
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS 1
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Abstract—Supply voltage scaling and adaptive body biasing
(ABB) are important techniques that help to reduce the energy
dissipation of embedded systems. This is achieved by dynamically
adjusting the voltage and performance settings according to the
application needs. In order to take full advantage of slack that
arises from variations in the execution time, it is important to
recalculate the voltage (performance) settings during runtime, i.e.,
online. However, optimal voltage scaling algorithms are computa-
tionally expensive, and thus, if used online, significantly hamper
the possible energy savings. To overcome the online complexity,
we propose a quasi-static voltage scaling (QSVS) scheme, with a
constant online time complexity ���. This allows to increase the
exploitable slack as well as to avoid the energy dissipated due to
online recalculation of the voltage settings.

Index Terms—Energy minimization, online voltage scaling,
quasi-static voltage scaling (QSVS), real-time systems, voltage
scaling.

I. INTRODUCTION AND RELATED WORK

T WO system-level approaches that allow an energy/perfor-
mance tradeoff during application runtime are dynamic

voltage scaling (DVS) [1]–[3] and adaptive body biasing (ABB)
[2], [4]. While DVS aims to reduce the dynamic power con-
sumption by scaling down circuit supply voltage , ABB is
effective in reducing the leakage power by scaling down fre-
quency and increasing the threshold voltage through body
biasing. Voltage scaling (VS) approaches for time-constrained
multitask systems can be broadly classified into offline (e.g., [1],
[3], and [5][6]) and online (e.g., [3] and [7]–[10]) techniques,
depending on when the actual voltage settings are calculated.
Offline techniques calculate all voltage settings at compile time
(before the actual execution), i.e., the voltage settings for each
task in the system are not changed at runtime. In particular, An-
drei et al. [6] present optimal algorithms as well as a heuristic
for overhead-aware offline voltage selection, for real-time tasks
with precedence constraints running on multiprocessor hard-
ware architectures. On the other hand, online techniques re-
compute the voltage settings during runtime. Both approaches

Manuscript received December 04, 2008; revised April 16, 2009 and June 29,
2009.

A. Andrei is with Ericsson AB, Linköping 58112, Sweden.
P. Eles and Z. Peng are with the Department of Computer and Information

Science Linköping University, Linköping 58183, Sweden.
O. Jovanovic is with the Department of Computer Science XII, University of

Dortmund, Dortmund 44221, Germany.
M. Schmitz is with Diesel Systems for Commercial Vehicles Robert BOSCH

GmbH, Stuttgart 70469, Germany.
J. Ogniewski is with the Department of Electrical Engineering, Linköping

University, Linköping 58183, Sweden.
Digital Object Identifier 10.1109/TVLSI.2009.2030199

have their advantages and disadvantages. Offline voltage selec-
tion approaches avoid the computational overhead in terms of
time and energy associated with the calculation of the voltage
settings. However, to guarantee the fulfillment of deadline con-
straints, worst case execution times (WCETs) have to be consid-
ered during the voltage calculation. In reality, nevertheless, the
actual execution time of the tasks, for most of their activations, is
shorter than their WCET, with variations of up to ten times [11].
Thus, an offline optimization based on the worst case is too pes-
simistic and hampers the achievable energy savings. In order to
take advantage of the dynamic slack that arises from variations
in the execution times, it is useful to dynamically recalculate the
voltage settings during application runtime, i.e., online.

Dynamic approaches, however, suffer from the significant
overhead in terms of execution time and power consumption
caused by the online voltage calculation. As we will show, this
overhead is intolerably large even if low-complexity on-
line heuristics are used instead of higher complexity optimal al-
gorithms. Unfortunately, researchers have neglected this over-
head when reporting high-quality results obtained with dynamic
approaches [3], [7]–[9].

Hong and Srivastava [7] developed an online preemptive
scheduling algorithm for sporadic and periodic tasks. The
authors propose a linear complexity voltage scaling heuristic
which uniformly distributes the available slack. An acceptance
test is performed online, whenever a new sporadic task arrives.
If the task can be executed without deadline violations, a new
set of voltages for the ready tasks is computed.

In [8], a power-aware hard real-time scheduling algorithm
that considers the possibility of early completion of tasks is
proposed. The proposed solution consists of three parts: 1) an
offline part where optimal voltages are computed based on the
WCET, 2) an online part where slack from earlier finished tasks
is redistributed to the remaining tasks, and 3) an online spec-
ulative speed adjustment to anticipate early completions of fu-
ture executions. Assuming that tasks can possibly finish before
their WCET, an aggressive scaling policy is proposed. Tasks are
run at a lower speed than the one computed assuming the worst
case, as long as deadlines can still be met by speeding up the
next tasks in case the effective execution time was higher than
expected. As the authors do not assume any knowledge of the
expected execution time, they experiment several levels of ag-
gressiveness.

Zhu and Mueller [9], [10] introduced a feedback earliest
deadline first (EDF) scheduling algorithm with DVS for hard
real-time systems with dynamic workloads. Each task is divided
in two parts, representing: 1) the expected execution time, and
2) the difference between the worst case and the expected
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execution time. A proportional–integral–derivative (PID) feed-
back controller selects the voltage for the first portion and
guarantees hard deadline satisfaction for the overall task. The
second part is always executed with the highest speed, while
for the first part DVS is used. Online, each time a task finishes,
the feedback controller adapts the expected execution time for
the future instances of that task. A linear complexity voltage
scaling heuristic is employed for the computation of the new
voltages. On a system with dynamic workloads, their approach
yields higher energy savings then an offline DVS schedule.

The techniques presented in [12]–[15] use a stochastic ap-
proach to minimize the average-case energy consumption in
hard real-time systems. The execution pattern is given as a prob-
ability distribution, reflecting the chance that a task execution
can finish after a certain number of clock cycles. In [12], [14],
and [15], solutions were proposed that can be applied to single-
task systems. In [13], the problem formulation was extended to
multiple tasks, but it was assumed that continuous voltages were
available on the processors.

All above mentioned online approaches greatly neglect the
computational overhead required for the voltage scaling.

In [16], an approach is outlined in which the online scheduler
is executed at each activation of the application. The decision
taken by the scheduler is based on a set of precalculated supply
voltage settings. The approach assumes that at each activation it
is known in advance which subgraphs of the whole application
graph will be executed. For each such subgraph, WCETs are
assumed and, thus, no dynamic slack can be exploited.

Noticeable exceptions from this broad offline/online classifi-
cation are the intratask voltage selection approaches presented
in [17]–[20]. The basic idea of these approaches is to perform
an offline execution path analysis, and to calculate for each
of the possible paths the voltage settings in advance. The re-
sulting voltage settings are stored within the application pro-
gram. During runtime the voltage settings along the activated
path are selected. The execution time variation among different
execution paths can be exploited, but worst case is assumed for
each such path, not being possible to capture dynamic slack re-
sulted, for example, due to cache hits. Despite their energy ef-
ficiency these approaches are most suitable for single-task sys-
tems, since the number of execution paths in multitask
applications grows exponentially with the number of tasks and
depends also on the number of execution paths in a single task

.
Most of the existing work addresses the issue of energy op-

timization with the consideration of the dynamic slack only in
the context of single-processor systems. An exception is [21],
where an online approach for task scheduling and speed selec-
tion for tasks with identical power profiles and running on ho-
mogenuous processors is presented.

In this paper, we propose a quasi-static voltage scaling
(QSVS) technique for energy minimization of multitask
real-time embedded systems. This technique is able to exploit
the dynamic slack and, at the same time, keeps the online
overhead (required to readjust the voltage settings at runtime)
extremely low. The obtained performance is superior to any
of the previously proposed dynamic approaches. We have pre-
sented preliminary results regarding the quasi-static algorithms
based on continuous voltage selection in [22].

Fig. 1. System architecture. (a) Initial application model (task graph). (b) EDF-
ordered tasks. (c) System architecture. (d) LUT for QSVS of one task.

II. PRELIMINARIES

A. Application and Architecture Model

In this work, we consider applications that are modeled as
task graphs, i.e., several tasks with possible data dependencies
among them, as in Fig. 1(a). Each task is characterized by
several parameters (see also Section III), such as a deadline, the
effectively switched capacitance, and the number of clock cy-
cles required in the best case (BNC), expected case (ENC), and
worst case (WNC). Once activated, tasks are running without
being preempted until their completion. The tasks are executed
on an embedded architecture that consists of a voltage-scalable
processor (scalable in terms of supply and body-bias voltage).
The power and delay model of the processor is described in
Section II-B. The processor is connected to a memory that
stores the application and a set of lookup tables (LUTs), one
for each task, required for QSVS. This architectural setup is
shown in Fig. 1(c). During execution, the scheduler has to
adjust the processor’s performance to the appropriate level
via voltage scaling, i.e., the scheduler writes the settings for
the operational frequency , the supply voltage , and the
body-bias voltage into special processor registers before the
task execution starts. An appropriate performance level allows
the tasks to meet their deadlines while maximizing the energy
savings. In order to exploit slack that arises from variations in
the execution time of tasks, it is unavoidable to dynamically
recalculate the performance levels. Nevertheless, calculating
appropriate voltage levels (and, implicitly, the performance
levels) is a computationally expensive task, i.e., it requires
precious central processing unit (CPU) time, which, if avoided,
would allow to lower the CPU performance and, consequently,
the energy consumption.

The approach presented in this paper aims to reduce this on-
line overhead by performing the necessary voltage selection
computations offline (at compile time) and storing a limited
amount of information as LUTs within memory. This informa-
tion is then used during application runtime (i.e., online) to cal-
culate the voltage and performance settings extremely fast [con-
stant time ]; see Fig. 1(d).

In Section VIII, we will present a generalization of the ap-
proach to multiprocessor systems.

B. Power and Delay Models

Digital complementary metal–oxide–semiconductor
(CMOS) circuitry has two major sources of power dissi-
pation: 1) dynamic power , which is dissipated whenever
active computations are carried out (switching of logic states),
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Fig. 2. Ideal online voltage scaling approach.

and 2) leakage power which is consumed whenever the
circuit is powered, even if no computations are performed. The
dynamic power is expressed by [2], [23]

(1)

where , and denote the effective charged capacitance,
operational frequency, and circuit supply voltage, respectively.

The leakage power is given by [2]

(2)

where is the body-bias voltage and represents the body
junction leakage current. The fitting parameters , and

denote circuit-technology-dependent constants and re-
flects the number of gates. For clarity reasons, we maintain the
same indices as used in [2], where also actual values for these
constants are provided. Nevertheless, scaling the supply and the
body-bias voltage, in order to reduce the power consumption,
has a side effect on the circuit delay , which is inverse propor-
tional to the operational frequency [2], [23]

(3)

where denotes the velocity saturation imposed by the given
technology (common value: ), is the logic
depth, and , and reflect circuit-dependent con-
stants [2]. Equations (1)–(3) provide the energy/performance
tradeoff for digital circuits.

C. Motivation

This section motivates the proposed QSVS technique and out-
lines its basic idea.

1) Online Overhead Evaluation: As we have mentioned
earlier, to fully take advantage of variations in the execution
time of tasks, with the aim to reduce the energy dissipation, it is
unavoidable to recompute the voltage settings online according
to the actual task execution times. This is illustrated in Fig. 2,
where we consider an application consisting of tasks.
The voltage level pairs used for each task are also
included in the figure. Only after task has terminated, we
know its actual finishing time and, accordingly, the amount of
dynamic slack that can be distributed to the remaining tasks

. Ideally, in order to optimally distribute the slack
among these tasks ( , and ), it is necessary to run a

voltage scaling algorithm (in Fig. 2 indicated as VS1) before
starting the execution of task . A straightforward implemen-
tation of an ideal online voltage scaling algorithm is to perform
a “complete” recalculation of the voltage settings each time
a task finishes, using, for example, the approaches described
in [5] and [24]. However, such an implementation would be
only feasible if the computational overhead associated with the
voltage scaling algorithm was very low, which is not the case in
practice. The computational complexity of such optimal voltage
scaling algorithms for monoprocessor systems is [5],
[24] (with specifying the accuracy, a usual value of 100, and

being the number of tasks). That is, a substantial amount of
CPU cycles are spent calculating the voltage/frequency settings
each time a task finishes—during these cycles, the CPU uses
precious energy and reduces the amount of exploitable slack.

To get insight into the computational requirements of voltage
scaling algorithms and how this overhead compares to the
amount of computations performed by actual applications, we
have simulated and profiled several applications and voltage
scaling techniques, using two cycle accurate simulators: Stron-
gARM (SA-1100) [25] and PowerPC(MPC750) , [26]. We
have also performed measurements on actual implementations
using an AMD platform (AMD Athlon 2400XP). Table I shows
these results for two applications that can be commonly found
in handheld devices: a GSM voice codec and an MPEG video
encoder. Results are shown for AMD, SA-1100, and MPC750
and are given in terms of BNC and WNC numbers of thousands
of clock cycles needed for the execution of one period of the
considered applications (20 ms for the GSM codec and 40
ms for the MPEG encoder).1 The period corresponds to the
encoding of a GSM, and respectively, of an MPEG frame.
Within the period, the applications are divided in tasks (for
example, the MPEG encoder consists of 25 tasks; a voltage
scaling algorithm would run upon the completion of each task).
For instance, on the SA-1100 processor, one iteration of the
MPEG encoder requires in the BNC 4.458 kcycles and in the
WNC 8.043 kcycles, which is a variation of 45%. Similarly,
Table II presents the simulation outcomes for different voltage
scaling algorithms. As an example, performing one single time
the optimal online voltage scaling using the algorithm from [5]
for 20 remaining tasks (just like VS1 is performed for the three
remaining tasks , and in Fig. 2) requires 8410 kcycles
on the AMD processor, 136 950 kcycles on the MPC750 pro-
cessor, while on SA-1100, it requires even 1 232 552 kcycles.
Using the same algorithm for -only scaling (no scaling)
needs 210 kcycles on the AMD processor, 32 320 kcycles on
the SA-1100, and 3513 kcycles on the MPC750. The difference
in complexity between supply voltage scaling and combined
supply and body bias scaling comes from the fact that in the
case of -only, for a given frequency, there exists one cor-
responding supply voltage, as opposed to a potentially infinite
number of pairs in the other case. Given a certain
frequency, an optimization is needed to compute the
pair that minimizes the energy. Comparing the results in
Tables I and II indicates that voltage scaling often surpasses the
complexity of the applications itself. For instance, performing

1Note that the numbers for BNC and WNC are lower and upper bounds ob-
served during the profiling. They have not been analytically derived.
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TABLE I
SIMULATION RESULTS (CLOCK CYCLES) OF DIFFERENT APPLICATIONS

TABLE II
SIMULATION RESULTS (CLOCK CYCLES) OF VOLTAGE SCALING ALGORITHMS

a “simple” -only scaling requires more CPU time (on AMD
210 kcycles) than decoding a single voice frame using the
GSM codec (on AMD 155 kcycles). Clearly, such overheads
seriously affect the possible energy savings, or even outdo the
energy consumed by the application.

Several suboptimal heuristics with lower complexities have
been proposed for online computation of the supply voltage.
Gruian [27] has proposed a linear time heuristic, while the ap-
proaches given in [8] and [9] use a greedy heuristic of constant
time complexity. We report their performance in terms of the
required number of cycles in Table II, including also their ad-
ditional adaptation for combined supply and body bias scaling.
While these heuristics have a smaller online overhead than the
optimal algorithms, their cost is still high, except for the greedy
algorithm for supply voltage scaling [8], [9]. However, even the
cost of the greedy increases up to 5.4 times when it is used for
supply and body bias scaling. The overhead of our proposed al-
gorithm is given in the last line of Table II.

2) Basic Idea: QSVS: To overcome the voltage selection
overhead problem, we propose a QSVS technique. This ap-
proach is divided into two phases. In the first phase, which is
performed before the actual execution (i.e., offline), voltage
settings for all tasks are precomputed based on possible task
start times. The resulting voltage/frequency settings are stored
in LUTs that are specific to each task. It is important to note
that this phase performs the time-intensive optimization of the
voltage settings.

The second phase is performed online and it is outlined in
Fig. 3. Each time new voltage settings for a task need to be cal-
culated, the online scheme looks up the voltage/frequency set-
tings from the LUT based on the actual task start time. If there
is no exact entry in the LUT that corresponds to the actual start
time, then the voltage settings are estimated using a linear inter-
polation between the two entries that surround the actual start
time. For instance, task has an actual start time of 3.58 ms. As
indicated in Fig. 3, this start time is surrounded by the LUT en-
tries 3.55 and 3.60 ms. In accordance, the frequency and voltage
settings for task are interpolated based on these entries. The
main advantage of the online quasi-static voltage selection algo-
rithm is its constant time complexity . As shown in the last

line of Table II, the LUT and voltage interpolation requires only
900 CPU cycles each time new voltage settings have to be calcu-
lated. Note that the complexity of the online quasi-static voltage
selection is independent of the number of remaining tasks.

III. PROBLEM FORMULATION

Consider a set of NT tasks . Their execution order is
fixed according to a nonpreemptive scheduling policy. Concep-
tually, any static scheduling algorithm can be used. We assume
as given the order in which the tasks are executed. In particular,
we have used an EDF ordering, in which the tasks are sorted
and executed in the increasing order of their deadlines. It was
demonstrated in [28] that this provides the best energy savings
for single-processor systems. According to this order, task
has to be executed after and before . The processor can
vary its supply voltage and body-bias voltage , and con-
sequently, its frequency within certain continuous ranges (for
the continuous optimization) or within a set of discrete modes

(for the discrete optimization). The dy-
namic and leakage power dissipation as well as the operational
frequency (clock cycle time) depend on the selected voltage
pair (mode). Tasks are executed clock-cycle-by-clock-cycle and
each clock cycle can be potentially executed at different voltage
settings, i.e., a different energy/performance tradeoff. Each task

is characterized by a six-tuple

BNC ENC WNC

where BNC ENC , and WNC denote the BNC, ENC, and
WNC numbers of clock cycles, respectively, which task re-
quires for its execution. BNC (WNC) is defined as the lowest
(highest) number of clock cycles task needs for its execution,
while ENC is the arithmetic mean value of the probability den-
sity function WNC of the task execution cycles WNC, i.e.,
ENC . We assume that the probability den-
sity functions of tasks’ execution cycles are independent. Fur-
ther, and represent the effectively charged capacitance
and the deadline. The aim is to reduce the energy consumption
by exploiting dynamic slack as well as static slack. Dynamic
slack results from tasks that require less execution cycles than
in their WNC. Static slack is the result of idleness due to system
overperformance, observable even when tasks execute with the
WNC number of cycles.

Our goal is to store a LUT for each task , such that the
energy consumption during runtime is minimized. The size of
the memory available for storing the LUTs (and, implicitly the
total number NL of table entries) is given as a constraint.

IV. OFFLINE ALGORITHM: OVERALL APPROACH

QSVS aims to reduce the online overhead required to com-
pute voltage settings by splitting the voltage scaling process
into two phases. That is, the voltage settings are prepared of-
fline, and the stored voltage settings are used online to adjust
the voltage/frequency in accordance to the actual task execu-
tion times.

The pseudocode corresponding to the calculations performed
offline is given in Fig. 4. The algorithm requires the fol-
lowing input information: the scheduled task set , defined in
Section III; for the tasks , the expected ENC , the worst
case WNC , and the best case BNC number of cycles,
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Fig. 3. QSVS based on prestored LUTs. (a) Optimization based on continuous voltage scaling. (b) Optimization based on discrete voltage.

Fig. 4. Pseudocode: quasi-static offline algorithm.

the effectively switched capacitance , and the deadline
. Furthermore, the total number of LUT entries NL is given.

The algorithm returns the quasi-static scaling table LUT , for
each task . This table includes NL
possible start times for each task , and the
corresponding optimal settings for the supply voltage and
the operational frequency .

Upon initialization, the algorithm computes the earliest and
latest possible start times as well as the latest finishing time for

each task (lines 01–09). The earliest start time is based on
the situation in which all tasks would execute with their BNC
number of clock cycles at the highest voltage settings, i.e., the
shortest possible execution (lines 01–03). The latest start time

is calculated as the latest start time of task that allows
to satisfy the deadlines for all the tasks , executed with
the WNC number of clock cycles at the highest voltages (lines
04–06). Similarly, we compute the latest finishing time of each
task (lines 07–09).

The algorithm proceeds by initializing the set of remaining
tasks with the set of all tasks (line 10). In the following
(lines 11–29), the voltage and frequency settings for the start
time intervals of each task are calculated. More detailed, in lines
12 and 13, the size of the interval [ ] of possible start
times is computed and the interval counter is initialized. The
number of entry points that are stored for each task (i.e., the
number of possible start times considered) is calculated in line
14. This will be further discussed in Section VII. For all pos-
sible start times in the start time interval of task (line 15),
the task start time is set to the possible start time (line 16) and
the corresponding optimal voltage and frequency settings of
are computed and stored in the LUT (lines 15–27). For this com-
putation, we use the algorithms presented in [6], modified to in-
corporate the optimization for the expected case. Instead of op-
timizing the energy consumption for the WNC number of clock
cycles, we calculate the voltage levels such that the energy con-
sumption is optimal in the case the tasks execute their expected
case (which, in reality, happens with a higher probability). How-
ever, since our approach targets hard real-time systems, we have
to guarantee the satisfaction of all deadlines even if tasks ex-
ecute their WNC number of clock cycles. In accordance with
the problem formulation from Section III, the quasi-static algo-
rithm performs the energy optimization and calculates the LUT
using continuous (lines 17–20) or discrete voltage scaling (lines
21–25). We will explain both approaches in the following sec-
tions, together with their particular online algorithms. The re-
sults of the (continuous or discrete) voltage scaling for the cur-
rent task , given the start time , are stored in the LUT. The
for-loop (line 15–27) is repeated for all possible start times
of task . The algorithm returns the quasi-static scaling table

for all tasks .
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V. VOLTAGE SCALING WITH CONTINUOUS VOLTAGE LEVELS

A. Offline Algorithm

In this section, we will present the continuous voltage scaling
algorithm used in line 18 of Fig. 4. The problem can be formu-
lated as a convex nonlinear optimization as follows: Minimize

ENC

(4)

subject to

(5)

WNC

if

ENC

(6)

(7)

with deadline (8)

LFT is the first task in (9)

(10)

(11)

The variables that need to be optimized in this formulation are
the task execution times , the task start times , as well as
the voltages and . The start time of the current task
has to match the start time assumed for the currently calcu-
lated LUT entry (5). The whole formulation can be explained
as follows. The total energy consumption, which is the combi-
nation of dynamic and leakage energy, has to be minimized. As
we aim the energy optimization in the most likely case, the ex-
pected number of clock cycles ENC is used in the objective.
The minimization has to comply to the following relations and
constraints. The task execution time has to be equivalent to the
number of clock cycles of the task multiplied by the circuit delay
for a particular and setting, as expressed by (6). In
order to guarantee that the current task end before the dead-
line, its execution time is calculated using the WNC number
of cycles WNC . Remember from the computation of the latest
finishing time (LFT) that if task finishes its execution before
LFT , then the rest of the tasks are guaranteed to meet their dead-
lines even in the WNC. This condition is enforced by (9).

As opposed to the current task , for the remaining
, the expected number of clock cycles ENC is used

when calculating their execution time in (6). This is important
for a distribution of the slack that minimizes the energy con-
sumption in the expected case. Note that this is possible because
after performing the voltage selection algorithm, only the results

Fig. 5. Pseudocode: continuous online algorithm.

for the current task are stored in the LUT. The settings calculated
for the rest of the tasks are discarded.

The rest of the nonlinear formulation is similar to the one
presented in [6], for solving, in polynomial time, the contin-
uous voltage selection without overheads. The consideration of
switching overheads is discussed in Section VI-C. Equation (7)
expresses the task execution order, while deadlines are enforced
in (8). The above formulation can handle arrival times for each
task by replacing the value 0 with the value of the given arrival
times in (10).

B. Online Algorithm

Having prepared, for all tasks of the system, a set of possible
voltage and frequency settings depending on the task start time,
we outline next how this information is used online to compute
the voltage and frequency settings for the effective (i.e., actual)
start time of a task. Fig. 5 gives the pseudocode of the online
algorithm. This algorithm is called each time, after a task fin-
ishes its execution, in order to calculate the voltage settings for
the next task . The input consists of the task start time , the
quasi-static scaling table , and the number of interval steps

. As an output, the algorithm returns the frequency
and voltage settings and for the next task . In

the first step, the algorithm calculates the two entries and
from the quasi-static scaling table that contain the start
times that surround the actual time (line 01). According to
the identified entries, the frequency setting for the execution
of task is linearly interpolated using the two frequency set-
tings from the quasi-static scaling table and
(line 02). Similarly, in step 03, the supply voltage is lin-
early interpolated from the two surrounding voltage entries in

.
As shown in [29], however, task frequency considered as a

function of start time is not convex on its whole domain, but only
piecewise convex. Therefore, if the frequencies from
and are not on a convex region, no guarantees re-
garding the resulting real-time behavior can be made. The on-
line algorithm handles this issue in line 04. If the task uses
the interpolated frequency and, assuming it would execute the
WNC number of clock cycles, it would exceed its latest finishing
time; the frequency and supply voltage are set to the ones from
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(line 05–06). This guarantees the correct real-time ex-
ecution, since the frequency from was calculated as-
suming a start time later than the actual one.

We do not directly interpolate the setting for the body-bias
voltage , due to the nonlinear relation between frequency,
supply voltage, and body-bias voltage. We calculate the body-
bias voltage directly from the interpolated frequency and supply
voltage values, using (3) (line 08). The algorithm returns the
settings for the frequency, supply and body-bias voltage (line
09). The time complexity of the quasi-static online algorithm is

.

VI. VOLTAGE SCALING ALGORITHM WITH

DISCRETE VOLTAGE LEVELS

We consider that processors can run in different modes
. Each mode is characterized by a voltage pair

that determines the operational frequency ,
the normalized dynamic power , and the leakage power
dissipation . The frequency and the leakage power are
given by (3) and (2), respectively. The normalized dynamic
power is given by .

A. Offline Algorithm

We present the voltage scaling algorithm used in line 22 of
Fig. 4. The problem is formulated using mixed integer linear
programming (MILP) as follows.

Minimize

(12)

subject to

(13)

(14)
WNC if
ENC if

(15)

with deadline (16)

(17)

LFT is the current task (18)

(19)

and is integer (20)

The task execution time and the number of clock cycles
spent within a mode are the variables in the MILP for-

mulation. The number of clock cycles has to be an integer and
hence is restricted to the integer domain (20). The total en-
ergy consumption to be minimized, expressed by the objective
in (12), is given by two sums. The inner sum indicates the energy
dissipated by an individual task , depending on the time
spent in each mode , while the outer sum adds up the energy of
all tasks. Similar to the continuous algorithm from Section V-A,

the expected number of clock cycles is used for each task in the
objective function.

The start time of the current task has to match the start time
assumed for the currently calculated LUT entry (13). The rela-
tion between execution time and number of clock cycles is ex-
pressed in (14). For similar reasons as in Section V-A, the WNC
number of clock cycles WNC is used for the current task .
For the remaining tasks, the execution time is calculated based
on the expected number of clock cycles ENC . In order to guar-
antee that the deadlines are met in the worst case, (18) forces
task to complete in the worst case before its latest finishing
time LFT .

Similar to the continuous formulation from Section V-A, (16)
and (17) are needed for distributing the slack according to the
expected case. Furthermore, arrival times can also be taken into
consideration by replacing the value 0 in (19) with a particular
arrival time.

As shown in [6], the discrete voltage scaling problem is NP
hard. Thus, performing the exact calculation inside an optimiza-
tion loop as in Fig. 4 is not feasible in practice. If the restriction
of the number the clock cycles to the integer domain is relaxed,
the problem can be solved efficiently in polynomial time using
linear programming. The difference in energy between the op-
timal solution and the relaxed problem is below 1%. This is due
to the fact that the number of clock cycles is large and thus the
energy differences caused by rounding a clock cycle for each
task are very small.

Using this linear programming formulation, we compute of-
fline for each task the number of clock cycles to be executed
in each mode and the resulting end time, given several possible
start times. At this point it is interesting to make the following
observations.

For each task, if the variables are not restricted to the
integer domain, after performing the optimal voltage selection
computation, the resulting number of clock cycles assigned to
a task is different from zero for at most two of the modes. The
demonstration is given in [29].2 This property will be used by
the online algorithm outlined in the next section.

Moreover, for each task, a table of the so-called
can be derived offline. Given a mode ,

there exists one single mode with such that the
energy obtained using the pair is lower than the
energy achievable using any other mode
paired with . We will refer to two such modes and
as compatible. The compatible mode pairs are specific for each

2Ishihara and Yasuura [1] present a similar result, that is given a certain exe-
cution time, using two frequencies will always provide the minimal energy con-
sumption. However, what is not mentioned there is that this statement is only
true if the numbers of clock cycles to be executed using the two frequencies are
not integers. The flaw in their proof is located in (8), where they assume that the
execution time achievable by using two frequencies is identical to the execu-
tion time achievable using three frequencies. When the numbers of clock cycles
are integers, this is mathematically not true. In our experience, from a practical
perspective, the usage of only two frequencies provides energy savings that are
very close to the optimal. However, the selection of the two frequencies must
be performed carefully. Ishihara and Yasuura [1] propose the determination of
the discrete frequencies as the ones surrounding the continuous frequency cal-
culated by dividing the available execution time by the WNC number of clock
cycles. However, this could lead to a suboptimal selection of two incompatible
frequencies.
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Fig. 6. LUTs with discrete modes.

task. In the example illustrated by Fig. 6(b), from all possible
mode combinations, the pair that provides the best energy
savings is among the ones stored in the
table.

In the following, we will present the equation used by the
offline algorithm for the determination of the compatible mode
pairs. Let us denote with the energy consumed per clock
cycle by task running in mode . If the modes and
are compatible, with , we have shown in [29] that the
following holds:

(21)

It is interesting to note that (21) and consequently the choice
of the mode with a lower frequency, given the one with a higher
frequency, depend only on the task power profile and the on
frequencies that are available on the processor. For a certain
available execution time, there is at least one “high” mode that
can be used together with its compatible “low” mode such that
the timing constraints are met. If several such pairs can poten-
tially be used, the one that provides the best energy consump-
tion has to be selected. More details regarding this issue are
given in the next section. To conclude the description of the dis-
crete offline algorithm, in addition to the LUT calculation, the
table is also computed offline (line 24 of
Fig. 4), for each task. The computation is based on (21). The
pseudocode for this algorithm is given in [29].

B. Online Algorithm

We present in this section the algorithm that is used online to
select the discrete modes and their associated number of clock
cycles for the next task , based on the actual start time and
precomputed values from .

In Section V-B, for the continuous voltages case, every LUT
entry contains the frequency calculated by the voltage scaling
algorithm. At runtime, a linear interpolation of the two consec-
utive LUT entries with start times surrounding the actual start
time of the next task is used to calculate the new frequency. As
opposed to the continuous calculation, in the discrete case, a
task can be executed using several frequencies. This makes the
interpolation difficult.

1) Straightforward Approach: Let us assume, for example,
a LUT like the one illustrated in Fig. 6(a), and a start time of
1.53 for task . The LUT stores, for several possible start times,
the number of clock cycles associated to each execution mode,
as calculated by the offline algorithm. Following the same ap-
proach as in the continuous case, based on the actual start time,
the number of clock cycles for each performance mode should
be interpolated using the entries with start times at 1.52 and 1.54.

Fig. 7. Pseudocode: discrete online algorithm.

Fig. 8. Mode transition overheads. (a) Executing before in mode� . (b) Exe-
cuting before in mode � .

However, such a linear interpolation cannot guarantee the cor-
rect hard real-time execution. In order to guarantee the correct
timing, among the two surrounding entries, the one with a higher
start time has to be used. For our example, if the actual start time
is 1.53, the LUT entry with start time 1.54 should be used. The
drawback of this approach, as will be shown by the experimental
results in Section IX, is the fact that a slack of
time units cannot be exploited by the next task.

2) Efficient Online Calculation: Let us consider a LUT like
in Fig. 6(a). It contains for each start time the number of clock
cycles spent in each mode, as calculated by the offline algo-
rithm. As discussed in Section VI-A, maximum two modes have
the number of cycles different from zero. Instead, however, of
storing this “extended” table, we store a LUT like in Fig. 6(b),
which, for each start time contains the corresponding end time
as well as the mode with the highest frequency. Moreover, for
each task, the table of compatible modes is also calculated of-
fline. The online algorithm is outlined in Fig. 7. The input con-
sists of the task actual start time , the quasi-static scaling
table , the table with the compatible modes, and the number
of interval steps LUT . As an output, the algorithm re-
turns the number of clock cycles to be executed in each mode. In
line 01, similar to the continuous online algorithm presented in
Section V-B, we must find the LUT entries and surrounding
the actual start time. In the next step, using the end time values
from the lines and , together with the actual start time, we
must calculate the end time of the task (line 02). The algorithm
selects as the end time for the next task the maximum between
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Fig. 9. Multiprocessor system architecture. (a) Task graph. (b) System model. (c) Mapped and scheduled task graph.

the end times from the LUT entries and . In this way, the hard
real-time behavior is guaranteed.

At this point, given the actual start and the end time, we must
determine the two active modes and the number of clock cycles
to be executed in each. This is done in lines 05–13. From the
LUT, the upper and lower bounds and of the higher exe-
cution mode are extracted. Using the table of compatible modes
calculated offline, for each possible pair having the higher mode
in the interval , a number of cycles in each mode are cal-
culated (line 07–08). is equivalent
to the following system of equations, used for calculating
and :

WNC (22)

The resulting energy consumption is evaluated and the pair that
provides the lowest energy is selected (lines 09–12). The algo-
rithm finishes either when all the modes in the interval
have been inspected, or, when, during the for loop, a mode
that cannot satisfy the timing requirements is encountered (line
06).

The complexity of the online algorithm increases linearly
with the number of available performance modes . It is im-
portant to note that real processors have only a reduced set of
modes. Furthermore, due to the fact that we use consecutive en-
tries from the LUT, the difference will be small (typi-
cally 0, 1), leading to a very low online overhead.

C. Consideration of the Mode Transition Overheads

As shown in [6], it is important to carefully consider the over-
heads resulted due to the transitions between different execution
modes. We have presented in [6] the optimal algorithms as well
as a heuristic that addresses this issue, assuming an offline opti-
mization for the WNC. The consideration of the mode switching
overheads is particularly interesting in the context of the ex-
pected case optimization presented in this paper. Furthermore,
since the actual modes that are used by the tasks are only known
at runtime, the online algorithm has to be aware and handle the
switching overheads. We have shown in Section VI-A that at
most two modes are used during the execution of a task. The
overhead-aware optimization has to decide, at runtime, in which
order to use these modes. Intuitively, starting a task in a mode
with a lower frequency can potentially lead to a better energy

consumption than starting at a higher frequency. But this is not
always the case. We addresses this issue in the remainder of this
section.

Let us first consider the example shown in Fig. 8. Task
is running in mode and has finished. The online algorithm
(Fig. 7) has decided the two modes and in which to run
task . It has also calculated the number of clock cycles
and to be executed in modes and , respectively, in the
case that executes its WNC number of cycles WNC . Now,
the online algorithm has to decide which mode or to
apply first. The expected number of cycles for is ENC , and
the energy consumed per clock cycle in mode is .

Let us assume, for example, that
and that executes its expected number of cycles

ENC . The alternative illustrated in Fig. 8(a), with
executing 100 cycles in the lower mode , and then finishing
early after executing only 75 more clock cycles in the higher
mode , leads to an energy consumption of

. On the other hand, if executes first 100 clock cycles in
mode , and then finishes early after executing 75 cycles in
mode , the energy consumed by the task is

.
However, the calculation from the previous paragraph did not

consider the overheads associated to mode changes. As shown
in [2], the transition overheads depend on the voltages charac-
teristic for the two execution modes. In this section, we assume
they are given. Let us denote the energy overhead implied by
a transition between mode and with . If we examine the
schedules presented in Fig. 8(a) and (b), we notice that in the
first case, the energy overhead is versus
for the second schedule. We denote the energy resulted from the
schedule in Fig. 8(a) and (b) by and , respectively. For ex-
ample, if , and , then

and .
However, if (and the rest of the overheads remain
unchanged), then and

. This example demonstrates that the mode
transition overheads must be considered during the online cal-
culation when deciding at what frequency to start the next task.

We will present in the following the online algorithm that
addresses this issue. The input parameters are: the last execu-
tion mode that was used by the previous task , the expected
number of clock cycles of the next task ENC , and the two
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modes with the corresponding numbers of clock cy-
cles calculated by the algorithm in Fig. 7 for the next
task. The result of this algorithm is the order of the execution
modes: the execution of the task will start in mode or .
Let us assume that the frequency associated to is lower than
the one associated to . In essence, the algorithm chooses to
start the execution in the mode with the lowest frequency , as
long as the transition overhead in terms of energy between the
mode and can be compensated by the achievable savings
assuming the task will execute its expected number of clock cy-
cles ENC .

The online algorithm examines four possible scenarios, de-
pending on the relation between ENC and .

1) ENC ENC . In this case, it is expected
that only one mode will be used at runtime, since in both
execution modes and we have a number of clock
cycles higher than the expected one. Let us calculate the
energies consumed when starting the execution of in

and consumed when starting the execution in mode

ENC (23)

ENC (24)

In this case, it is more energy efficient to begin
the execution of in mode , if
ENC .

2) ENC ENC . In opposition to the previous
case when it is likely that only one mode is used online,
in this case, it is expected that both modes will be used at
runtime. The energy consumption in each alternative is

ENC (25)

ENC (26)

Thus, it is more energy efficient to begin the exe-
cution of in mode if ENC

.
3) ENC ENC . In this case, assuming the

execution starts in , it is expected that the task will
finish before switching to . Alternatively, if the exe-
cution starts in , after executing clock cycles, the
processor must be taken from to where additional
ENC will be executed

ENC (27)

ENC (28)

It is more energy efficient to begin the execution of in
mode if .

4) ENC ENC . Similarly to the previous
case, if , it is better
to start in mode .

As previously mentioned, these four possible scenarios are
investigated at the end of the online algorithm in Fig. 7 in order
to establish the order in which the execution modes are activated
for the next task .

VII. CALCULATION OF THE LUT SIZES

In this section, we address the problem of how many entries
to assign to each LUT under a given memory constraint, such

that the resulting entries yield high energy savings. The number
of entries in the LUT of each task has an influence on the so-
lution quality, i.e., the energy consumption. This is because the
approximations in the online algorithm become more accurate
as the number of points increases.

A simple approach to distribute the memory among the
LUTs is to allocate the same number of entries for each LUT.
However, due to the fact that different tasks have different
start time interval sizes and nominal energy consumptions, the
memory should be distributed using a more effective scheme
(i.e., reserving more memory for critical tasks). In the fol-
lowing, we will introduce a heuristic approach to solve the
LUT size problem. The two main parameters that determine the
criticality (in the sense that it should be allocated more entries
in the LUT) of a task are the size of the interval of possible
start times LST EST and the nominal expected energy
consumption . The expected energy consumption of a
task is the energy consumed by that task when executing
the expected number of clock cycles ENC at the nominal
voltages. Consequently, in order to allocate the LUT entries
for each tasks, we use the following formula:

NL
LST EST

LST EST
(29)

VIII. QSVS FOR MULTIPROCESSOR SYSTEMS

In this section, we address the online voltage scaling problem
for multiprocessor systems. We consider that the applications
are modeled as task graphs, similarly to Section II-A with the
same parameters associated to the tasks. The mapping of the
tasks on the processors and the schedule are given, and are cap-
tured by the mapped and scheduled task graph. Let us consider
the example task graph from Fig. 9(a) that is mapped on the mul-
tiprocessor hardware architecture illustrated in Fig. 9(b). In this
example, tasks , and are mapped on processor 1, while
tasks , and are mapped on processor 2. The scheduled
task graph from Fig. 9(c) captures along with the data dependen-
cies [Fig. 9(a)] the scheduling dependencies marked with dotted
arrows (between and and between and ).

Similarly to the single-processor problem, the aim is to reduce
the energy consumption by exploiting dynamic slack resulted
from tasks that require less execution cycles than in their WNC.
For efficiency reasons, the same quasi-static approach, based on
storing a LUT for each task , is used.

The hardware architecture is depicted in Fig. 9, assuming,
for example, a system with two processors. Note that each pro-
cessor has a dedicated memory that stores the instructions and
data for the tasks mapped on it, and their LUTs. The dedicated
memories are connected to the corresponding processor via a
local bus. The shared memory, connected to the system bus, is
used for synchronization, recording for each task whether it has
completed the execution. When a task ends, it marks the corre-
sponding entry in the shared memory. This information is used
by the scheduler, invoked when a task finishes, on the processor
where the finished task is mapped. The scheduler has to decide
when to start and which performance modes to assign to the next
task on that processor. The next task, determined by an offline
schedule, can start only when its all predecessors have finished.
The performance modes are calculated using the LUTs.
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The quasi-static algorithms presented in Sections V and VI
were designed for systems with a single processor. Neverthe-
less, they can also be used in the case of multiprocessor systems,
with a few modifications.

1) Continuous Approach: In the offline algorithm from
Section V-A, (7) that captures the precedence constraints be-
tween tasks has to be replaced by

(30)

is the set of all edges in the extended task graph (precedence
constrains and scheduling dependencies).

2) Discrete Approach: In the offline algorithm from
Section VI-A, (17) that captures the precedence constraints has
to be replaced by

(31)

Both online algorithms described in Sections V-B and VI-B
can be used without modifications.

At this point, it is interesting to note that the correct real-
time behavior is guaranteed also in the case of a multiprocessor
system. The key is the fact that all the tasks, no matter when they
are started, will complete before or at their latest finishing time.

IX. EXPERIMENTAL RESULTS

We have conducted several experiments using numerous gen-
erated benchmarks as well as two real-life applications, in order
to demonstrate the applicability of the proposed approach. The
processor parameters have been adopted from [2]. The transi-
tion overhead corresponding to a change in the processor set-
tings was assumed to be 100 clock cycles.

The first set of experiments was conducted in order to in-
vestigate the quality of the results provided by different online
voltage selection techniques in the case when their actual run-
time overhead is ignored. In Fig. 10(a), we show the results ob-
tained with the following five different approaches:

1) the ideal online voltage selection approach (the scheduler
that calculates the optimal voltage selection with no over-
head);

2) the quasi-static voltage selection technique proposed in
Section V;

3) the greedy heuristic proposed in [8];
4) the task splitting heuristic proposed in [9];
5) the ideal online voltage scaling algorithm for WNC pro-

posed in [3].
Originally, approaches given in [3], [8], and [9] perform DVS

only. However, for comparison fairness, we have extended these
algorithms towards combined supply and body-bias scaling.
The results of all five techniques are given as the percentage
deviation from the results produced by a hypothetical voltage
scaling algorithm that would know in advance the exact
number of clock cycles executed by each task. Of course such
an approach is practically impossible. Nevertheless, we use
this lower limit as baseline for the comparison. During the
experiments, we varied the ratio of actual number of clock
cycles (ANC) and WNC from 0.1 to 1 with a step width of
0.1. For each step, 1000 randomly generated task graphs were

evaluated, resulting in a total of 10 000 evaluations for each
plot. As mentioned earlier, for this first experiment, we ignored
the computational overheads of all the investigated approaches,
i.e., we assumed that the voltage scaling requires zero time
and energy. Furthermore, the ANCs are set based on a normal
distribution using the ENC as the mean value. Observing
Fig. 10(a) leads to the following interesting conclusions. First,
if the ANC corresponds to the WNC number, all voltage selec-
tion techniques approach the theoretical limit. In other words,
if the application has been scaled for the WNC and all tasks
execute with WNC, then all online techniques perform equally
well. This, however, changes if the ANC differs from the WNC,
which is always the case in practice. For instance, in the case
that the ratio between ANC and WNC is 0.1, we can observe
that ideal online voltage selection is 25% off the hypothetical
limit. On the other hand, the technique described in [3] is 60%
worse than the hypothetical limit. The approaches based on
the methods proposed in [8] and [9] yield results that are 42%
and 45% below the theoretical optimum. Another interesting
observation is the fact that the ideal online scaling and our
proposed quasi-static technique produce results of the same
high quality. Of course, the quality of the quasi-static voltage
selection depends on the number of entries that are stored in the
LUTs. Due to the importance of this influence, we have devoted
a supplementary experiment to demonstrate how a number of
entries affect the voltage selection quality (this issue is further
detailed by the experiments from Fig. 11, explained below). In
the experiment illustrated in Fig. 10(a)-(c), the total number of
entries was set to 4000, which was sufficient to achieve results
that differed with less then 0.5% from the ideal online scaling
for task graphs with up to 100 nodes. In summary, Fig. 10(a)
demonstrates the high quality of the voltage settings produced
by the quasi-static approach, which are very close to those
produced by the ideal algorithm and substantially better than
the values produced by any other proposed approach.

In order to evaluate the global quality of the different
voltage selection approaches (taking into consideration the
online overheads), we conducted two sets of experiments
[Fig. 10(b) and (c)]. In Fig. 10(b), we have compared our
quasi-static algorithm with the approaches proposed in [8] and
[9]. The influence of the overheads is tightly linked with the
size of the applications. Therefore, we use two sets of tasks
graphs (set 1 and set 2) of different sizes. The task graphs from
set 1 have the size (total number of clock cycles) comparable to
that of the MPEG encoder. The ones used in set 2 have a size
similar to the GSM codec. As we can observe, the proposed
QSVS achieves considerably higher savings than the other
two approaches. Although all three approaches illustrated in
Fig. 10(b) have constant online complexity , the over-
head of the quasi-static approach is lower, and at the same
time, as shown in Fig. 10(a), the quality of settings produced
by QSVS is higher.

In Fig. 10(c), we have compared our quasi-static approach
with a supposed “best possible” DVS algorithm. Such a sup-
posed algorithm would produce the optimal voltage settings
with a linear overhead similar to that of the heuristic proposed
in [27] (see Table II). Note that such an algorithm has not
been proposed since all known optimal solutions incur a higher
complexity than the one of the heuristic in [27]. We evaluated
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Fig. 10. Experimental results: online voltage scaling. (a) Scaling for the expected-case execution time (assuming zero overhead). (b) Influence of the online
overhead on different online VS approaches. (c) Influence of the online overhead on a supposed linear time heuristic.

Fig. 11. Experimental results: influence of LUT sizes.

Fig. 12. Experimental results: discrete voltage scaling.

10 000 randomly generated task graphs. In this particular exper-
iment, we set the size of the task graphs similar to the MPEG
encoder. We considered two cases: the hypothetical online
algorithm is executed with the overhead from [27] for -only
and with the overhead that would result if the algorithm was
rewritten for the combined scaling. Please note
that in both of the above cases we consider that the supposed
algorithm performs as well as scaling. As we can see,
the quasi-static algorithm is superior by up to 10% even to the
supposed algorithm with the lower -only overhead, while
in the case which is still optimistic but closer to reality of the
higher overhead, the superiority of the quasi-static
approach is up to 30%. Overall, these experiments demonstrate
that the quasi-static solution is superior to any proposed and
foreseeable DVS approach.

The next set of experiments was conducted in order to demon-
strate the influence of the memory size used for the LUTs on the
possible energy savings with the QSVS. For this experiment, we
have used three sets of tasks graphs with 20, 50, and 100 tasks,

Fig. 13. Experimental results: voltage scaling on multiprocessor systems.

respectively. Fig. 11 shows the percentage deviation of energy
savings with respect to an ideal online voltage selection as a
function of the memory size. For example, in order to obtain a
deviation below 0.5%, a memory of 40 kB is needed for systems
consisting of 100 tasks. For the same quality, 20 and 8 kB are
needed for 50 and 20 tasks, respectively. When using very small
memories (corresponding to only two LUT entries per task),
for 100 tasks, the deviation from the ideal is 35.2%. Increasing
only slightly, the LUT memory to 4 kB (corresponding to in av-
erage eight LUT entries per task), the deviation is reduced to
12% for 100 tasks. It is interesting to observe that with a small
penalty in the energy savings, the required memory decreases
almost by half. For instance, for 100 tasks, the quasi-static al-
gorithm achieves 2% deviation relative to the ideal algorithm
with a memory of only 24 kB. It is important to note that in
all the performed experiments we have taken into consideration
the energy overhead due to the memories. These overheads have
been calculated based on the energy values reported in [30] and
[31] in the case of SRAM memories.

In the experiments presented until now, we have used the
quasi-static algorithm based on continuous voltage selection. As
mentioned in the opening of this section, we have used processor
parameters from [2]. These, together with (1)– (3), fulfill the
mathematical conditions required by the convex optimization
used in the offline algorithm presented in Section V-A. While we
do not expect that future technologies will break the convexity
of the power and frequency functions, this cannot be completely
excluded. The algorithm presented in Section VI-A makes no
such assumptions.

Another set of experiments was performed in order to
evaluate the approach based on discrete voltages, presented
in Section VI. We have used task graphs with 50 tasks and
a processor with four discrete modes. The four voltage pairs
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are: (1.8 V, 0 V), (1.4 V, 0.3 V), (1.0 V, 0.6
V), and (0.6 V, 1.0 V). The processor parameters have been
adopted from [2]. An overhead of 100 clock cycles was assumed
for a mode transition overhead. The results are shown in Fig. 12.
During this set of experiments, we have compared the energy
savings achievable by two discrete quasi-static approaches. In
the first approach, the LUT stores for each possible start time
the number of clock cycles associated to each mode. Online, the
first LUT entry that has the start time higher than the actual one
is selected. This approach, corresponding to the straightforward
pessimistic alternative proposed in Section VI-B1 is denoted
in Fig. 12 with LUT Y. The second approach uses the efficient
online algorithm proposed in Section VI-B2, and is denoted
in Fig. 12 with LUT XY. During the experiments, we varied
the ratio of ANC to WNC from 0.1 to 1, with a step width of
0.1. For each step, 1000 randomly generated task graphs were
evaluated. As indicated in the figure, we present the deviation
from the hypothetical limit for the two approaches, assuming
two different LUT sizes: 8 and 24 kB. Clearly, the savings
achieved by both approaches depend on the size of the LUTs.
We notice in Fig. 12 that the size of LUT has a much bigger
influence in case of LUT Y than in case of LUT XY. This is
no surprise, since when LUT Y is used a certain amount of
slack proportional with the distance between the LUT entries
is not exploited. For a LUT size of 8 kB, LUT XY produces
energy savings which can be 40% better than those produced
with LUT Y.

The efficiency of the multiprocessor quasi-static algorithm is
investigated during the next set of experiments. We assumed
an architecture composed of three processors, 50 tasks, and a
total LUT size of 24 kB. The results are summarized in Fig. 13
and show the deviation from the hypothetical limit, considering
several ratios from ANC to WNC. We can see that the trend
does not change, compared to the single-processor case. For ex-
ample, for a ratio of 0.5 (the tasks execute half the worst case),
the quasi-static is 22% away from the hypothetical. At the same
ratio, for the single-processor case, the quasi-static approach
was at 15% from the hypothetical algorithm. In contrast to a
single-processor system, in the multiprocessor case, there are
tasks that are executed in parallel, potentially resulting in cer-
tain amount of slack that cannot be used by the quasi-static al-
gorithm.

In addition to the above benchmark results, we have con-
ducted experiments on two real-life applications: an MPEG2
encoder and an MPEG2 decoder. The MPEG encoder consists
of 25 tasks and is considered to run on a MPC750 processor.
Table III shows the resulting energy consumption obtained with
different scaling approaches. The first line gives the energy con-
sumption of the MPEG encoder running at the nominal voltages.
Line two shows the result obtained with an optimal static voltage
scaling approach. The number of clock cycles to be executed in
each mode is calculated using the offline algorithm from [6].
The algorithm assumes that each task executes its WNC. Ap-
plying the results of this offline calculation online leads to an
energy reduction of 15%. Lines 3 and 4 show the improvements
produced using the greedy online techniques proposed in [8] and
[9], which achieve reductions of 67% and 69%, respectively.
The next row presents the results obtained by the continuous

TABLE III
OPTIMIZATION RESULTS FOR THE MPEG ENCODER ALGORITHM

TABLE IV
OPTIMIZATION RESULTS FOR THE MPEG DECODER ALGORITHM

quasi-static algorithm that improves over the nominal consump-
tion by 78%.

The second real-life application, an MPEG2 decoder, consists
of 34 tasks and is considered to run on a platform with 3 ARM7
processors. Each processor has four execution modes. Details
regarding the hardware platform can be found in [32] and [33],
while the application is described in [34]. Table IV shows the
energy savings obtained by several approaches. The first line in
the table shows the energy consumed when all the tasks are run-
ning at the highest frequency. The second line gives the energy
that is obtained when static voltage scaling is performed.

The following lines present the results obtained with the
approach proposed in Section VI, applied to a multiprocessor
system, as shown in Section VIII. The third line gives the
energy savings achieved by the straightforward discrete voltage
scaling alternative proposed in Section VI-B1. The fourth line
gives the energy obtained by efficient alternative proposed in
Section VI-B2. A 16-kB memory was considered for storing
the task LUTs. We notice that both alternatives provide much
better energy savings than the static approach. Furthermore,
LUT XY is able to produces the best energy savings.

X. CONCLUSION

In this paper, we have introduced a novel QSVS technique
for time-constraint applications. The method avoids an un-
necessarily high overhead by precomputing possible voltage
scaling scenarios and storing the outcome in LUTs. The
avoided overheads can be turned into additional energy savings.
Furthermore, we have addressed both dynamic and leakage
power through supply and body-bias voltage scaling. We have
shown that the proposed approach is superior to both static and
dynamic approaches proposed so far in literature.
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