
Bandwidth-Efficient Controller–Server Co-Design

with Stability Guarantees

Amir Aminifar∗, Enrico Bini†, Petru Eles∗, Zebo Peng∗

∗Linköping University, Sweden
†Lund University, Sweden

Abstract—Many cyber-physical systems comprise several
control applications implemented on a shared platform, for
which stability is a fundamental requirement. This is as
opposed to the classical hard real-time systems where often
the criterion is meeting the deadline. However, the stability
of control applications depends on not only the delay experi-
enced, but also the jitter. Therefore, the notion of deadline
is considered to be artificial for control applications that
promotes the need for new techniques for designing cyber-
physical systems. The approach in this paper is built on a
server-based resource reservation mechanism, which provides
compositionality, isolation, and the opportunity of systematic
controller–server co-design. We address the controller–server
co-design of such systems to obtain design solutions with the
minimal bandwidth to guarantee stability.

I. INTRODUCTION AND RELATED WORK

The majority of control applications in cyber-physical

systems are implemented by software tasks on processors

sharing the available computation resources. The design of

such systems requires special attention due to the complex

timing behaviors [1] that may, in the worst case, jeopardize

the stability of the control applications. These complex

timing behaviors are discussed in literature and it is now

possible to express control performance and stability in

terms of the delay and jitter a control application expe-

riences [2, 3]. The delay and jitter are the direct results of

competition for the shared computing resources, i.e., task

scheduling.

Typically, in the control–scheduling area [4–13], the

tasks are all analyzed or designed together with respect

to an overall cost. In such approaches, the design of each

control task is tightly coupled with all other control tasks,

and hence the design highly suffers from inflexibility since

adding, removing, or modifying a task affects all other tasks

in the system. In contrast to these approaches, in this paper,

we propose to run each controller within a dedicated server

in order to achieve isolation for each control task in the

execution environment (see Figure 1). The usage of servers

presents the following advantages: (1) compositionality that

facilitates systematic design methodologies; (2) protection

against all other tasks’ misbehaviors, which may jeopar-

dize the entire system; (3) provides simple interface for

systematic controller–server co-design.

In our previous work [14], the problem of analysis and

design of stabilizing control servers is addressed, where

the controller is considered to be given. In other words, the

server is designed to stabilize the plant associated with a

given controller while consuming the minimum bandwidth.

The research leading to these results was supported by the ELLIIT
Excellence Center, the Linneaus Center LCCC, the Marie Curie Intra
European Fellowship within the 7th European Community Framework
Programme, and the Swedish Research Council.

server serverserver

processing unit

plantplant

applications
other

task
control

task
control

Figure 1. Overview of the proposed approach.

In this paper, we extend our work to address the controller–

server co-design problem. This co-design process revo-

lutionizes the traditional design flow comprising of two,

in fact, dependent design processes (controller and server

design) treated, however, independently. Often, the main

reason for this separation is the high complexity of each

of the design processes as well as the fact that the search

space for the co-design problem is the Cartesian product of

the search spaces of each of the processes. Therefore, the

challenge in approaching this co-design problem is to cope

with the complex non-convex objective and constraints,

in the huge search space. It is of great importance to

realize that the controller and server design are mutually

dependent, i.e., a suboptimal design solution is obtained

if one of the design processes is performed considering a

given, fixed, solution for the other process.
The analysis and design of real-time servers have been

extensively studied over the past decade [15–21]. However,

the overwhelming majority of the work consider the task

deadlines as constraints rather than the stability of control

applications. More relevant to this work, Cervin and Eker

[22] proposed the control server approach which provides

a simple interface used for control-scheduling co-design of

real-time systems. Recently, Fontanelli et. al. [23] addressed

the problem of optimal bandwidth allocation for a given set

of control tasks, restricted to time-triggered models.
In this work, we address the problem of controller–server

co-design, for the first time to the best of our knowledge,

where the controller is also determined in a unified design

process along with the server.

II. SYSTEM MODEL

A system is composed of n plants, each of which is

controlled by a control task that is executing within a server,

as shown in Figure 1.

A. Plant Model

A plant is modeled by a continuous-time system of

differential equations [2],

ẋ = Ax+Bu,

y = Cx,
(1)

978-3-9815370-2-4/DATE14/ c©2014 EDAA

R
wb

Rk
1
h k

2
h

JL

t

Figure 2. Graphical interpretation of the nominal delay and worst-case
response-time jitter.

where x, u, and y are the plant state, the control signal,

and the plant output, respectively. The index i identifying

the plant and the corresponding controller is dropped since

each plant is considered in isolation.

B. Control Task Model

The plant output y is sampled periodically and is used

by the controller task τ to compute the control signal u.

This control signal will then be applied once the controller

completes its execution, at an instant that depends on

the scheduling policy and task parameters: the best-case

execution time (cb), the worst-case execution time (cw), and

the sampling period (h). The sampling frequency is defined

to be f = 1
h

.

In addition, the scheduling policy and task parameters

also determine the following task characteristics (Figure 2):

the nominal delay (or latency), denoted by L = Rb, and

the worst-case response-time jitter (jitter), denoted by J =
Rw −Rb. Note that Rw and Rb denote the worst-case and

best-case response times of the control task, respectively.

C. Server Model

In this paper, the periodic server model [16–19] is

considered in which each server S is described by: the

server budget Q, and the server period P . In this model,

the server is activated periodically with period P and in

each activation, it allocates Q amount of time to the control

task associated with it, before the server deadline expires

(server deadline D = P). As discussed before, to isolate

controllers from one another, each control task is associated

with a dedicated server.

As mentioned above, the delay and jitter experienced

by a control task are strongly related to the best-case and

worst-case response times. The convenient response time

upper bound, R
w

, and lower bound, Rb, used are given by

[14],

R
w
=

cw

α
+∆, Rb = max

{

cb,
cb

α
−∆

}

, (2)

based on Feng–Mok’s notation [15],

α =
Q

P
, ∆ = 2(P −Q), (3)

where α and ∆ are the server bandwidth and delay,

respectively. Note that the worst-case response time is finite

only if no overload occurs [14], that is

α =
Q

P
≥

cw

h
= cwf. (4)

III. STABILITY CONSTRAINT

Sufficient conditions to guarantee the stability of a plant

(or certain degree of robustness) in presence of delay and

jitter in the actuation instant are developed in [3, 24]. The

Jitter Margin toolbox [3, 6, 24] computes the stability curve

that determines the maximum tolerable response-time jitter

J for a nominal delay L. The nominal delay L = Rb

0 2 4 6 8 10 12
0

1

2

3

4

5

6

7

8

9

10

Nominal delay L (msec)

R
e
s
p
o
n
s
e
−

ti
m

e
 j
it
te

r
J
 (

m
s
e
c
)

Stability curves (LQG)

Stability curves (PID)

Linear lower bounds

Figure 3. The stability curves generated by Jitter Margin and their linear
lower bounds (the area below the curves is the stable area).

identifies the constant part of the delay that the control

application experiences, whereas the worst-case response-

time jitter J = Rw − Rb captures the varying part of the

delay (see Figure 2).

The solid curves in Figure 3 are examples of the stability

curves generated by the Jitter Margin toolbox. The area

below the solid curve is the stable area. The green curves

are generated for a DC servo process 1000
s2+s

and discrete-time

Linear-Quadratic-Gaussian (LQG) controllers. The upper

and lower green curves correspond to LQG controllers

with sampling periods 6 ms and 12 ms, respectively.

Replacing the Linear-Quadratic-Gaussian controllers with a

Proportional-Integral-Derivative (PID) controller, the blue

curves in Figure 3 are obtained. Notice the large gap

between the two blue curves generated for the two sampling

periods. The upper blue curve, h = 6 ms, provides better

stability margin (the application can tolerate larger delay

and jitter) compared to the lower curve, h = 12 ms, but

requires higher bandwidth due to more frequent activation.

This trade-off motivates the need for a co-design approach

where the real-time parameters are optimized along with

the controllers in a unified process.

For a given sampling period, the stability curve can safely

be approximated by a linear function of the nominal delay

and worst-case response-time jitter. The linear stability

constraint can be formulated as,

L+ aJ ≤ b, (5)

where a ≥ 1, b ≥ 0. The linear lower bounds, depicted by

the dashed lines, on the original curves generated by the

Jitter Margin toolbox are also shown in Figure 3.

In the previous design approach [14], the stability con-

straint is captured by constant coefficients a and b, which

means that we consider the controller and its period to

be fixed and given. In this paper, we assume that the

controller will be determined as part of the co-design

process. Therefore, the variables a and b are functions of

the sampling period h (or alternatively sampling frequency

f) of the controller. Let us assume that the coefficients a

and b are expressed as polynomial functions of the sampling

frequency f . These polynomials are obtained considering

the set of curves each of which generated with an optimal

controller synthesized for the given sampling frequency and

a constant delay. Observe that, the stability region with the

approximated coefficients must always be contained within

the original one generated by the Jitter Margin toolbox.

This can be enforced by, e.g., using the approximated a

and b polynomials that are an upper bound and a lower

bound of their original exact functions, respectively.

In the context of the optimization problem that we are

solving, the safe upper/lower bounds of the worst/best-case

response times of (2), are used instead of the exact worst-

case and best-case response times, since the discontinuity

of the exact response times makes the optimization problem

impractical. Hence, the nominal delay and the worst-case

response-time jitter are redefined based on the bounds in

Section II-C,

L = Rb,

J = R
w
−Rb.

(6)

While using the bounds in equation (2) involves some

pessimism compared to the original supply bounds, their

usage is safe from the stability point of view [6].

The stability constraint based on the bounds is given in

the following,

b ≥ L+ aJ = Rb + a(R
w
−Rb)

= a(
cw

α
+∆)− (a− 1)max

{

cb,
cb

α
−∆

}

,

which can be rewritten as

min

{

a

(

cw − cb

α
+ 2∆

)

+
cb

α
−∆− b,

a

(

cw

α
+∆− cb

)

+ cb − b

}

≤ 0. (7)

Hence, equation (7) captures the constraint on the server

parameters, α and ∆, as well as the sampling frequency f

of the controller in order to guarantee stability. Note that a

and b are functions of the sampling frequency f , although

the sampling frequency f does not explicitly appear in (7).

The degree of pessimism introduced in the analysis by

using the bounds in equation (7) instead of the exact

response times is discussed in [14]. It is shown that if a

server S1 = (Q,P) (with the exact expressions for the

response time) with bandwidth α1 = Q
P

is identified that

guarantees the stability of the control task associated with

it, then there exists a server S2 = (Q2 ,
P
2) (with the bounds

in equation (2)) that can also guarantee the stability of the

control task and the required bandwidth is the same, i.e.,

α2 =
Q

2

P
2

= Q
P

. This result also states that, in the worst-case,

the server S2, while consuming the same bandwidth, has to

be run two times more frequently compared to S1, which

might be a disadvantage, if the context-switch overhead is

significant.

IV. MOTIVATIONAL EXAMPLE

To motivate the co-design optimization problem, a small

example with three plants is considered in this section.

The real-time parameters of the control tasks are given in

Table I. All timing quantities are given in units of 0.1 ms

throughout this section. The interval for the sampling

period, i.e.,
[

hmin
i , hmax

i

]

, is obtained based on the common

rules of thumb that state that the sampling period can be

chosen in the interval of
[

0.2
ωb

, 0.6
ωb

]

, with ωb being the

bandwidth of the closed-loop continuous system [2]. The

coefficients a and b are captured by polynomials of degree

Table I
MOTIVATIONAL EXAMPLE

Parameters SD Approach CD Approach

i cbi cwi hmin
i hmax

i α∗

i ∆∗

i h∗

i α∗

i ∆∗

i
1 5 10 46 138 .2 5.7 69 .14 9.9
2 20 40 101 303 .32 6.3 163 .25 12.5
3 29 58 142 427 .33 7.3 231 .25 14.9

5 based on the sampling frequency f .1 For the sake of

simplicity, in this example, we assume that the continuous-

time controllers are given, but their sampling periods are

design parameters.

Let us first consider the case in which the three sampling

periods h1 = 92, h2 = 202, and h3 = 285 are given

(hi =
hmin
i +hmax

i

2). The problem as formulated in the server

design (SD) approach [14] is to find the optimal parameters

α and ∆ for the servers such that the total utilization

is minimized and worst-case stability is guaranteed. The

solution is presented in Table I column group 2 and the

total utilization is 92%.

The co-design approach (CD) presented in this paper

goes further. The goal is to obtain the optimal sampling

periods and server parameters such that the total utilization

is minimized while guaranteeing stability. The resulting

controller periods and server parameters are shown in Table

I column group 3 with a total utilization of only 68%.

It is interesting to observe that, if we apply the server

design approach to optimize the server for given controllers

corresponding to the shortest hmin and longest hmax periods,

the resulting utilizations are 102% and 239%, respectively.

This means, first of all, that none of these alternatives can

be implemented such that stability is guaranteed. It also

shows that the utilization, considering the longest sampling

period hmax can (somewhat counter-intuitively) be much

larger than the one with the smallest sampling period hmin.

This is due to the fact that, in order to compensate for the

large sampling period and still approach stability, the server

parameters (period and budget) have to be fixed such that

delay and jitter are reduced. This, finally, leads to the in-

creased utilization. This intricate relation among controller

parameters, server parameters, and stability condition leads

to the increased complexity of the problem and the need

for an efficient controller–server co-design process.

V. PROBLEM FORMULATION

The inputs of our optimization problem are,

• the best-case and worst-case execution times, denoted

by cb and cw, respectively, and

• the a and b polynomial functions of the sampling

frequency f , valid in the allowed sampling frequency

interval
[

fmin, fmax
]

.

The outputs are the server bandwidth α, and delay ∆, as

well as the controller. The optimization problem identifies

also a unique optimal sampling frequency, f = 1
h

, that

corresponds to an optimal controller.

1Assuming the sampling period and the controller to be fixed, the safe
and constant coefficients a and b are obtained by a constrained least-
square optimization, which is convex. In this paper, however, a and b
are functions of sampling frequency. To find these polynomials, first,
we compute the constant a and b coefficients, as in our previous work,
for several stability curves generated for different sampling frequencies
and corresponding optimal LQG controllers in the interval identified
by the rules of thumb. Having these constant a and b coefficients for
different sampling frequencies, we solve two convex constrained least-
square optimizations to find the polynomials a and b.

The objective of the optimization is to minimize the uti-

lization required to guarantee the stability of all controllers.

That is, our goal is to minimize

U =
n
∑

i=1

(

αi +
ǫ

Pi

)

, (8)

under the stability constraint (7) and the validity constraint

for the response time bounds (4), for each closed-loop

system. The strictly positive ǫ represents the switching

overhead of the servers.

The controller–server co-design for each plant can be

solved independently of all others as a result of the isolation

property under the resource reservation mechanism. Hence,

instead of dealing with an optimization involving all plants,

the minimization of the total server utilization of (8) is

divided into one bandwidth minimization problem for each

plant in our approach. Thus, the following optimization for

each plant is performed,

min
α,∆,f

α+
2ǫ(1− α)

∆

s.t. min

{

a

(

cw − cb

α
+ 2∆

)

+
cb

α
−∆− b,

a

(

cw

α
+∆− c

b

)

+ c
b
− b

}

≤ 0,

c
w
f − α ≤ 0,

(9)

where the period P is replaced by ∆
2(1−α) , based on (3).

Observe that a and b are polynomial functions of the

sampling frequency f . The first constraint guarantees the

stability of the control applications (see constraint (7)),

while the second one ensures that server is never overloaded

and then the response time is always finite (see constraint

(4)).

VI. CONTROLLER–SERVER CO-DESIGN

In this section, the procedure of controller–server co-

design is discussed. First, observe that the stability con-

straint in (9) can be written as

min {gI(α,∆, f), gII(α,∆, f)} ≤ 0,

which is equivalent to

(gI(α,∆, f) ≤ 0) ∨ (gII(α,∆, f) ≤ 0),

with ∨ denoting the logical or between the two proposi-

tions. In other words, solving the problem (9) is equivalent

to solving the following two problems,

min
α,∆,f

α+
2ǫ(1− α)

∆

s.t. a

(

cw − cb

α
+ 2∆

)

+
cb

α
−∆− b ≤ 0,

c
w
f − α ≤ 0,

(10)

and,

min
α,∆,f

α+
2ǫ(1− α)

∆

s.t. a

(

cw

α
+∆− c

b

)

+ c
b
− b ≤ 0,

c
w
f − α ≤ 0,

(11)

and then selecting the best solution produced by (10)

and (11).

To solve problems (10) and (11), we use the KKT

(Karush-Kuhn-Tucker) necessary conditions for optimal-

ity [25]. According to the KKT condition, the optimum

x∗ of the problem

min
x

f(x)

s.t. gi(x) ≤ 0, i = 1 . . .m,
(12)

must necessarily satisfy the following conditions

∇f(x∗) +
m
∑

i=1

µ∗

i∇gi(x
∗) =0,

µ∗

i gi(x
∗) =0, i = 1 . . .m,

µ∗

i ≥0, i = 1 . . .m.

(13)

Solving problem (10):

From the KKT condition of the gradient (the first equal-

ity), if we differentiate w.r.t. α, ∆, and f , respectively, we

find2

1−
2ǫ

∆
− µ1

a(cw − cb) + cb

α2
− µ2 = 0 (14)

−
2ǫ(1− α)

∆2
+ µ1(2a− 1) = 0 (15)

µ1

(

ȧ

(

cw − cb

α
+ 2∆

)

− ḃ

)

+ µ2c
w = 0 (16)

Using the second equality in (13), we obtain two more

equations as follows,

µ1

(

a

(

cw − cb

α
+ 2∆

)

+
cb

α
−∆− b

)

= 0 (17)

µ2 (c
wf − α) = 0 (18)

Since a ≥ 1 and α < 1, from (15), we immediately find

the multiplier µ1, that is:

µ1 =
2ǫ(1− α)

∆2(2a− 1)
> 0, (19)

hence the stability constraint of (10) is active and must hold

with the equal sign, i.e.,

a

(

cw − cb

α
+ 2∆

)

+
cb

α
−∆− b = 0. (20)

Using the above equation, ∆ is given as follows,

∆ =
b− a(cw−cb)+cb

α

2a− 1
. (21)

From (16), we obtain,

µ2 =
−µ1

cw

(

ȧ

(

cw − cb

α
+ 2∆

)

− ḃ

)

. (22)

Considering equality (18) and substituting µ2 from the

above, we obtain,

−µ1

cw

(

ȧ

(

cw − cb

α
+ 2∆

)

− ḃ

)

(cwf − α) = 0. (23)

We consider two cases: α = cwf and α > cwf . Let

us first assume α = cwf that implies the equality above

is satisfied. From (21), the corresponding server delay is

2 ȧ =
∂a
∂f

, ḃ = ∂b
∂f

.

∆ = bcwf−a(cw−cb)−cb

(2a−1)cwf
. From equality (14), (19), and (22),

we obtain the following equation based on α and ∆,

1−
2ǫ

∆
−

2ǫ(1− α)

∆2(2a− 1)

(

a(cw − cb) + cb

α2

−
1

cw

(

ȧ

(

cw − cb

α
+ 2∆

)

− ḃ

))

= 0. (24)

Using α = cwf and ∆ = bcwf−a(cw−cb)−cb

(2a−1)cwf
in equation

(24) and solving it for frequency f , the optimal sampling

frequency candidates will be obtained. Corresponding α

and ∆ are given based on the equations discussed. Let us

denote this set of design solutions by DS1.

If instead α > cwf , the multiplier µ1 is strictly positive

and therefore, equality (23) holds iff,

ȧ

(

cw − cb

α
+ 2∆

)

− ḃ = 0, (25)

Observe that the equality corresponds to µ2 = 0, according

to (18) and taking into consideration that we have α > cwf .

Therefore, from (14) and (19) we obtain,

1−
2ǫ

∆
−

2ǫ(1− α)

∆2(2a− 1)

(

a(cw − cb) + cb

α2

)

= 0. (26)

Substituting (21) in equality (25), the server bandwidth is

given by

α =
(cw + cb)ȧ

2bȧ− ḃ(2a− 1)
=

(cw + cb)ȧ

ḃ− 2(aḃ− bȧ)
. (27)

Substituting back α in (21) we have,

∆ =
ḃcb + (aḃ− bȧ)(cw − cb)

(cw + cb)ȧ
. (28)

Using α and ∆ in equation (26) and solving the polynomial

based on sampling frequency f , the candidates for the op-

timal sampling frequency are identified. The corresponding

α and ∆ are obtained from the above equations. The set of

solutions obtained for this case are captured by DS2.

Solving problem (11):

Analogously, problem (11) is solved based on the KKT

conditions,

1−
2ǫ

∆
− µ1

acw

α2
− µ2 = 0 (29)

−
2ǫ(1− α)

∆2
+ µ1a = 0 (30)

µ1

(

ȧ

(

cw

α
+∆− cb

)

− ḃ

)

+ µ2c
w = 0 (31)

The second equality in (13) leads to two more equations,

µ1

(

a

(

cw

α
+∆− cb

)

+ cb − b

)

= 0 (32)

µ2 (c
wf − α) = 0 (33)

Since a ≥ 1 and α < 1, we conclude that,

µ1 =
2ǫ(1− α)

∆2a
> 0, (34)

which, considering (32), implies,

a

(

cw

α
+∆− cb

)

+ cb − b = 0. (35)

Then, the server delay is obtain as follows,

∆ =
b+ (a− 1)cb

a
−

cw

α
. (36)

From (31), we find µ2 as given by,

µ2 =
−µ1

cw

(

ȧ

(

cw

α
+∆− cb

)

− ḃ

)

, (37)

and from (33), the following equation is obtained,

−µ1

cw

(

ȧ

(

cw

α
+∆− cb

)

− ḃ

)

(cwf − α) = 0. (38)

Similar to the approach used for problem (10), we

consider two cases: α = cwf and α > cwf . First, let

us assume α = cwf that leads to the corresponding

∆ = b+(a−1)cb

a
− 1

f
. Using (29), (34), (37), and (35), we

obtain,

1−
2ǫ

∆
−

2ǫ(1− α)

∆2a

acw

α2
−

(

ȧ
(

cw

α
+∆− cb

)

− ḃ
)

cw

 =

1−
2ǫ

∆
−

2ǫ(1− α)

∆2a

(

acw

α2
−

1

cw

(

ȧ
b− cb

a
− ḃ

))

= 0.

Substituting α = cwf and ∆ = b+(a−1)cb

a
− 1

f
above, we

end up with an equation based on f in which the roots are

the candidates for the optimal sampling frequency. Corre-

sponding α and ∆ are calculated based on the equations

discussed. We denote these design solutions by DS3.

Let us now consider the case with α > cwf . Since µ1 is

strictly positive, the equality (38) holds iff,

ȧ

(

cw

α
+∆− cb

)

− ḃ = 0, (39)

Considering (35) and (39), we obtain an equation for the

candidates of the optimal sampling frequency as follows,

ȧ
b− cb

a
− ḃ = 0.

Note that in this case, we know µ2 = 0 (from (33) and

knowing α > cwf), and therefore based on (29), (34), and

∆ in (36), we have a quadratic equation for α based on

each candidate f ,
(

(

b+ (a− 1)cb

a

)2

− 2ǫ
b+ (a− 1)cb

a

)

α2+

(

−2cw
b+ (a− 1)cb

a

)

α+ (cw2 − 2ǫcw) = 0.

Substituting back α in (36), ∆ is found. The corresponding

design solutions are denoted by DS4.
We have obtained four sets of tuples (α,∆, f) as candi-

dates for the optimal co-design solution. The best solution
obtained is the one that results in the least total utilization
and is valid,3

min
5⋃

i=1

DSi

{

α+
2ǫ(1− α)

∆

∣

∣

∣

∣

cw

h
≤α<1, ∆≥2ǫ, f

min
≤f≤f

max

}

.

3In addition, the boundary values of sampling frequency, i.e., fmin and
fmax, need to be considered among the solutions. The corresponding server
bandwidth and delay, for these boundary values, can be obtained based
on the previous work [14]. The set DS5 includes the design solutions for
the boundary values.

 0

 10

 20

 30

 40

 50

 60

 50 60 70 80 90 100

Im
p

ro
v
e

m
e

n
t

[%
]

Utilization [%]

Co-Design vs Server Design

Figure 4. The average improvement in total utilization by the proposed
co-design approach in this paper against the approach in [14].

Having found the minimum resource utilization required

for stability of all plants, we should now check if the total

resource demand is not exceeding the resource supply. The

solution found is valid if and only if the total utilization is

less than or equal to one, i.e.,

n
∑

i=1

(

α∗

i +
2ǫ(1− α∗

i)

∆∗

i

)

≤ 1. (40)

If inequality (40) is not satisfied, there is no possible

implementation to guarantee the worst-case stability of all

applications, under the constraint in (7).

VII. EXPERIMENTAL RESULTS

To evaluate the efficiency of our co-design approach

(CD), we compare it against the server design approach

(SD) in the previous work [14]. The comparison is per-

formed for a set of 100 benchmarks with 2 to 10 plants from

a database consisting of inverted pendulums, DC servos,

ball and beam processes, and harmonic oscillators, which

are extensively used in literature for experimental evalua-

tion [2, 6]. The random task sets, for a given utilization,

are generated by the UUniFast algorithm in [26]. The

coefficients a and b are considered to be polynomials of

degree 5. The switching overhead is 1–5% of the minimum

best-case execution-time. In the server design approach

[14], the sampling frequency is considered in the middle of

the sampling frequency interval identified by the common

rules of thumb [2].

The experiments are repeated for different taskset utiliza-

tions and the results are shown in Figure 4. As can be seen,

the co-design approach outperforms the previous work by

an average of 44%. The relative improvement is defined as
(

USD−UCD

USD
× 100

)

, where UCD and USD denote the total uti-

lization,
∑n

i=1

(

α∗

i +
2ǫ(1−α∗

i)

∆∗

i

)

, consumed by the optimal

co-design and server design approaches, respectively.

The time complexity of the proposed co-design approach,

for a single application, is in the order of finding the

roots of a polynomial. Due to the isolation provided by

the resource reservation mechanism, the timing complexity

grows linearly with the number of control applications that

demonstrates the scalability of our proposed approach.

VIII. CONCLUSIONS

In this paper, we have addressed the problem of

controller–server co-design in a systematic way. It has

been shown that the co-design approach outperforms the

previous work where the controllers are considered to be

given. This result is not surprising since the combined

solution space is much larger for the co-design problem.
However, the challenge is the optimization of complex

objectives, under complex constraints, in the huge search

space, i.e., what made the co-design problem to be treated

as two separate design processes in the first place. We have

proposed an approach based on the Karush-Kuhn-Tucker

optimality conditions and demonstrated its efficiency.

REFERENCES

[1] Björn Wittenmark et al. “Timing Problems in Real-Time Control Systems”.
In: Proceedings of the American Control Conference. 1995, pp. 2000–2004.

[2] K. J. Åström and B. Wittenmark. Computer-Controlled Systems. 3rd ed.
Prentice Hall, 1997.

[3] A. Cervin. “Stability and Worst-Case Performance Analysis of Sampled-Data
Control Systems with Input and Output Jitter”. In: Proceedings of the 2012

American Control Conference (ACC). 2012.
[4] D. Seto et al. “On Task Schedulability in Real-Time Control Systems”. In:

Proceedings of the 17th IEEE Real-Time Systems Symposium. 1996, pp. 13–
21.

[5] H. Rehbinder and M. Sanfridson. “Integration of Off-Line Scheduling and
Optimal Control”. In: Proceedings of the 12th Euromicro Conference on

Real-Time Systems. 2000, pp. 137–143.
[6] Anton Cervin et al. “The Jitter Margin and Its Application in the Design of

Real-Time Control Systems”. In: Proceedings of the 10th International Con-

ference on Real-Time and Embedded Computing Systems and Applications.
2004.

[7] Truong Nghiem et al. “Time-triggered implementations of dynamic con-
trollers”. In: Proceedings of the 6th ACM & IEEE International conference

on Embedded software. 2006, pp. 2–11.
[8] E. Bini and A. Cervin. “Delay-Aware Period Assignment in Control Sys-

tems”. In: Proceedings of the 29th IEEE Real-Time Systems Symposium.
2008, pp. 291–300.

[9] Fumin Zhang et al. “Task Scheduling for Control Oriented Requirements
for Cyber-Physical Systems”. In: Proceedings of the 29th IEEE Real-Time

Systems Symposium. 2008, pp. 47–56.
[10] Payam Naghshtabrizi and João Pedro Hespanha. “Analysis of Distributed

Control Systems with Shared Communication and Computation Resources”.
In: Proceedings of the 2009 American Control Conferance (ACC). 2009.

[11] Rupak Majumdar et al. “Performance-aware scheduler synthesis for control
systems”. In: Proceedings of the 9th ACM international conference on

Embedded software. 2011, pp. 299–308.
[12] Pratyush Kumar et al. “A Hybrid Approach to Cyber-Physical Systems

Verification”. In: Proceedings of the 49th Design Automation Conference.
2012.

[13] Amir Aminifar et al. “Designing High-Quality Embedded Control Systems
with Guaranteed Stability”. In: Proceedings of the 33th IEEE Real-Time

Systems Symposium. 2012, pp. 283–292.
[14] Amir Aminifar et al. “Designing Bandwidth-Efficient Stabilizing Control

Servers”. In: Proceedings of the 34th IEEE Real-Time Systems Symposium.
2013.

[15] Xiang Feng and A.K. Mok. “A model of hierarchical real-time virtual
resources”. In: Proceedings of the 23th IEEE Real-Time Systems Symposium.
2002, pp. 26–35.

[16] S. Saewong et al. “Analysis of hierar hical fixed-priority scheduling”. In:
Proceedings of the 14th Euromicro Conference on Real-Time Systems. 2002,
pp. 152–160.

[17] G. Lipari and E. Bini. “Resource partitioning among real-time applications”.
In: Proceedings of the 15th Euromicro Conference on Real-Time Systems.
2003, pp. 151–158.

[18] Insik Shin and Insup Lee. “Periodic Resource Model for Compositional Real-
Time Guarantees”. In: Proceedings of the 24th IEEE Real-Time Systems

Symposium. 2003, pp. 2–13.
[19] Luis Almeida and Paulo Pedreiras. “Scheduling within temporal partitions:

response-time analysis and server design”. In: Proceedings of the 4th ACM

international conference on Embedded software. 2004, pp. 95–103.
[20] Arvind Easwaran et al. “Compositional analysis framework using EDP

resource models”. In: Proceedings of the 28th IEEE Real-Time Systems

Symposium. 2007, pp. 129–138.
[21] Nathan Fisher and Farhana Dewan. “A bandwidth allocation scheme for

compositional real-time systems with periodic resources”. In: Real-Time

Systems 48.3 (2012), pp. 223–263.
[22] Anton Cervin and Johan Eker. “Control-scheduling codesign of real-time

systems: The control server approach”. In: Journal of Embedded Computing

1.2 (2005), pp. 209–224.
[23] Daniele Fontantelli et al. “Optimal CPU allocation to a set of control

tasks with soft real–time execution constraints”. In: Proceedings of the 16th

international conference on Hybrid systems: computation and control. 2013,
pp. 233–242.

[24] Chung-Yao Kao and Bo Lincoln. “Simple stability criteria for systems with
time-varying delays”. In: Automatica 40 (2004), pp. 1429–1434. ISSN: 0005-
1098.

[25] M.S. Bazaraa et al. Nonlinear Programming: Theory and Algorithms. Wiley,
2006. ISBN: 9780471787761.

[26] Enrico Bini and Giorgio C. Buttazzo. “Measuring the Performance of
Schedulability Tests”. In: Real-Time Systems 30.1-2 (2005), pp. 129–154.

