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Abstract— Worst-case execution time (WCET) analysis and,
in general, the predictability of real-time applications imple-
mented on multiprocessor systems has been addressed only in
very restrictive and particular contexts. One important aspect
that makes the analysis difficult is the estimation of the system’s
communication behavior. The traffic on the bus does not solely
originate from data transfers due to data dependencies between
tasks, but is also affected by memory transfers as result of
cache misses. As opposed to the analysis performed for a single
processor system, where the cache miss penalty is constant,
in a multiprocessor system each cache miss has a variable
penalty, depending on the bus contention. This affects the
tasks’ WCET which, however, is needed in order to perform
system scheduling. At the same time, the WCET depends on the
system schedule due to the bus interference. In this context, we
propose, for the first time, an approach to worst-case execution
time analysis and system scheduling for real-time applications
implemented on multiprocessor SoC architectures.

I. INTRODUCTION AND RELATED WORK

We are facing an unprecedented development in the com-
plexity and sophistication of embedded systems. Emerg-
ing technologies provide the potential to produce complex
multiprocessor architectures implemented on a single chip
[24]. Embedded applications, running on such highly parallel
architectures are becoming more and more sophisticated and,
at the same time, will be used very often in applications
for which predictability is very important. Classically, these
are safety critical applications such as automotive, medical
or avionics systems. However, recently, more and more
applications in the multimedia and telecommunications area
have to provide guaranteed quality of service and, thus,
require a high degree of worst-case predictability [5]. Such
applications impose strict constraints not only in terms of
their logical functionality but also with concern to timing.
The objective of this paper is to address, at the system-level,
the specific issue of predictability for embedded systems
implemented on current and future multiprocessor archi-
tectures. Providing predictability, along the dimension of
time, should be based on scheduling analysis which, itself,
assumes as an input the worst case execution times (WCETs)
of individual tasks [10], [14]. While WCET analysis has
been an investigation topic for already a long time, the
basic driving force of this research has been, and still is,
to improve the tightness of the analysis and to incorporate
more and more features of modern processor architectures.
However, one of the basic assumptions of this research is that
WCETs are determined for each task in isolation and then,

in a separate step, task scheduling analysis takes the global
view of the system [22]. This approach is valid as long as
the applications are implemented either on single processor
systems or on very particular multiprocessor architectures in
which, for example, each processor has a dedicated, private
access to an exclusively private memory.

The main problems that researchers have tried to solve
are (1) the identification of the possible execution sequences
inside a task and (2) the characterization of the time needed
to execute each individual action [15]. With advanced pro-
cessor architectures, effects due to caches, pipelines, and
branch prediction have to be considered in order to determine
the execution time of individual actions. There have been
attempts to model both problems as a single ILP formulation
[11]. Other approaches combine abstract interpretation for
cache and pipeline analysis with ILP formulations for path
analysis [21], or even integrate simulation into the WCET
analysis flow [12], [23]. There have been attempts to build
modular WCET estimation frameworks where the particular
subproblems are handled separately [4], while other ap-
proaches advocate a more integrated view [7]. More recently,
preemption related cache effects have also been taken into
consideration [16], [20].

The basic assumption in all this research is that, for WCET
analysis, tasks can be considered in isolation from each
other and no effects produced by dependencies or resource
sharing have to be taken into consideration (with the very
particular exception of some research results regarding cache
effects due to task preemption on monoprocessors, [20]).
This makes all the available results inapplicable to modern
multiprocessor systems in which, for example, due to the
shared access to sophisticated memory architectures, the in-
dividual WCETs of tasks are depending on the global system
schedule. This is pointed out as one major unsolved issue in
[22] where the current state of the art and future trends in
timing predictability are reviewed. The only solution for the
above mentioned shortcomings is to take out WCET analysis
from its isolation and place it into the context of system level
analysis and optimization. In this paper we present the first
approach in this direction.

A framework for system level task mapping and schedul-
ing for a similar type of platforms has been presented in [2].
In order to avoid the problems related to the bus contention,
they use a so called additive bus model. This assumes that
task execution times will be stretched only marginally as an
effect of bus contention for memory accesses. Consequently,
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they simply neglect the effect of bus contention on task
execution times. The experiments performed by the authors
show that such a model can be applied with relatively good
approximations if the bus load is kept below 50%. There
are two severe problems with such an approach: (1) In order
for the additive model to be applicable, the bus utilization
has to be kept low. (2) Even in the case of such a low bus
utilization, no guarantees of any kind regarding worst-case
behavior can be provided.

The remainder of the paper is organized as follows.
Preliminaries regarding the system and architecture model
are given in Section II. Section III outlines the problem with
a motivational example and is followed in Section IV by
the description of our proposed solution. In Section V we
present the approach used for the worst-case execution time
analysis. The bus access policy is presented in Section VI.
Experimental results are given in Section VII.

II. SYSTEM AND APPLICATION MODEL

In this paper we consider multiprocessor system-on-chip
architectures with a shared communication infrastructure
that connects processing elements to the memories. The
processors are equipped with instruction and data caches.
Every processor is connected via the bus to a private memory.
All accesses from a certain processor to its private memory
are cached. A shared memory is used for inter-processor
communication. The accesses to the shared memory are not
cached. This is a typical, generic, setting for new generation
multiprocessors on chip, [9]. The shared communication
infrastructure is used both for private memory accesses by
the individual processors (if the processors are cached, these
accesses are performed only in the case of cache misses) and
for interprocessor communication (via the shared memory).
An example architecture is shown in Fig. 1(a).

The functionality of the software applications is captured
by task graphs, G(Π,Γ). Nodes τ ∈ Π in these directed
acyclic graphs represent computational tasks, while edges
γ∈Γ indicate data dependencies between these tasks (explicit
communications). The computational tasks are annotated
with deadlines dli that have to be met at run-time. Before
the execution of a data dependent task can begin, the
input data must be available. Tasks mapped to the same
processor are communicating through the cached private

memory. These communications are handled similarly to the
memory accesses during task execution. The communication
between tasks mapped to different processors is done via
the shared memory. Consequently, a message exchanged via
the shared memory assumes two explicit communications:
one for writing into the shared memory (by the sending
task) and the other for reading from the memory (by the
receiving task). Explicit communication is modeled in the
task graph as two communication tasks, executed by the
sending and the receiving processor, respectively as, for
example, τ1w and τ2r in Fig. 1(c). During the execution
of a task, all the instructions and data are stored in the
corresponding private memory, so there will not be any
shared memory accesses. The reads and writes to and from
the private memories are cached. Whenever a cache miss
occurs, the data has to be fetched from the memory and
a cache line replaced. This results in memory accesses via
the bus during the execution of the tasks. We will refer to
these as implicit communication. This task model is illus-
trated in Fig. 1(b). Previous approaches that are proposing
system level scheduling and optimization techniques for real-
time applications only consider the explicit communication,
ignoring the bus traffic due to the implicit communication
[18]. We will show that this leads to incorrect results in the
context of multiprocessor systems.

In order to obtain a predictable system, which also as-
sumes a predictable bus access, we consider a TDMA-based
bus sharing policy. Such a policy can be used efficiently with
the contemporary SoC buses, especially if QoS guarantees
are required, [17], [13], [5].

We introduce in the following the concept of bus schedule.
The bus schedule contains slots of a certain size, each with
a start time, that are allocated to a processor, as shown in
Fig. 1(d). The bus schedule is stored as a table in a memory
that is directly connected to the bus arbiter. It is defined
over one application period, after which it is periodically
repeated. An access from the arbiter to its local memory does
not generate traffic on the system bus. The bus schedule is
given as input to the WCET analysis algorithm. When the
application is running, the bus arbiter is enforcing the bus
schedule, such that when a processor sends a bus request
during a slot that belongs to another processor, the arbiter
will keep it waiting until the start of the next slot that was
assigned to it.

III. MOTIVATIONAL EXAMPLE

Let us assume a multiprocessor system, consisting of two
processors CPU1 and CPU2, connected via a bus. Task τ1
runs on CPU1 and has a deadline of 60 time units. Task
τ2 runs on CPU2. When τ2 finishes, it updates the shared
memory during the explicit communication E1. We have
illustrated this example system in Fig. 2(a). During the exe-
cution of the tasks τ1 and τ2, some of the memory accesses
result in cache misses and consequently the corresponding
caches must be refilled. The time interval spent due to these
accesses is indicated in Fig. 2 as M1,M3,M5 for τ1 and M2,
M4 for τ2. The memory accesses are executed by the implicit
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bus transfers I1,I2,I3,I4 and I5. If we analyze the two tasks
using a classical worst-case analysis algorithm, we conclude
that task τ1 will finish at time 57 and τ2 at 24. For this
example, we have assumed that the cache miss penalty is 6
time units. CPU2 is controlling the shared memory update
carried out by the explicit message E1 via the bus after the
end of task τ2. This scenario is illustrated in Fig. 2(a).

A closer look at the execution pattern of the tasks reveals
the fact that the cache misses may overlap in time. For
example, the cache miss I1 and I2 are both happening at time
0 (when the tasks start, the cache is empty). Similar conflicts
can occur between implicit and explicit communications
(for example I5 and E1). Since the bus cannot be accessed
concurrently, a bus arbiter will allow the processors to refill
the cache in a certain order. An example of a possible
outcome is depicted in Fig. 2(b). The bus arbiter allows first
the cache miss I1, so after 6 time units needed to handle
the miss, task τ1 can continue its execution. After serving
I1, the arbiter grants the bus to CPU2 in order to serve the
miss I2. Once the bus is granted, it takes 6 time units to refill
the cache. However, CPU2 was waiting 6 time units to get
access to the bus. Thus, handling the cache miss I2 took 12
time units, instead of 6. Another miss I3 occurs on CPU1
at time 9. The bus is busy transferring I2 until time 12. So
CPU1 will be waiting 3 time units until it is granted the bus.
Consequently, in order to refill the cache as a result of the
miss I3, task τ1 is delayed 9 time units instead of 6, until
time 18. At time 17, the task τ2 has a cache miss I4 and
CPU2 waits 1 time unit until time 18 when it is granted the
bus. Compared with the execution time from Fig. 2(a), where
an ideal, constant, cache miss penalty is assumed, due to the
resource conflicts, task τ2 finishes at time 31, instead of time
24. Upon its end, τ2 starts immediately sending the explicit
communication message E1, since the bus is free at that time.
In the meantime, τ1 is executing on CPU1 and has a cache
miss, I5 at time 36. The bus is granted to CPU1 only at time
43, after E1 was sent, so τ1 can continue to execute at time
49 and finishes its execution at time 67 causing a deadline
violation. The example in Fig. 2(b) shows that using worst-
case execution time analysis algorithms that consider tasks in
isolation and ignore system level conflicts leads to incorrect
results.

In Fig. 2(b) we have assumed that the bus is arbitrated
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using a simple First Come First Served (FCFS) policy. In
order to achieve worst-case predictability, however, we use
a TDMA bus scheduling approach, as outlined in Section II.
Let us assume the bus schedule as in Fig. 2(c). According
to this bus schedule, the processor CPU1 is granted the bus
at time 0 for an interval of 15 time units and at time 32
for 7 time units. Thus, the bus is available to task τ1 for
each of its cache misses (M1, M3, M5) at times 0, 9 and
33. Since these are the arrival times of the cache misses the
execution of τ1 is not delayed and finishes at time 57, before
its deadline. Task τ2 is granted the bus for its cache misses
at times 15 and 26 and finishes at time 31, resulting in a
longer execution time than in the ideal case (time 24). The
explicit communication message E1 is started at time 39 and
completes at time 51.

While the bus schedule in Fig. 2(c) is optimized according
to the requirements from task τ1, the one in Fig. 2(d)
eliminates all bus access delays for task τ2. According to this
bus schedule, while τ2 will finish earlier than in Fig. 2(c),
task τ1 will finish at time 84 and, thus, miss its deadline.

The examples presented in this section demonstrate two
issues:

1) Ignoring bus conflicts due to implicit communication
can lead to gross subestimations of WCETs and, implicitly,
to incorrect schedules.

2) The organization of the bus schedule has a great impact
on the WCET of tasks. A good bus schedule does not
necessarily minimize the WCET of a certain task, but has
to be fixed considering also the global system deadlines.

IV. ANALYSIS, SCHEDULING AND
OPTIMIZATION FLOW

We consider as input the application task graph capturing
the dependencies between the tasks and the target hardware
platform. Each task has associated the corresponding code
and potentially a deadline that has to be met at runtime.
As a first stage, mapping of the tasks to processors is
performed. Traditionally, after the mapping is done, the
WCET of the tasks can be determined and is considered
to be constant and known. However, as mentioned before,
the basic problem is that memory access times are, in
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principle, unpredictable in the context of the potential bus
conflicts between the processors that run in parallel. These
conflicts (and implicitly the WCETs), however, depend on
the global system schedule. System scheduling, on the other
side, traditionally assumes that WCETs of the tasks are fixed
and given as input. This cyclic dependency is not just a
technical detail or inconvenience, but a fundamental issue
with large implications and which invalidates one of the basic
assumptions that support current state of the art. In order to
solve this issue, we propose a strategy that is based on the
following basic decisions:

1) We consider a TDMA-based bus access policy as
outlined in Section II. The actual bus access schedule is
determined at design time and will be enforced during the
execution of the application.

2) The bus access schedule is taken into consideration
at the WCET estimation. WCET estimation, as well as the
determination of the bus access schedule are integrated with
the system level scheduling process (Fig. 3).

We will present our overall strategy using a simple exam-
ple. It consists of three tasks mapped on two processors, as
in Fig. 4.

The system level static cyclic scheduling process is based
on a list scheduling technique [8]. List scheduling heuristics
are based on priority lists from which tasks are extracted in
order to be scheduled at certain moments. A task is placed
in the ready list if all its predecessors have been already
scheduled. All ready tasks from the list are investigated,
and that task τi is selected for placement in the schedule
which has the highest priority. We use the modified partial
critical path priority function presented in [14]. The process
continues until the ready list is empty.

Let us assume that, using traditional WCET estimation
(considering a given constant time for main memory access,
ignoring bus conflicts), the task execution times are 10, 4,
and 8 for τ1, τ2, and τ3, respectively. Classical list scheduling
would generate the schedule in Fig. 4(b), and conclude that
a deadline of 12 can be satisfied.

In our approach, the list scheduler will choose tasks τ1 and
τ2 to be scheduled on the two processors at time 0. However,
the WCET of the two tasks is not yet known, so their worst
case termination time cannot be determined. In order to
calculate the WCET of the tasks, a bus configuration has to
be decided on. This configuration should, preferably, be fixed
so that it is favorable from the point of view of WCETs of
the currently running tasks (τ1 and τ2, in our case). Given a
certain bus configuration, our WCET-analysis will determine
the WCET for τ1 and τ2. Inside an optimization loop, several
alternative bus configurations are considered. The goal is to

reduce the WCET of τ1 and τ2, with an additional weight
on reducing the WCET of that task that is assumed to be on
the critical path (in our case τ2).

Let us assume that B1 is the selected bus configuration
and the WCETs are 12 for τ1 and 6 for τ2. At this moment
the following is already decided: τ1 and τ2 are scheduled at
time 0, τ2 is finishing, in the worst case, at time 6, and the
bus configuration B1 is used in the time interval between 0
and 6. Since τ2 is finishing at time 6, in the worst case, the
list scheduler will schedule task τ3 at time 6. Now, τ3 and τ1
are scheduled in parallel. Given a certain bus configuration
B, our WCET analysis tool will determine the WCETs for
τ1 and τ3. For this, it will be considered that τ3 is executing
under the configuration B, and τ1 under configuration B1
for the time interval 0 to 6, and B for the rest. Again, an
optimization is performed in order to find an efficient bus
configuration for the time interval beyond 6. Let us assume
that the bus configuration B2 has been selected and the
WCETs are 9 for τ3 and 13 for τ1. The final schedule is
illustrated in figure 4.

The overall approach is illustrated in Fig. 3. At each
iteration, the set ψ of tasks that are active at the current
time t, is considered. In an inner optimization loop a bus
configuration B is fixed. For each candidate configuration the
WCET of the tasks in the set ψ is determined. During the
WCET estimation process, the bus configurations determined
during the previous iterations are considered for the time
intervals before t, and the new configuration alternative B
for the time interval after t. Once a bus configuration B
is decided on, θ is the earliest time a task in the set ψ

terminates. The configuration B is fixed for the time interval
(t, θ], and the process continues from time θ, with the next
iteration.

In the above discussion, we have not addressed the ex-
plicit communication of messages on the bus, to and from
the shared memory. As shown in Section II, a message
exchanged via the shared memory assumes two explicit
communications: one for writing into the shared memory (by
the sending task) and the other for reading from the memory
(by the receiving task). Explicit communication is modeled
in the task graph as two communication tasks, executed
by the sending and the receiving processor, respectively
(Fig. 1 in section II). A straightforward way to handle these
communications would be to schedule each as one compact
transfer over the bus. This, however, would be extremely
harmful for the overall performance, since it would block,
for a relatively long time interval, all memory access for
cache misses from active processes. Therefore, the commu-
nication tasks are considered, during scheduling, similar to
the ordinary tasks, but with the particular feature that they
are continuously requesting for bus access (they behave like
a hypothetical task that continuously generates successive
cache misses such that the total amount of memory requests
is equal to the worst case message length). Such a task is
considered together with the other currently active tasks in
the set Ψ. Our algorithm will generate a bus configuration
and will schedule the communications such that it efficiently
accommodates both the explicit message communication as
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well as the memory accesses issued by the active tasks.
It is important to mention that the approach proposed in

this paper guarantees that the worst-case bounds derived by
our analysis are correct even when the tasks execute less than
their worst-case. In [1] we have formally demonstrated this.
The intuition behind the demonstration is the following:

1) Instruction sequences terminated in shorter time than
predicted by the worst-case analysis cannot produce viola-
tions of the WCET.

2) Cache misses that occur earlier than predicted in the
worst-case will, possibly, be served by an earlier bus slot than
predicted, but never by a later one than considered during the
WCET analysis.

3) A memory access that results in a hit, although pre-
dicted as a miss during the worst-case analysis, will not
produce a WCET violation.

4) An earlier bus request issued by a processor does not
affect any other processor, due to the fact that the bus slots
are assigned exclusively to processors.

In the following sections we will address two aspects: the
WCET estimation technique and bus access policy.

V. WCET ANALYSIS

We will present the algorithm used for the computation of the
worst-case execution time of a task, given a start time and a
bus schedule. Our approach builds on techniques developed
for ”traditional” WCET analysis. Consequently, it can be
adapted on top of any WCET analysis approach that handles
prediction of cache misses. Our technique is also orthogonal
to the issue of cache associativity supported by this cache
miss prediction technique. The current implementation is
built on top of the approach described in [23], [19] that
supports set associative and direct mapping.

In a first step, the control flow graph (CFG) is extracted
from the code of the task. The nodes in the CFG represent
basic blocks (consecutive lines of code without branches) or
control nodes (capturing conditional instructions or loops).
The edges capture the program flow. In Fig. 5(a) and (b),
we have depicted an example task containing a for loop
and the corresponding CFG, extracted from this task. For
the nodes associated to basic blocks we have depicted the
code line numbers. For example, node 12 (id:12) captures
the execution of lines 3 (i = 0) and 4 (i < 100). A possible
execution path, with the for loop iteration executed twice,
is given by the node sequence 2, 12, 4 and 13, 104, 113,
104, 16, 11. Please note that the for loop was automatically

unrolled once when the CFG was extracted from the code
(nodes 13 and 113 correspond to the same basic block
representing an iteration of the for loop). This is useful
when performing the instruction cache analysis. Intuitively,
when executing a loop, at the first iteration all the instruction
accesses result in cache misses. However, during the next
iterations there is a chance to find the instructions in the
cache.

We have depicted in Fig. 5(b) the resulting misses obtained
after performing instruction (marked with an ”i”) and data
(marked with an ”d”) cache analysis. For example, let us
examine the nodes 13 and 113 from the CFG. In node 13,
we obtain instruction cache misses for the lines 6, 7 and 5,
while in the node 113 there is no instruction cache miss.
In order to study at a larger scale the interaction between
the basic blocks, data flow analysis is used. This propagates
between consecutive nodes from the CFG the addresses that
are always in the cache, no matter which execution path is
taken. For example, the address of the instruction from line
4 is propagated from the node 12 to the nodes 13, 16 and
113.

Let us consider now the data accesses. While the instruc-
tion addresses are always known, this is not the case with
the data [19], [16]. This, for example, is the case with an
array that is accessed using an index variable whose value
is data dependent, as in Fig.5(a), on line 7. Using data
dependency analysis performed on the abstract syntax tree
extracted from the code of the task, all the data accesses are
classified as predictable or unpredictable [19]. For example,
in Fig.5(a) the only unpredictable data memory access is
in line 7. The rest of the accesses are predictable. All
the unpredictable memory accesses are classified as cache
misses. Furthermore, they have a hidden impact on the state
of the data cache. A miss resulted from an unpredictable
access replaces an unknown cache line. One of the following
predictable memory accesses that would be considered as
hit otherwise, might result in a miss due to the unknown
line replacement. Similar to the instruction cache, dataflow
analysis is used for propagating the addresses that will be in
the cache, no matter which program path is executed.

Until this point, we have performed the same steps as the
traditional WCET analysis that ignores resource conflicts.
In the classical case, the analysis would continue with the
calculation of the execution time of each basic block. This
is done using local basic block simulations. The number of
clock cycles that are spent by the processor doing effective
computations, ignoring the time spent to access the cache (hit
time) or the memory (miss penalty) is obtained in this way.
Knowing the number of hits and misses for each basic block
and the hit and miss penalties, the worst case execution time
of each CFG node is easily computed. Taking into account
the dependencies between the CFG nodes and their execution
times, an ILP formulation can be used for the task WCET
computation, [19], [16], [11].

In a realistic multiprocessor setting, however, due to the
variation of the miss penalties as a result of potential bus
conflicts, such a simple approach does not work. The main
difference is the following: in traditional WCET analysis it
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is sufficient for each CFG node to have the total number
of misses. In our case, however, this is not sufficient in
order to take into consideration potential conflicts. What is
needed is, for each node, the exact sequence of misses and
the worst-case duration of computation sequences between
the misses. For example, in the case of node 13 in Fig. 5(b),
we have three instruction sequences separated by cache
misses: (1) line 6, (2) line 7 and (3) lines 5 and 4. Once
we have annotated the CFG with all the above information,
we are prepared to solve the actual problem: determine the
worst-case execution time corresponding to the longest path
through the CFG. In order to solve this problem, we have
to determine the worst-case execution time of a node in the
CFG. In the classical WCET analysis, a node’s WCET is
the result of a trivial summation. In our case, however, the
WCET of a node depends on the bus schedule and also on
the node’s worst-case start time.

Let us assume that the bus schedule in Fig. 5(c) is
constructed. The system is composed of two processors and
the task we are investigating is mapped on CPU1. There
are two bus segments, the first one starting at time 0 and
the second starting at time 32. The slot order during both
segments is the same: CPU1 and then CPU2. The processors
have slots of equal size during a segment.

The start time of the task that is currently analyzed is
decided during the system level scheduling (see section IV)
and let us suppose that it is 0. Once the bus is granted to
a processor, let us assume that 6 time units are needed to
handle a cache miss. For simplicity, we assume that the hit
time is 0 and every instruction is executed in 1 time unit.

Using the above values and the bus schedule in Fig. 5(c),
the node 12 will start its execution at time 0 and finish at time
39. The instruction miss (marked with ”i” in Fig. 5(b)) from
line 3 arrives at time 0, and, according to the bus schedule,
it gets the bus immediately. At time 6, when the instruction
miss is solved, the execution of node 12 cannot continue
because of the data miss from line 2 (marked with ”d”).
This miss has to wait until time 16 when the bus is again
allocated to CPU1 and, from time 16 to time 22 the cache
is updated. Line 3 is executed starting from time 22 until
23, when the miss generated by the line 4 requests the bus.
The bus is granted to CPU1 at time 32, so line 4 starts to
be executed at time 38 and is finished, in the worst case, at
time 39.

In the following we will illustrate the algorithm that
performs the WCET computation for a certain task. The
algorithm must find the longest path in the control flow
graph. For example, there are four possible execution paths
(sequences of nodes) for the task in Fig. 5(a) that are captured
by the CFG in Fig. 5(b):(1) 2, 17, 11, (2) 2, 12, ,4, 16, 11, (3)
2, 12, 4, 13, 104, 16, 11 and (4) 2, 12, 4, 13, 104, 113, 104,
..., 104, 16, 11. The execution time of a particular node in the
CFG can be computed only after the execution times of all
its predecessors are known. For example, the execution time
of node 16 can be computed only after the execution time for
the nodes 4 and 104 is fixed. At this point it is interesting to
note that the node 104 is the entry in a CFG loop (104, 113,
104). Due to the fact that the cache miss penalties depend on
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Fig. 6. Bus Schedule Table (system with two CPUs)

the bus schedule, the execution times of the loop nodes will
be different at each loop iteration. Thus, loop nodes in the
CFG must be visited a number of times, given by the loop
bound (extracted automatically or annotated in the code). In
the example from Fig. 5(b), the node 113 is visited 99 times
(the loop is executed 100 times, but it was unrolled once).
Each time a loop node is visited, its start time is updated and
a new end time is calculated using the bus schedule, in the
manner illustrated above for node 12. Consequently, during
the computation of the execution time of the node 16, the
start time is the maximum between the end time of the node
4 and node 104, obtained after 99 iterations. The worst-case
execution time of the task will be the end time of the node
11.

The worst-case complexity of the WCET analysis is
exponential (this is also the case for the classical WCET
analysis). However, in practice, the approach is very efficient,
as experimental results presented in Section VII show.1

VI. BUS SCHEDULE

The approach described in section V relies on the fact that
during a time slot, only the processor that owns the bus must
be granted the access. The bus arbiter must take care that the
bus requests are granted according to the bus schedule table.

The assignment of slots to processors is captured by the
bus schedule table and has a strong influence on the worst-
case execution time. Ideally, from the point of view of task
execution times, we would like to have an irregular bus
schedule, in which slot sequences and individual slot sizes
are customized according to the needs of currently active
tasks.Such a schedule table is illustrated in Fig. 6(a) for
a system with two CPUs. This bus scheduling approach,
denoted as BSA 1, would offer the best task WCETs at the
expense of a very complex bus slot optimization algorithm
and of a large schedule table.

Alternatively, in order to reduce the controller complexity,
the bus schedule is divided in segments. Such a segment is an
interval in which the bus schedule follows a regular pattern.
This pattern concerns both slot order and size. In Fig. 6(b)
we illustrate a schedule consisting of two bus segments. This
bus scheduling approach is denoted BSA 2.

The approach presented in Fig. 6(c) and denoted BSA 3
further reduces the memory needs for the bus controller. As
opposed to BSA 2, in this case, all slots inside a segment
have the same size.

1In the classical approach WCET analysis returns the worst-case time
interval between the start and the finishing of a task. In our case, what we
determine is the worst-case finishing time of the task.
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Fig. 7. Experimental results

In the final approach, BSA 4, all the slots in the bus have
the same size and repeated according to a fix sequence.

The bus schedule is a key parameter that influences
the worst-case execution time of the tasks. As shown in
Section IV the bus schedule is determined during the system
scheduling process. Referring to Fig. 3, successive portions
of the bus schedule are fixed during the internal optimization
loop. The aim is to find a schedule for each portion, such
that globally the worst-case execution time is minimized.
In order to find an efficient bus schedule for each portion,
information produced by the WCET analysis is used in the
optimization process. In particular, this information captures
the distribution of the cache misses along the detected worst
case paths, for each currently active task (for each task in
set Ψ). We have deployed several bus access optimization
algorithms, specific to the proposed bus schedule alternative
(BSA 1, BSA 2, BSA 3, BSA 4).

In the case of BSA 1, each portion of the bus schedule
(fixed during the internal optimization loop in Fig.3) is
determined without any restriction. For BSA 2 and BSA 3,
each portion of the bus schedule corresponds to a new
bus segment, as defined above. In case of BSA 2, the
optimization has to find, for each segment, the size of the
slots allocated for each processor, as well as their order.
The search space for BSA 3 is reduced to finding for each
bus segment, a unique slot size and an order in which the
processors will access the bus.

In the case of BSA 4, the slot sequence and size is unique
for the whole schedule. Therefore, the scheme in Fig. 3 is
changed: a bus configuration alternative is determined before
system scheduling and the list scheduling loop is included
inside the bus optimization loop.

The bus schedule optimization algorithms are based on
simulated annealing. Due to space limitations, the actual
algorithms are not presented here. They will be described in a
separate paper. Nevertheless, their efficiency is demonstrated
by the experimental results presented in the next section.

VII. EXPERIMENTAL RESULTS

The complete flow illustrated in Fig. 3 has been imple-
mented and used as a platform for the experiments presented
in this section. They were run on a dual core Pentium4
processor at 2.8 GHz.

First, we have performed experiments using a set of
synthetic benchmarks consisting of random task graphs with
the number of tasks varying between 50 and 200. The tasks
are mapped on architectures consisting of 2 to 20 processors.
The tasks are corresponding to CFGs extracted from various
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Fig. 8. Experimental results

C programs (e.g. sorting, searching, matrix multiplications,
DSP algorithms). For the WCET analysis, it was assumed
that ARM7 processors are used. We have assumed that 12
clock cycles are required for a memory access due to a cache
miss, once the bus access has been granted.

We have explored the efficiency of the proposed approach
in the context of the four bus scheduling approaches intro-
duced in Section VI. The results are presented in Fig. 7.
We have run experiments for configurations consisting of 2,
4, 6, ... 20 processors. For each configuration, 50 randomly
generated task graphs were used. For each task graph, the
worst-case schedule length has been determined in 5 cases:
the four bus scheduling policies BSA 1 to BSA 4, and
a hypothetical ideal situation in which memory accesses
are never delayed. This ideal schedule length (which in
practice, is unachievable, even by a theoretically optimal
bus schedule) is considered as the baseline for the diagrams
presented in Fig. 7. The diagram corresponding to each bus
scheduling alternative indicates how many times larger the
obtained bus schedule is relative to the ideal length. The
diagrams correspond to the average obtained for the 50
graphs considered for each configuration.

A first conclusion is that BSA 1 produces the shortest
delays. This is not unexpected, since it is based on highly
customized bus schedules. It can be noticed, however, that
the approaches BSA 2 and BSA 3 are producing results that
are close to those produced by BSA 1, but with a much lower
cost in controller complexity. It is not surprising that BSA 4,
which restricts very much the freedom for bus optimization,
produces very low quality results.

The actual bus load is growing with the number of pro-
cessors and, implicitly, that of simultaneously active tasks.
Therefore, the delays at low bus load (smaller number of
processors) are close to the ideal ones. The deviation from
the ideal schedule length is growing with the increased
bus load due to the inherent delays in bus access. This
phenomenon is confirmed also by the comparison between
the diagrams in Fig. 7(a) and (b). The diagrams in Fig. 7(b)
were obtained considering a bus load that is 1.5 times higher
(bus speed 1.5 times smaller) than in Fig. 7(a). It can be
observed that the deviation of schedule delays from the ideal
one is growing faster in Fig. 7(b).

The execution times for the whole flow, in the case of the
largest examples (consisting of 200 tasks on 20 processors)
are as follows: 125 min. for BSA 1, 117 min. for BSA 2,
47 min. for BSA 3, and 8 min. for BSA 1.

The amount of memory accesses relative to the computa-
tions has a strong influence on the worst case execution time.
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We have performed another set of experiments in order to
asses this issue. The results are presented in Fig. 8. We have
run experiments for configurations consisting of 2, 4, 6, ... 10
processors. For each configuration, 50 randomly generated
task graphs were used. For each task graph, we have varied
the ratio of clock cycles spent during computations and
memory accesses. We have used eight different ratios: 5.0,
4.0, 3.0, 2.6, 2.2, 1.8, 1.4, 1.0. A ratio of 3.0 means that the
number of clock cycles spent by the processors performing
computations (assuming that all the memory accesses are
cache hits) is three time higher than the number of cache
misses multiplied with the cache miss penalty (assuming that
each cache miss is handled in constant time, as if there are no
conflicts on the bus). So, for example, if a task spends on the
worst case CFG path 300000 clock cycles for computation
and 100000 cycles for memory accesses due to cache misses
(excluding the waiting time for bus access), the ratio will
be 3.0. During this set of experiments we have assumed
that the bus is scheduled according to the BSA 3 policy.
Similar to the previous experiments from Fig. 7, the ideal
schedule length is considered as the baseline for the diagrams
presented in Fig. 8. Each bar indicates how many times larger
the caculated worst case execution is relative to the ideal
length. For example, on an a architecture with six processors
and a ratio of 5.0, the worst case execution time is 1.28 times
higher than the ideal one. Using the same architecture but
with a smaller ratio (this means that the application is more
memory intensive), the deviation increases: for a ratio of
3.0, the worst case execution time is 1.41 times the ideal
one, while if the ratio is 1.0 the worst case execution time
is 1.92 times higher than the ideal one.

In order to validate the real-world applicability of this
approach we have analyzed a smart phone. It consists of
a GSM encoder, GSM decoder [3] and an MP3 decoder
[6], that were mapped on 4 ARM7 processors (the GSM
encoder and decoder are mapped each one on a processor,
while the MP3 decoder is mapped on two processors). The
software applications have been partitioned into 64 tasks.
The size of one task is between 1304 and 70 lines of C
code in case of the GSM codec and between 2035 and 200
lines in case of the MP3 decoder. We have assumed a 4-way
set associative instruction cache with a size of 4KB and a
direct mapped data cache of the same size. The results of
the analysis are presented in table I, where the deviation of
the schedule length from the ideal one is presented for each
bus scheduling approach.

BSA 1 BSA 2 BSA 3 BSA 4
1.17 1.33 1.31 1.62

TABLE I
RESULTS FOR THE SMART PHONE

VIII. CONCLUSIONS

In this paper, we have presented the first approach to the im-
plementation of predictable RT applications on multiproces-
sor SoCs, which takes into consideration potential conflicts

between parallel tasks for memory access. The approach
comprizes WCET estimation and bus access optimization in
the global context of system level scheduling. Experiments
have shown the efficiency of the approach.
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