the periods. The worst-
case and best-case instants are shown in Figures 3(a) and
3(b) and, as shown before, we have Rw

3 = 17.5, Rb
3 = 12.5,

and ∆w
3 = 5. Now, let us increase the period of task τ1

to h1 = 13. Figures 3(e) and 3(f) show the new worst-case
and best-case scenarios. While the worst-case response time
remains the same, the best-case response time of task τ3 is
decreased to Rb

3 = 8.5 + 0 × 3 + 1 × 1 = 9.5, leading to an
increase in the worst-case response-time jitter experienced by
task τ3 (∆w

3 = 8).
The section can be summarized in the following Remark.

Remark 1. The nominal delay and worst-case response-time
jitter defined in Equation 2 have the following properties,

1) Priorities:

• The nominal delay and worst-case response-time jitter
experienced by a task are independent of the priority
order of other tasks as long as the set of higher priority
tasks remains the same.

• Increasing the priority level of a task leads to a less or
equal nominal delay for that task.

• Increasing the priority level of a task does not neces-
sarily lead to a less or equal worst-case response-time
jitter for that task.

2) Periods:

• Shorter period for a higher priority task leads to a
greater or equal nominal delay for the task under
analysis.

• Shorter period for a higher priority task does not nec-
essarily lead to a greater or equal worst-case response-
time jitter for the task under analysis.

VI. Properties of Bounded Delay and Jitter

As discussed in the previous section, the worst-case response-
time jitter does not monotonically change with priorities
and periods. To address this monotonicity problem, utilizing
simpler, but safe, bounds instead of the exact values is in-
evitable. Therefore, we redefine the nominal delay and worst-
case response-time jitter as follows,

Li =

{

Rb
i for priority assignment

Rb
i for sensitivity analysis

∆
w
i = R

w
i −Rb

i ,

(8)

where R
w
i and Rb

i denote the linear bounds on worst-case and
best-case response times obtained according to Equations 5
and 7, respectively. Note that, Cervin et. al., in an earlier
paper [9], showed that it is always safe, from the stability
perspective, to over-approximate the worst-case response time
and under-approximate the best-case response time.
While using the linear bounds leads to a more pessimistic

analysis, it provides monotonicity which facilitates the process
of analysis. These results can be summarized in the following
remark.

Remark 2. The nominal delay and worst-case response-time
jitter as defined in Equation 8 have the following properties,

1) Priorities:

• Commutativity property : the nominal delay and worst-
case response-time jitter experienced by a task are
independent of the priority order of other tasks as long
as the set of higher priority tasks remains the same.

• Monotonicity property : increasing the priority level of a
task leads to less or equal nominal delay and worst-case
response-time jitter for that task.

2) Periods:

• Monotonicity property : shorter period for a higher
priority task leads to greater or equal nominal delay
and worst-case response-time jitter for the task under
analysis.

The proof of the above is given in Appendix B. Note that
the linear lower bound for the best-case response-time, given
by Equation 7, does not monotonically change with priorities.
Therefore, the nominal delay in Equation 8 is define, for the
priority assignment, based on the best-case response time
defined in Equation 6.

Remark 3. The commutativity and monotonicity properties
discussed in Remark 2 also hold for Li + αi∆

w
i , since αi is

(constant and) nonnegative and Li and ∆
w
i have commutativ-

ity and monotonicity properties (it should be noted that the
nominal delay and worst-case response-time jitter are both
either non-increasing or non-decreasing).

Observe that Remark 3 finally bridges the gap between the
control stability and the real-time related notions of delay
and jitter and provides us with the possibility of analyzing
how stability of a control application depends on scheduling
parameters, i.e., priorities and periods. Further, Remark 3 is
considered to be the basis of the proposed methods in the next
sections.

In the following sections, two main problems are addressed.
Section VII presents an optimal priority assignment algorithm
where the priorities are assigned such that all control applica-
tions are guaranteed to be stable (if there does exist a possible
priority assignment). In Section VIII, a sensitivity analysis
approach is proposed for the space of sampling frequencies.

VII. Optimal Priority Assignment

The problem of priority assignment has previously been ad-
dressed in the context of real-time applications with hard
deadlines. The priority assignment problem for the hard real-
time application focuses on assigning priorities such that all
tasks are schedulable. Optimality of rate monotonic priority
assignment for independent synchronous task sets with im-
plicit deadlines is shown by Serlin [23] and Liu and Layland
[16]. In the case of constrained deadlines and synchronous task
sets, it is shown that deadline monotonic priority assignment
is the optimal policy [15]. Audsley [4] proposed an optimal
priority assignment algorithm for independent asynchronous
task sets. The algorithm is also applicable to task sets with
arbitrary deadlines. Davis and Burns [11] proposed a robust
priority assignment algorithm based on Audsley’s priority
assignment. Note that optimality is defined with regard to
the respective schedulability test, i.e., a priority assignment
policy is refereed to as optimal if, considering the given



schedulability test, there are no task sets that are schedulable
by another priority assignment policy, that are not schedulable
by the optimal priority assignment [11]. Recently, Mancuso et.
al. [17] proposed an optimal priority assignment for control
applications considering a linearizion of the original control
cost function.
While optimal priority assignment for hard real-time appli-

cations has been discussed to a great extent, it has gained less
attention in the context of control applications. For control
applications, the priority assignment problem can be defined
to find a priority order for which all control applications are
stable. The difficulty in approaching such a problem is first in
capturing control stability in terms of real-time metrics. The
second difficulty arises since stability depends on, as opposed
to hard real-time applications, not only the response-time
delay, but also the response-time jitter [25] which does not
monotonically change with priorities (see Section V).
In order to overcome the problem discussed, the nominal

delay and response-time jitter are defined based on the bounds
in Equation 8 for which both monotonicity and commutativity
properties hold (Remark 2). Moreover, the function Li+αi∆

w
i

preserves these properties as discussed in Remark 3. Having
the required properties, Algorithm 1 is proposed which is
adapted from the priority assignment algorithms proposed in
[4], [11], and [1]. Observe that the algorithm has quadratic
time complexity which clearly states its scalability.
In the following, Algorithm 1 will be explained in details.

In the first step, Algorithm 1 identifies all control applica-
tions which can be assigned the lowest priority and still are
stable. This group of controllers is captured by G1. Then,
the controllers in group G1 are removed from the set of all
control applications and the algorithm proceeds with the same
procedure for the remaining controllers S to obtain group G2.
The algorithm terminates when either the set of remaining
controllers is empty (S = ∅), or group Gi is empty (Gi = ∅).
While the former case is the normal termination, the latter
indicates that there does not exist any priority assignment for
the given application set which can guarantee the stability
of all control applications. The stability of a control appli-
cation Λi is investigated by assessing the stability condition
Li + αi∆

w
i ≤ βi (see Section III). The algorithm produces

the priority groups Gi and guarantees stability as long as the
relative priority order among the groups is preserved (i.e.,
all applications in group Gi have higher priority than all
applications in group Gj , for all i and j, where i > j).
The essential properties to prove the validity and optimality

of Algorithm 1 are the commutativity and monotonicity as
discussed in Remark 3 [11]. To prove the validity of the priority
order produced, we note that all applications in group Gi are
stable as long as the high priority task set is exactly equal to
Λ \ G due to the commutativity property (G =

⋃i−1
j=1 Gj).

Considering the monotonicity property this can be extended
further, i.e., all applications in group Gi are stable as long
as the high priority task set is a subset of Λ \ G. Since
Algorithm 1 ensures that the high priority task set for all
control applications in any group Gi is a subset of Λ \ G,
the resulting priority assignment guarantees the stability of
all control applications.

As the proof sketch of optimality, it is sufficient to show
that there does not exist any feasible priority assignment if
group Gi is empty (only in such a case our algorithm fails to

Algorithm 1 Optimal Priority Assignment

1: % S: remaining applications set;
2: % Gi: the i-th group;
3: Compute αi and βi, ∀Λi;
4: Initialize set S = Λ;
5: for n = 1 to | Λ | do
6: Gn = ∅;
7: for Λi ∈ S do
8: • Delay and jitter analyses Li and ∆

w

i ,
considering hp (Λi) = S \ {Λi};

9: if Li + αi∆
w

i ≤ βi then
10: Gn = Gn ∪ {Λi};
11: end if
12: end for
13: if S == ∅ then
14: % Terminate!
15: return 〈G1,G2, ...,Gn〉;
16: else if Gn == ∅ then
17: % No possible solution!
18: return 〈〉;
19: else
20: S = S \Gn;
21: end if
22: end for

find a feasible priority assignment). Due to the monotonicity
property, considering the applications G =

⋃i−1
j=1 Gj as low

priority applications only improves the stability margin for
the remaining applications Λ \G (Remark 3), and therefore,
it is safe to ignore all applications in G. Moreover, in a
priority order for a set of applications, inevitably, one of the
applications will be assigned the lowest priority. Therefore,
among the remaining applications Λ \ G, to have a feasible
priority order, there must exist at least one application which
is stable even if it is assigned the lowest priority (i.e., Gi 6= ∅).
Note that in this step, the relative priority order of the higher
priority applications is not important due to the commutativ-
ity property as discussed in Remark 3.

An intrinsic property of Algorithm 1 is that the priorities
inside each group can be assigned arbitrarily and this can be
used for further optimization, e.g., with respect to expected
control quality or energy consumption. This property can
simply be clarified by, first, observing that the priority order of
tasks in a group has no impact on the stability of the tasks in
other groups due to the commutativity property. Second, each
control task can be assigned the lowest priority in its group
and increasing the priority level of each task inside its group
can never lead to a worse stability margin (i.e., delay and
jitter) due to the monotonicity property. Hence, the priorities
within each group can be assigned arbitrarily.

VIII. Sampling Frequency Sensitivity Analysis

Sensitivity analysis provides the designer with useful informa-
tion regarding the feasibility slack at the current operating
point, which determines the distance to the border of the
feasibility region. Sensitivity analysis is often restricted to
the one-dimensional case, where only a single property of
one application is considered to be subject to change, due
to the complexity of the multi-dimensional case. Moreover,
the early work on sensitivity analysis, in the area of real-time
systems, regarded the periods to be fixed since they are related
to the environment and focused mainly on metrics related
to the worst-case execution-time [19]. Cottet and Babau [10]



proposed a graphical approach to adjust task periods consid-
ering the deadline to be the acceptance criterion. Racu et.
al. [21] developed a framework for one and multi-dimensional
sensitivity analysis of complex embedded real-time systems.
The framework is based on the monotonicity property and
binary search algorithm. However, performing a feasibility test
in each iteration of the binary search leads to a computation-
ally complex process, in particular, for the multi-dimensional
sensitivity analysis which has been remedied by a stochastic
algorithm based on evolutionary search techniques.1

As opposed to the previous work where periods are re-
garded to be fixed, in the context of control applications,
the sampling periods of controllers can often be set to any
value in an interval obtained based on common rules of thumb
[3]. Palopoli et. al. [18] proposed an approach to find the
stability radius for control applications considering a time-
triggered model of computation and translating the stability
into deadline, but at a price: such approaches are restricted to
a time-triggered model of computation which can potentially
lead to under-utilization or poor control performance [2]. Bini
et. al. [5] considered a simpler task model compared to [20] and
proposed a new type of sensitivity analysis that also applies to
the domain of task periods for control systems which perform
rate adaptation to avoid overload conditions. However, the
proposed sensitivity analysis approach is still based on the
concept of deadlines, while control applications do not enforce
hard deadlines. Therefore, for embedded control systems, a
new sensitivity analysis approach is needed based on both the
nominal delay and response-time jitter, capturing the stability
of control applications.

The basic goal of sensitivity analysis is to determine the
feasibility slack in any possible direction at a given point. The
feasibility slack is defined as the distance from the current
operating point to the border of the feasibility region, i.e.,
the region within which all applications satisfy their require-
ments. In this paper, given an operating point in the space
of task frequencies, the objective is to find out how robust
the operating point is. Moreover, it is possible to identify the
most robust – least sensitive – sampling frequency assignment
inside a subregion in the search space.

Definition: Robustness is defined as the shortest distance
to the border of the feasibility region, i.e., the region within
which all control applications are guaranteed to be stable.

According to the above definition, to quantify robustness,
the idea is to find the largest inscribed ball (also can be
extended to maximum volume inscribed ellipsoid) around each
operating point. The robustness of different operating points
can then be compared based on the volumes of the inscribed
balls. Such a definition identifies the maximum distance from
the operating point in any direction which still satisfies the
requirements. Therefore, the larger the inscribed ball, the
more robust the operating point.

For each control application Λi, the stability condition can
be formulated using a simple inequality of the form (see

1Note that the framework proposed in [21] also supports sensi-
tivity analysis of response-time jitter with respect to periods, but
the authors do not consider the stability issues. The monotonicity
problem has been pointed out in [20] and is addressed by setting
the best-case response times of the tasks to their best-case execution
times.

Section III),

Li + αi∆
w
i ≤ βi. (9)

A. One-Dimensional Sensitivity Analysis

Let us first address the one-dimensional sensitivity analysis
problem where control application Λi is considered to be the
application under analysis. Therefore, the sensitivity analysis
is performed with respect to the sampling frequency of appli-
cation Λi, i.e., fi. The frequencies of all other applications are
considered to be fixed as one-dimensional sensitivity analysis
is considered. The dependencies of coefficients αi and βi on
frequency fi are captured by linear functions: αi = αi1fi+αi2

and βi = βi1fi + βi2 (see Section III).

Given an operating point f0 = (f0
1 , f

0
2 , ..., f

0
|Λ|), the objec-

tive is to find the largest symmetric interval for frequency
fi, around the operating point f0, within which all control
applications are stable. Observe that the maximum sampling
frequency of application Λi is bounded above by the utilization
of the processor,

fi ≤
1−

∑

τj∈Λ\{Λi}
uw
j

cwi
. (10)

The impact of varying the sampling frequency of application
Λi can be considered in two cases: (1) on its own stability, and
(2) on the stability of other applications. Let us first formulate
the stability constraint for the application under analysis,
Λi. Since one-dimensional sensitivity analysis is considered,
only αi and βi depend on fi in the stability condition 9,
and therefore the constraint is linear with respect to sampling
frequency fi,

k
(1)
i fi + k

(2)
i ≤ 0, (11)

where k
(j)
i are constant coefficients.

Having considered the stability constraint for the applica-
tion under analysis, we proceed with formulating the stabil-
ity constraints for the low priority applications, denoted by
lp (Λi), since the variation in the sampling frequency of appli-
cation Λi has no impact on the stability of its higher priority
applications. For control application Λj ∈ lp (Λi), the stability
condition can be written according to the stability condition 9.
However, in this inequality αj and βj have constant values as
the sampling frequency of application Λj remains unchanged,
and therefore, the inequality has the following form (we skip
the elementary algebra),

min
{

k
(1)
j f

2
i + k

(2)
j fi + k

(3)
j , k

(4)
j f

2
i + k

(5)
j fi + k

(6)
j

}

≤ 0,

(12)
where the minimum of two single variable quadratic functions
should be less than or equal to zero.

Observe that the distance to the border of the stability
region given by the constraints in inequalities 10, 11, and 12
can be found efficiently. Thus, let us capture by D(Λi,Λj , f

0),
the shortest distance of the operating point f0 to the border of
the stability region of application Λj ∈ lp (Λi)∪{Λi} when the
frequency of application Λi is subject to change. The minimum
distance to the stability border is then given by,

r = min
Λj∈lp(Λi)∪{Λi}

{

D(Λi,Λj , f
0)
}

.



B. Towards Multi-Dimensional Sensitivity Analysis

Given an operating point f0 = (f0
1 , f

0
2 , ..., f

0
|Λ|), the objective

is to find the largest inscribed ball in the space of frequencies,
centered at the operating point f0, within which all control
applications remain stable. As opposed to the one-dimensional
case, considering the dependency of both αi and βi on the
sampling frequency fi in the stability condition 9 leads to a
nonlinear problem, which in general is hard to solve optimally.
Therefore, we proceed with the constant, but safe, values of αi

and βi.
2 In addition, the vector c is the execution-time vector

of all tasks, i.e., c = (c1, c2, ..., c|Λ|), where ci captures the
execution-time of task τi. The stability constraint 9 can be
considered with slight modification of the nominal delay and
response-time jitter and can be written as follows (Thanks
to the simplifications and optimization approach used, the
monotonicity property is not required in this subsection),

ci + (2αi − 1)
∑

τj∈hp(Λi)
cj (1− uj)

1−
∑

τj∈hp(Λi)
uj

≤ βi. (13)

The above inequality can be reformulated as follows by mul-
tiplying both sides by (1 −

∑

τj∈hp(τi)
uj) > 0 and taking

into account that the utilization for control application Λi is
defined as ui = cifi,

∑

τj∈hp(Λi)

(βi − (2αi − 1)cj) cjfj ≤

βi − (2αi − 1)
∑

τj∈hp(Λi)

cj − ci.
(14)

Let us reformulate the stability constraint for control ap-
plication Λi (inequality 14), in the multi-dimensional case, as
follows,

ai · f ≤ bi, (15)

where f = (f1, f2, ..., f|Λ|) is the vector of frequencies and ai

and bi are a constant vector and a constant scalar, respec-
tively.
Having discussed the stability constraints, we can proceed

with formulating the multi-dimensional sensitivity analysis as
follows (Chebyshev center of a polyhedron [7]),

max
r,f

r

s.t. ai · f + r‖ai‖ ≤ bi, ∀Λi ∈ Λ

c · f + r‖c‖ ≤ 1,
f = f0,

(16)

where the first constraint is the stability constraint, while the
second constraint ensures that the utilization is less than one.
The value of r captures the radius of the largest inscribed
ball, centered at f0, and can be considered as a measure of
robustness (or equivalently sensitivity). The larger the radius
r, the less sensitive the operating point f0. Since the only
actual variable in the above problem formulation is radius r,
the problem boils down to the following simple equation,

r = min

{

min
Λi

{

bi − ai · f
0

‖ai‖

}

,
1− c · f0

‖c‖

}

.

2Observe that this may not be a severe restriction for the sensitiv-
ity analysis as it is often performed locally and αi and βi coefficients
are subject to minor changes.
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Figure 4. Percentage of benchmarks for which the solution found
by the rate monotonic priority assignment is not guaranteed to be
stable (100% are stable with the proposed approach)

In addition to sensitivity analysis, it is also possible to solve
the following problem: given a subregion in the space of task
frequencies, the objective is to identify the operating point
which is farthest from the exterior of the search space, i.e., the
most robust (least sensitive) operating point. The formulation
is similar to the problem formulated in the previous section
(problem formulation 16), but the operating point is not set
to be fixed. This can be obtained by removing the equality
constraint in the previous problem formulation (problem for-
mulation 16). Observe that the problem of finding the most
robust operating point is a linear programming problem and
can be solved efficiently using the existing toolboxes [7].

The multi-dimensional sensitivity analysis problem inher-
ently suffers from exponential computational complexity as
the number of dimensions grows since, in general, the feasi-
bility frontier is not known a priori. However, in our formu-
lation, the feasibility region is given by a set of linear and
convex inequalities and increasing the dimension corresponds
to adding a finite number of inequalities which does not in-
crease the complexity of the problem exponentially. Therefore,
scalability is not an issue for the problems addressed in this
section.

IX. Experimental Results

In this section, the priority assignment algorithm and the
sensitivity analysis approach are evaluated.

A. Priority Assignment

To investigate the efficiency of our proposed approach, we have
compared our optimal priority assignment algorithm against
the rate monotonic priority assignment (RM), i.e., the higher
the sampling rate, the higher the priority. For a set of 1000
benchmarks with 8 control applications and plants taken from
[3] and [9], the experiments are repeated for different values of
processor utilization. The results are shown in Figure 4 where
the percentage of benchmarks for which the rate monotonic
priority assignment ends up with an unstable design solution is
given as a function of processor utilization. It should be noted
that our algorithm could find, at least, a stable design solution
for all the benchmarks. It can be seen that the percentage of
cases in which the rate monotonic priority assignment fails
increases drastically with utilization of the processor, while it
is zero for low utilization.



B. Sampling Frequency Sensitivity Analysis

In this section, we consider a small example comprising
two control applications Λ = {Λ1,Λ2}, modeled by tasks
τ1 = (ρ1 = 2, cw1 = 11, cb1 = 11) and τ2 = (1, 20, 20).
The periods are removed from the list of tasks parameters
since they are subject to change for different design solutions.
The coefficients αi and βi for each control application Λi are
bounded by constant values. Similar to the previous example,
we have Λ1 = (α1 = 1.18, β1 = 72) and Λ2 = (1.22, 143). We
are given two operating points in the feasible region and the
objective is to identify the one that is more desirable from the
robustness perspective.

As for the first operating point, consider the periods to
be h1 = 13.2 and h2 = 150 (f1 = 7575 and f2 = 667).
The sensitivity analysis result is shown in Figure 5(a). The
solid lines (borders) in Figure 5(a) identify the maximum and
minimum frequencies allowed. The dashed line is the stability
line, while the dash-dot line depicts the utilization criterion.
The shaded area captures the stable region. The radius of the
ball around this point is equal to 92 and the limiting factor is
the stability bound. It should be noted that the stability line
restricts the maximum frequency of the higher priority task
τ1 to guarantee the stability of the lower priority task τ2 by
limiting the amount of delay and jitter task τ2 experiences.
Let us consider another operating point, where the periods

are h1 = 13.5 and h2 = 140 (f1 = 7407 and f2 = 714).
The result of analysis is shown in Figure 5(b). The radius
of the sensitivity ball is 185 which is twice as large as the
first operating point. This clearly states the robustness of
the second operating point compared to the first. Note that
for this operating point the limiting factor is the utilization
bound.

Given a subregion in the search space, the most robust oper-
ating point can also be identified according to the optimization
problem formulated in 16. In this example, we consider the
whole search space to be the region inside which we wish to
find the most robust operating point. The most robust point
is obtained for periods h1 = 13.6 and h2 = 180 (f1 = 7306
and f2 = 563) using the optimization toolbox in MATLAB.
The optimization result is shown in Figure 5(c) and the radius
of the ball is 361.

While the approach can be applied to larger systems, we
have illustrated our approach with a small example of two
control applications since this is easy to illustrate graphically.

X. Conclusions

As opposed to hard real-time applications where meeting the
deadlines is the basis of most analyses, control applications
often do not enforce hard deadlines. In the case of control
applications, stability should be regarded as the acceptance
criterion, and not the hard deadlines. It turns out that stabil-
ity depends on not only the response-time delay, but also the
response-time jitter experienced by a control application. This
fundamental difference between control and hard real-time
applications requires new design and analysis approaches.
We consider the two main metrics, i.e., the nominal delay
and response-time jitter, to bridge the existing gap between
the real-time and control areas. The properties of the two
metrics are discussed and the metrics are redefined to have the
monotonicity property. Finally, we have addressed the priority
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(c) Finding the most robust point in the search space

Figure 5. An example for sensitivity analysis

assignment and sensitivity analysis problems with respect to
stability of control applications.
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Appendix A

Let us consider a set of independent tasks, running on a
uniprocessor under fixed-priority preemptive scheduling. Un-
der these assumptions, the best-case response time can be
computed by Equation 6. The best-case phasing of the task
under analysis occurs when it finishes simultaneously with the
release of all its higher priority tasks [22] (therefore, Figure
6 is mirrored). Similar to [6], we develop a lower bound for
the best-case response time (Equation 6). Note that since

linear lower−bound

actual interference
nonlinear lower−bound

τ
j

τ
j

o

load

higher
priority

j
h

b
c
j

t

Figure 6. The lower bounds on the actual best-case workload

Equation 6 produces a valid lower bound for task sets with
arbitrary deadlines, the lower bound developed here is also
valid for arbitrary deadlines.

Let us denote the best-case workload of the higher priority
tasks for task τi over an interval of t by Bi(t). Then, we can
define the best-case idle time in an interval of t as follows,

Hi(t) = t−Bi(t).

Considering these definitions, the best-case response time of
task τi is,

R
b
i (c

b
i ) = min

t
{t|Hi(t) ≥ c

b
i }.

It is obvious that considering a lower bound for the best-case
workload, denoted by Bi(t), leads to a lower bound for the
best-case response time as shown in the following,

Bi(t) ≤ Bi(t),

Hi(t) = t−Bi(t) ≥ t−Bi(t) = Hi(t),

R
b
i (c

b
i ) = min

t
{t|Hi(t) ≥ c

b
i } ≤ min

t
{t|Hi(t) ≥ c

b
i } = R

b
i (c

b
i ),

where the overline and underline indicate upper bound and
lower bound, respectively.

The last step is to identify Bi(t). Let us consider a higher
priority task τj , and denote the best-case amount of its
interference in an interval of t by bj(t). The actual interference
experienced by task τi due to higher priority task τj is shown
in Figure 6. Further, Figure 6 also depicts the nonlinear
boj (t) and linear bj(t) lower bounds on the actual amount of
interference caused by task τj . It should be mentioned that the
nonlinear lower bound boj (t) occurs when task τj is the only
higher priority task for task τi. Considering these bounds, we
have the following inequalities,

bj(t) ≥ b
o
j (t) ≥ bj(t) = tu

b
j + c

b
j (u

b
j − 1).

Using these relationships, we sum the values of bj(t) for all
higher priority tasks to obtain Bi(t) as follows,

Bi(t) =
∑

τj∈hp(τi)

bj(t) ≥
∑

τj∈hp(τi)

b
o
j (t)

≥
∑

τj∈hp(τi)

bj(t)

=
∑

τj∈hp(τi)

tu
b
j + c

b
j (u

b
j − 1) = Bi(t).



Since Hi(t) is a one-to-one function, it is safe to require
Hi(t) = t− Bi(t) = cbi . Therefore, by substituting Bi(t) and
taking into consideration that t = Rb

i (c
b
i ), we obtain,

R
b
i (c

b
i ) =

cbi −
∑

τj∈hp(τi)
cbj

(

1− ub
j

)

1−
∑

τj∈hp(τi)
ub
j

. (17)

Appendix B

In this section, we will discuss the issues related to the
commutativity and monotonicity properties of Equation 8.

Commutativity and Monotonicity with Respect to Priorities:

For the commutativity property, observe that all equations
related to Equation 8 depend on the set of higher priority
tasks and therefore the priority order of other tasks is not
important as long as the set of high priority tasks remains the
same.

Let us now investigate the monotonicity property. The
monotonicity of the nominal delay in the case of priority
assignment is clear since removing a high priority task, τk ∈
hp (τi), leads to less or equal interference in the best-case
response-time scenario of the task under analysis, i.e., τi.
Let us now discuss the monotonicity of response-time jitter

with respect to priorities. Observe that for the rest of this
section we consider Rb

i is defined as in Equation 17, for
simplicity of presentation. The claim is that the response-
time jitter for task τi decreases once a higher priority task
τk ∈ hp (τi) is removed from the set of higher priority tasks
hp (τi) which is shown in the following,

∆
w

i+ ≥ ∆
w

i−.

R
w

i+ − max
{

R
b

i+, c
b

i

}

≥ R
w

i− − max
{

R
b

i−, c
b

i

}

,

R
w

i+ − R
w

i− ≥ max
{

R
b

i+, c
b

i

}

− max
{

R
b

i−, c
b

i

}

,

(18)

where the plus sign in the index indicates the metric before
removing the higher priority task, and the minus sign indicates
the metric after removing the higher task.

Before proceeding with the proofs, we shall define the
following (positive) variables,

Xb
i = 1 −

∑

τj∈hp(τi)
ub
j , Xw

i = 1 −
∑

τj∈hp(τi)
uw
j ,

Y b
i =

∑

τj∈hp(τi)
cbj (1 − ub

j ), Y w
i =

∑

τj∈hp(τi)
cwj (1 − uw

j ).

Let us investigate the monotonicity property of the response-
time jitter in the following four cases,

• Rb
i+ ≥ cbi , Rb

i− ≥ cbi : calculating both sides of the last
inequality (inequality 18),

R
b

i+ − R
b

i− = −
Xb

i (c
b
k(1 − ub

k))

(Xb
i
+ ub

k
)Xb

i

+
ub
kc

b
i

(Xb
i
+ ub

k
)Xb

i

−
ub
kY

b
i

(Xb
i
+ ub

k
)Xb

i

,

R
w

i+ − R
w

i− =
Xw

i (cwk (1 − uw
k ))

(Xw
i

+ uw
k
)Xw

i

+
uw
k cwi

(Xw
i

+ uw
k
)Xw

i

+
uw
k Y w

i

(Xw
i

+ uw
k
)Xw

i

.

Comparing Rb
i+ −Rb

i− and R
w
i+ −R

w
i− term by term, it is

clear that the monotonicity property holds for response-
time jitter in this case (i.e., inequality 18 holds).

• Rb
i+ ≥ cbi , Rb

i− ≤ cbi : in this case we have Rb
i+ − Rb

i− ≥
Rb

i+ − cbi and from the first case we know R
w
i+ − R

w
i− ≥

Rb
i+ −Rb

i−. Therefore, we have R
w
i+ −R

w
i− ≥ Rb

i+ − cbi .
• Rb

i+ ≤ cbi , Rb
i− ≤ cbi : from the previous equation in the

first case considered it is clear that R
w
i+ − R

w
i− is always

positive and therefore it follows R
w
i+−R

w
i− ≥ cbi − cbi = 0.

• Rb
i+ ≤ cbi , Rb

i− ≥ cbi : since the value of R
w
i+ − R

w
i− is

always positive, we have R
w
i+ −R

w
i− ≥ 0 ≥ cbi −Rb

i−.

Therefore, inequality 18 holds.

Monotonicity with Respect to Periods:

Let us now proceed with proving the monotonicity of the
nominal delay with respect to sampling frequency. The proof
is by computing the derivative of the nominal delay Li with
respect to sampling frequency (or alternatively the utilization)
of higher priority task τk ∈ hp (τi). In this case, we have,

∂Rb
i

∂ub
k

=
cbkX

b
i + cbi − Y b

i

Xb
i

2
.

Observe that under the assumption of cbi − Y b
i ≥ 0, the

derivative is always positive. Note that if Li = Rb
i , we know

Rb
i =

cbi −Y b
i

Xb
i

≥ cbi ≥ 0 and cbi − Y b
i ≥ 0 and hence the above

derivative is positive; otherwise, Li = cbi with derivative equal
to zero. Considering the continuity of Li, the nominal delay,
defined as Li = max

{

Rb
i , c

b
i

}

, monotonically changes with
sampling frequencies.

To prove the monotonicity of the response-time jitter with
respect to sampling frequencies we use similar techniques. Two
cases need to be considered,

• Having Rb
i ≥ cbi , the response-time jitter is given by

∆
w
i = R

w
i −Rb

i and the proof is as follows,

∂∆w
i

∂fk
=

∂R
w

i

∂fk
−

∂Rb
i

∂fk

=
−cwk

2Xw
i + cwk (cwi + Y w

i )

Xw
i

2
−

cbk
2
Xb

i + cbk(c
b
i − Y b

i )

Xb
i

2

=
−cwk

2Xw
i + cwk

2(1 − cwk fk)

Xw
i

2
+

−cbk
2
Xb

i + cbk
2
(1 − cbkfk)

Xb
i

2

+
cwk Y w

i − cwk
2(1 − cwk fk)

Xw
i

2
+

cbkY
b
i − cbk

2
(1 − cbkfk)

Xb
i

2

+
cwk cwi

Xw
i

2
−

cbkc
b
i

Xb
i

2
.

It is easy to show that the first four terms in the above
equation are positive. Also, the sum of the fifth and the
sixth terms is positive, and therefore, the total value is
positive.

• In the case where we have Rb
i ≤ cbi , the response-time

jitter is given by ∆
w
i = R

w
i − cbi and its derivative is

obtained as follows,

∂∆w
i

∂fk
=

∂R
w

i

∂fk
− 0

=
−cwk

2Xw
i + cwk (cwi + Y w

i )

Xw
i

2
− 0

=
−cwk

2Xw
i + cwk

2(1 − cwk fk)

Xw
i

2

+
cwk Y w

i − cwk
2(1 − cwk fk)

Xw
i

2

+
cwk cwi

Xw
i

2
.

Observe that all terms in the above equation are positive
which indicates the monotonicity of the response-time
jitter in this case.

Considering the continuity of ∆
w
i , the worst-case response-

time jitter, defined as ∆
w
i = R

w
i − max

{

Rb
i , c

b
i

}

, monotoni-
cally changes with sampling frequency.


