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Abstract—Dynamic voltage selection and adaptive body bi-
asing have been shown to reduce dynamic and leakage power
consumption effectively. In this paper, we optimally solve the
combined supply voltage and body bias selection problem for
multiprocessor systems with imposed time constraints, explicitly
taking into account the transition overheads implied by changing
voltage levels. Both energy and time overheads are considered.
The voltage selection technique achieves energy efficiency by si-
multaneously scaling the supply and body bias voltages in the case
of processors and buses with repeaters, while energy efficiency on
fat wires is achieved through dynamic voltage swing scaling. We
investigate the continuous voltage selection as well as its discrete
counterpart, and we prove strong NP-hardness in the discrete
case. Furthermore, the continuous voltage selection problem is
solved using nonlinear programming with polynomial time com-
plexity, while for the discrete problem, we use mixed integer linear
programming and a polynomial time heuristic. We propose an
approach that combines voltage selection and processor shutdown
in order to optimize the total energy.

Index Terms—Energy management, power minimization, real-
time systems, voltage selection.

I. INTRODUCTION

EMBEDDED computing systems need to be energy ef-
ficient, yet they have to deliver adequate performance

to computational expensive applications, such as voice pro-
cessing and multimedia. The workload imposed on such an
embedded system is nonuniform over time. This introduces
slack times during which the system can reduce its performance
to save energy. Two system-level approaches that allow an en-
ergy/performance tradeoff during runtime of the application
are dynamic voltage selection (DVS) [1]–[3] and adaptive body
biasing (ABB) [4], [2]. While DVS aims to reduce the dynamic
power consumption by scaling down operational frequency
and circuit supply voltage , ABB is effective in reducing
the leakage power by scaling down frequency and increasing
the threshold voltage through body biasing. Up to date,
most research efforts at the system level were devoted to DVS,
since the dynamic power component had been dominating.
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Nonetheless, the trend in deep-submicrometer CMOS tech-
nology to reduce the supply voltage levels and consequently
the threshold voltages (in order to maintain peak performance)
is resulting in the fact that a substantial portion of the overall
power dissipation will be due to leakage currents [4], [5]. This
makes the adaptive body-biasing approach and its combination
with dynamic voltage selection attractive for energy-efficient
designs in the foreseeable future.

Voltage selection approaches can be broadly classified into
online and offline techniques. In the following, we restrict our-
selves to the offline techniques since the presented approaches
fall into this category, where the scaled supply voltages are cal-
culated at design time and then applied at runtime according to
the precalculated voltage schedule.

There has been a considerable amount of work on dynamic
voltage selection. Yao et al. [3] proposed the first DVS ap-
proach for single processor systems which can change the
supply voltage over a continuous range. Ishihara and Yasuura
[1] modeled the discrete voltage selection problem using an
integer linear programming (ILP) formulation. Kwon and Kim
[6] proposed a linear programming (LP) solution for the dis-
crete voltage selection problem with uniform and nonuniform
switched capacitance. Although this work gives the impression
that the problem can be solved optimally in polynomial time,
we will show in this paper that the discrete voltage selection
problem is indeed strongly NP-hard and, hence, no optimal
solution can be found in polynomial time, for example, using
LP. Dynamic voltage selection has also been successfully
applied to heterogeneous distributed systems, mostly using
heuristics [7]–[9]. Zhang et al. [10] approached continuous
supply voltage selection in distributed systems using an ILP
formulation. They solved the discrete version of the problem
through an approximation.

While the previously mentioned approaches scale only the
supply voltage and neglect leakage power consumption,
Kim and Roy [4] proposed an adaptive body-biasing approach (in
their work referred to as dynamic scaling) for active leakage
power reduction. They demonstrate that the efficiency of ABB
will become, with advancing CMOS technology, comparable
to DVS. Duarte et al. [11] analyze the effectiveness of supply
and threshold voltage selection and show that simultaneously
adjusting both voltages provides the highest savings. Martin et
al. [2] presented an approach for combined dynamic voltage
selection and adaptive body biasing. At this point, we should
emphasize that, as opposed to these three approaches, we
investigate in this paper how to select voltages for a set
of tasks, possibly with dependencies, which are executed on
multiprocessor systems under realtime constraints. Furthermore,
as opposed to our work, the techniques mentioned neglect the
energy and time overheads imposed by voltage transitions.
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Noticeable exceptions are [12]–[14], yet their algorithms ignore
leakage power dissipation and body biasing, and further they do
not guarantee optimality. In this paper, we consider simultaneous
supply voltage selection and body biasing, in order to minimize
dynamic as well as leakage energy. In particular, we investigate
four different notions of the combined dynamic voltage selection
and adaptive body-biasing problem, considering continuous
and discrete voltage selection with and without transition
overheads. A similar problem for continuous voltage selection
has been recently formulated in [15]. However, it is solved
using a suboptimal heuristic. The combination of dynamic
supply voltage selection and processor shutdown was presented
in [16] for single processor systems. The authors demonstrate
the existence of a critical speed, under which scaling the
processor frequency becomes energy inefficient, due to the
fact that the leakage energy increases faster than the dynamic
energy decreases. The leakage energy reduction is achieved
there by shutting down the processor during the idle intervals,
without performing adaptive body biasing.

To fully exploit the potential performance provided by
multiprocessor architectures (e.g., systems-on-a-chip), commu-
nication has to take place over high performance buses, which
interconnect the individual components, in order to prevent
performance degradation through unnecessary contention.
Such global buses require a substantial portion of energy, on
top of the energy dissipated by the computational components
[17], [18]. The minimization of the overall energy consumption
requires the combined optimization of both the energy dissi-
pated by the computational processors as well as the energy
consumed by the interconnection infrastructure.

A negative side-effect of the shrinking feature sizes is the
increasing RC delay of on-chip wiring [19], [18]. The main
reason behind this trend is the ever-increasing line resistance.
In order to maintain high performance it becomes necessary
to “speed-up” the interconnects. Two implementation styles
which can be applied to reduce the propagation delay are:
1) the insertion of repeaters; 2) the usage of fat wires. In
principle, repeaters split long wires into shorter (faster) segments
[18]–[20] and fat wires reduce the wire resistance [17], [18].
Techniques for the determination of the optimal quantity of
repeaters are introduced in [19] and [20]. An approach to
calculate the optimal voltage swing on fat wires has been
proposed in [17]. Similar to processors with supply voltage
selection capability, approaches for link voltage scaling were
presented in [21] and [22]. An approach for communication
speed selection was outlined in [23]. Another possibility to
reduce communication energy is the usage of bus encoding
techniques [24]. In [25], it was demonstrated that shared-bus
splitting, which dynamically breaks down long, global buses
into smaller, local segments, also helps to improve energy
savings. An estimation framework for communication switching
activity was introduced in [26].

Until now, energy estimation for system-level communica-
tion was treated in a largely simplified manner, [23], [27], and
based on naive models that ignore essential aspects such as bus
implementation technique (repeaters, fat wires), leakage power,
and voltage swing adaption. This, however, very often leads to
oversimplifications which affect the correctness and relevance
of the proposed approaches and, consequently, the accuracy of
results. On the other hand, issues like optimal voltage swing
and increased leakage power due to repeaters are not consid-

Fig. 1. System models. (a) Target architecture with mapped task graph. (b)
Multiple component schedule. (c) Extended TG.

ered at all for implementations of voltage-scalable embedded
systems. We have presented preliminary results regarding pro-
cessor voltage selection and simultaneous processor and com-
munication voltage selection in [28], [29], and [30].

As mentioned earlier, in this paper, we will concentrate on
offline voltage selection techniques that make use of the static
slack existing in the application. In [31], we presented an ef-
ficient technique that dynamically makes use of slack created
online, due to the fact that tasks execute less then their worst
case number of clock cycles. Although the details of that tech-
nique are beyond the scope of this paper, in Section X we will
briefly introduce its principles and illustrate its effectiveness in
conjunction with the shutdown procedure.

The remainder of this paper is organized as follows. Prelimi-
naries regarding the system specification, the processor power,
and delay models are given in Sections II and III. This is fol-
lowed by a motivational example in Section IV. The four in-
vestigated processor voltage selection problems are formulated
in Section V. Continuous and discrete voltage selection prob-
lems are discussed in Sections VI and VII, respectively. We
study the combined voltage selection and shutdown problem in
Section VIII. Power and delay models for the communication
links are given and the general problem of voltage selection for
processors and the communication is addressed in Section IX.
Extensive experimental results are presented in Section X and
conclusions are drawn in Section XI.

II. SYSTEM AND APPLICATION MODEL

In this paper, we consider embedded systems which are
realized as heterogeneous distributed architectures. Such archi-
tectures consist of several different processing elements (PEs),
such as programmable microprocessors, ASIPs, field-pro-
grammable gate arrays (FPGAs), and application specified
integrated circuits (ASICs), some of which feature DVS and
ABB capability. These computational components communi-
cate via an infrastructure of communication links (CLs), like
buses and point-to-point connections. We define and to be
the sets of all processing elements and all links, respectively. An
example architecture is shown in Fig. 1(a). The functionality of
applications is captured by task graphs . Nodes
in these directed acyclic graphs represent computational tasks,
while edges indicate data dependencies between these
tasks (communications). Tasks require in the worst case
clock cycles to be executed, depending on the PE to which they
are mapped. Further, tasks are annotated with deadlines that
have to be met at runtime.

If two dependent tasks are assigned to different PEs, and
with , then the communication takes place over a CL,

involving a certain amount of time and power.
We assume that the task graph is mapped and scheduled on

the target architecture, i.e., it is known where and in which order
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tasks and communications take place. Fig. 1(a) shows an ex-
ample task graph that has been mapped onto an architecture and
Fig. 1(b) depicts a possible execution order.

To tie the execution order into the application model, we per-
form the following transformation on the original task graph.
First, all communications that take place over communication
links are captured by communication tasks, as indicated by
squares in Fig. 1(c). For instance, communication is
replaced by task and the edges connecting to and are
introduced. defines the set of all such communication tasks
and the set of graph edges obtained after the introduction
of the communication tasks. Furthermore, we denote with

the set of all computations and communications.
Second, on top of the precedence relations given by data de-
pendencies between tasks, we introduce additional precedence
relations , generated as a result of scheduling tasks
mapped to the same PE and communications mapped on the
same CL. In Fig. 1(c), the dependencies are represented as
dotted edges. We define the set of all edges as .
We construct the mapped and scheduled task graph .
Further, we define the set of edges, as follows: an edge

if it connects task with its immediate successor
(according to the schedule), where and are mapped on

the same PE or CL.

III. PROCESSOR POWER AND DELAY MODELS

Digital CMOS circuitry has two major sources of power dis-
sipation: 1) dynamic power , which is dissipated whenever
active computations are carried out (switching of logic states)
and 2) leakage power which is consumed whenever the
circuit is powered, even if no computations are performed. The
dynamic power is expressed by [32], [2]

(1)

where , and denote the effective charged capacitance,
operational frequency, and circuit supply voltage, respectively.
Although, until recently, dynamic power dissipation had been
dominating, the trend to reduce the overall circuit supply voltage
and, consequently, threshold voltage is raising concerns about
the leakage currents. For near future technology, ( nm) it
is expected that leakage will account for a significant part of the
total power. The leakage power is given by [2]

(2)

where is the body-bias voltage and represents the body
junction leakage current (constant for a given technology). The
fitting parameters , and denote circuit technology
dependent constants and reflects the number of gates. For
clarity reasons, we maintain the same indices as used in [2],
where also actual values for these constants are given. Please
note that the leakage power is stronger influenced by than
by , due to the fact that the constant is larger than the
constant (e.g., for the Crusoe processor described in [2],

, while ).
Nevertheless, scaling the supply and the body-bias voltage for

power saving, has a side-effect on the circuit delay and, hence,
the operational frequency [32], [2]

(3)

where reflects the velocity saturation imposed by the used
technology (common values ), is the logic
depth, and , and are circuit dependent con-
stants.

Another important issue, which often is overlooked, is the
consideration of transition overheads, i.e., each time the pro-
cessor’s supply and body bias voltage are altered, the change
requires a certain amount of extra energy and time. These en-
ergy and delay overheads, when switching from
to and from to , are given by [2]

(4)

(5)

where denotes power rail capacitance and the total sub-
strate and well capacitance. Since transition times for and

are different, the two constants and are used to
calculate both time overheads independently. Considering that
supply and body-bias voltage can be scaled in parallel, the tran-
sition overhead depends on the maximum time required to
reach the new voltage levels.

In the following, we assume that the processors can operate
in several execution modes. An execution mode is char-
acterized by a pair of supply and body-bias voltages:

. As a result, an execution mode has an associated
frequency and power consumption (dynamic and leakage) that
can be calculated using (3) and, respectively, (1) and (2). Upon
a mode change, the corresponding delay and energy penalties
are computed using (4) and (5).

Tasks that are mapped on different processors communicate
over one or more shared buses. In Sections IV–VIII, we assume
that the buses are not voltage scalable and, thus, working at a
given frequency. Each communication task has a fixed execu-
tion time and energy consumption depending proportionally on
the amount of communication. For simplicity of the explana-
tions, in Sections IV–VIII, we will not differentiate between
computation and communication tasks. A more refined commu-
nication model, as well as the benefits of simultaneously scaling
the voltages of the processors and communication links is intro-
duced in Section IX.

IV. MOTIVATIONAL EXAMPLES

A. Optimizing the Dynamic and Leakage Energy

Fig. 2 shows two optimal voltage schedules for a set of three
tasks ( , and ), executing in two possible voltage modes.
While the first schedule relies on scaling only (i.e., is
kept constant), the second schedule corresponds to the simul-
taneous scaling of and . Please note that the figures de-
pict the dynamic and the leakage power dissipation as a function
of time. For simplicity, we neglect transition overheads in this
example. Further, we consider processor parameters that corre-
spond to CMOS technology ( nm) which leads to a leakage
power consumption close to 40% of the total power consumed
(at the mode with the highest performance).

Let us consider the first schedule in which the tasks are ex-
ecuted either at 1.8 V, or 1.5 V, while
and are kept at 0 V. In accordance, the system dissipates

100 mW and 75 mW in mode 1 running
at 700 MHz, while 49 mW and 45 mW in
mode 2 running at 525 MHz, as observable from the figure. We
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Fig. 2. Influence of V scaling. (a) V scaling only. (b) Simultaneous V
and V scaling.

have also indicated the individual energy consumed in each of
the active modes, separating between dynamic and leakage en-
ergy. The total leakage and dynamic energies of the schedule in
Fig. 2(a) are 13.56 and 16.17 J, respectively. This results in a
total energy consumption of 29.73 J.

Consider now the schedule given in Fig. 2(b), where tasks are
executed at two different voltage settings for and [
(1.8 V, 0 V) and (1.5 V, -0.4 V)]. Since the voltage settings
for mode did not change, the system runs at 700 MHz and
dissipates 100 mW and 75 mW. In mode
the system performs at 480 MHz and dissipates 49 mW
and 5 mW. There are two main differences to observe
compared to the schedule in Fig. 2(a). First, the leakage power
consumption during mode is considerably smaller than in
Fig. 2(a); this is due to the fact that in mode the leakage is re-
duced through a body-bias voltage of 0.4 V [see (2)]. Second,
the high voltage mode is active for a longer time; this can be
explained by the fact that scaling during mode requires
the reduction of the operational frequency [see (3)]. Hence, in
order to meet the system deadline, the high performance mode

has to compensate for this delay. Although here the dy-
namic energy was increased from 16.17 to 18.0 J, compared to
the first schedule, the leakage was reduced from 13.56 to 8.02

J. The overall energy dissipation is 26.02 J, a reduction by
12.5%. This example illustrates the advantage of simultaneous

and scaling compared to scaling only.

B. Considering the Transition Overheads

We consider a single processor system that offers three
voltage modes, (1.8 V, -0.3 V), (1.5 V, -0.45 V),
and (1.2 V, -0.8 V), where . The
rail and substrate capacitance are given as F and

F. The processor needs to execute two consecutive
tasks ( and ) with a deadline of 0.225 ms. Fig. 3(a) shows
a possible voltage schedule. Each of the two tasks is executed
in two different modes: task executes first in mode and
then in mode , while task is initially executed in mode

and then in mode . The total energy consumption of
this schedule is J. However,
if this voltage schedule is applied to a real voltage-scal-
able processor, the resulting schedule will be affected by
transition overheads, as shown in Fig. 3(b). The processor
requires a given time to adapt to the new execution mode.
During this adaption no computations can be performed [33],
[34], which increases the schedule length such that the im-
posed deadline is violated. Moreover, transitions do not only
require time, they also cause an additional energy dissipa-
tion. For instance, in the given schedule, the first transition
overhead from mode and requires an energy of

F V V F V V J,

Fig. 3. Influence of transition overheads. (a) Before reordering, without over-
heads. (b) Before reordering, with overheads. (c) After reordering, without over-
heads. (d) After reordering, with overheads.

based on (4). Similarly, the energy overheads for transitions
and can be calculated as 13.6 J and 5.8 J, respectively.
The overall energy dissipation of the schedule from Fig. 3(b)
accumulates to J.

Compared to the schedule in Fig. 3(a), the mode activation
order in Fig. 3(c) has been swapped for both tasks. As long as
the transition overheads are neglected, the energy consumption
of the two schedules is identical. However, applying the second
activation order to a real processor would result in the schedule
shown in Fig. 3(d). We can observe that this schedule exhibits
only two mode transitions ( and ) within the tasks (intra
switches), while the switch between the two tasks (inter switch)
has been eliminated. The overall energy consumption has been
reduced to J, a reduction by 23.8% compared to the
schedule given in Fig. 3(b). Further, the elimination of transition

reduces the overall schedule length, such that the imposed
deadline is satisfied. With this example, we have illustrated the
effects that transition overheads can have on the energy con-
sumption and the timing behavior and the impact of taking them
into consideration when elaborating the voltage schedule.

V. PROBLEM FORMULATION

Consider a set of tasks with precedence con-
straints, that have been mapped and scheduled on a set of
variable voltage processors. For each task its deadline , its
worst case number of clock cycles to be executed and the
switched capacitance are given. Each processor can vary
its supply voltage and body-bias voltage within certain
continuous ranges (for the continuous problem), or, within a set
of discrete voltage pairs (for the discrete
problem). The power dissipations (leakage and dynamic) and
the cycle time (processor speed) depend on the selected voltage
pair (mode). Tasks are executed cycle by cycle, and each cycle
can potentially execute at a different voltage pair, i.e., at a
different speed. Our goal is to find voltage pair assignments for
each task such that the individual task deadlines are met and the
total energy consumption is minimal. Furthermore, whenever
the processor has to alter the settings for and/or , a
transition overhead in terms of energy and time is required [see
(4) and (5)].

For reasons of clarity, we introduce the following four distinc-
tive problems which will be considered in this paper: 1) contin-
uous voltage selection with no consideration of transition over-
heads (CNOH); 2) continuous voltage selection with consider-
ation of transition overheads (COH); 3) discrete voltage selec-
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tion with no consideration of transition overheads (DNOH); and
4) discrete voltage scaling with consideration of transition over-
heads (DOH).

VI. OPTIMAL CONTINUOUS VOLTAGE SELECTION

In this section, we consider that the supply and body-bias
voltage of the processors can be selected within a certain contin-
uous range. We first formulate the problem neglecting transition
overheads (Section VI-A, CNOH) and then extend this formu-
lation to include the energy and delay overheads (Section VI-B,
COH).

A. Continuous Voltage Selection Without Overheads (CNOH)

We model the continuous voltage selection problem, ex-
cluding the consideration of transition overheads (the CNOH
problem), using the following nonlinear problem formulation:

Minimize

(6)

subject to

(7)

(8)

that have a deadline (9)

(10)

and

(11)

The variables that need to be determined are the task execution
times , the task start times as well as the voltages
and . The total energy consumption, which is the sum of
dynamic and leakage energy, has to be minimized, as in (6). The
task execution time has to be equivalent to the number of clock
cycles of the task multiplied by the circuit delay for a particular

and setting, as expressed by (7). Given the execution
time of the tasks, it becomes possible to express the precedence
constraints between tasks [see (8)], i.e., a task can only start
its execution after all its predecessor tasks have finished their
execution . Predecessors of task are all tasks
for which there exists an edge in the mapped and
scheduled task graph. Similarly, tasks with deadlines have to
be completed before their deadlines [see (9)].
Task start times have to be positive [see (10)] and the imposed
voltage ranges should be respected [see (11)]. It should be noted
that the objective [see (6)] as well as the task execution time
[see (7)] are convex functions. Hence, the problem falls into the
class of general convex nonlinear optimization problems. Such
problems can be efficiently solved in polynomial time (given an
arbitrary precision ), [35].

B. Continuous Voltage Selection With Overheads (COH)

In this section, we modify the previous formulation in order
to take transition overheads into account (COH problem). The
following formulation highlights the modifications:

Minimize

(12)

subject to

(13)

(14)

The objective function (12) now additionally accounts for the
transition overheads in terms of energy. The energy overheads
can be calculated according to (4) for all consecutive tasks
and on the same processor ( is defined in Section II). How-
ever, scaling voltages does not only require energy but it intro-
duces delay overheads as well. Therefore, we introduce an ad-
ditional constraint similar to (8), which states that a task can
only start after the execution of its predecessor on
the same processor and after the new voltage mode is reached

. This constraint is given in (13). The delay penalties
are introduced as a set of new variables and are constrained sub-
ject to (14). Similar to the CNOH formulation, the COH model
is a convex nonlinear problem, i.e., it can be solved in polyno-
mial time.

VII. OPTIMAL DISCRETE VOLTAGE SELECTION

The approaches presented in Section VI provide a theoretical
upper bound on the possible energy savings. In reality, however,
processors are restricted to a discrete set of and voltage
pairs. In this section, we investigate the discrete voltage selec-
tion problem without and with the consideration of overheads.
We will also analyze the complexity of the discrete voltage se-
lection problem.

A. Problem Complexity

Theorem 1: The discrete voltage selection problem is
NP-hard.

The details of the proof are given in [30]. The problem is
NP-hard, even if restricted it to supply voltage selection (without
adaptive body biasing) and even if transition overheads are ne-
glected. It should be noted that this finding renders the conclu-
sion of [6]1 impossible, which states that the discrete voltage
selection problem (considered in [6] without body biasing and
overheads) can be solved optimally in polynomial time.

B. Discrete Voltage Selection Without Overheads (DNOH)

In the following we will give a mixed-integer linear program-
ming (MILP) formulation for the discrete voltage selection
problem without overheads (DNOH). We consider that pro-
cessors can run in different modes . Each mode

1The flaw in [6] lies in the fact that the number of clock cycles spent in a mode
is not restricted to be integer.
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Fig. 4. Discrete mode model. (a) Schedule and mode execution order. (b) Tasks
and clock cycles in each mode (mode execution order is not captured). (c) So-
lution vector with division (mode execution order is captured).

is characterized by a voltage pair , which deter-
mines the operational frequency , the normalized dynamic
power , and the leakage power dissipation .
The frequency and the leakage power are given by (3) and
(2), respectively. The normalized dynamic power is given by

. Accordingly, the dynamic power of a task
, operating in mode , is computed as . Based

on these definitions, the problem is formulated as follows:

Minimize

(15)

subject to

(16)

(17)

and

(18)

and (19)

The total energy consumption, expressed by (15), is given by
two sums. The inner sum indicates the energy dissipated by an
individual task , depending on the time spent in each
mode . The outer sum adds up the energy of all tasks. Un-
like the continuous voltage selection case, we do not obtain
the voltage and directly, but rather we find out how
much time to spend in each of the modes. Therefore, task ex-
ecution time and the number of clock cycles spent
within a mode become the variables in the MILP formulation.
The number of clock cycles is restricted to the integer do-
main. We exemplify this model graphically in Fig. 4(a) and (b).
The first figure shows the schedule of two tasks executing each
at two different voltage settings (two modes out of three pos-
sible). Task executes for 20 clock cycles in mode and
for 10 clock cycles in , while task runs for 5 clock cy-
cles in and 15 clock cycles in . The same is captured in
Fig. 4(b) in what we call a mode model. The modes that are not
active during a task’s runtime have the corresponding time and
number of clock cycles 0 (mode for and for ). The
overall execution time of task is given as the sum of the times

spent in each mode . Equation (16) ensures that
all the deadlines are met and (17) maintains the correct execu-
tion order given by the precedence relations. The relation be-
tween execution time and number of clock cycles as well as the
requirement to execute all clock cycles of a task are expressed in
(18). Additionally, task start times and task execution times
have to be positive [see (19)].

C. Discrete Voltage Selection With Overheads (DOH)

The details regarding the incorporation of transition over-
heads into the MILP formulation from Section VII-B are pre-
sented in [28]. The order in which the modes are activated has
an influence on the transition overheads, as we have illustrated
in Section IV-B. We introduce the following extensions needed
in order to take both delay and energy overheads into account.
Given operational modes, the execution of a single task can
be subdivided into subtasks . Each subtask
is executed in one and only one of the modes. Subtasks are
further subdivided into slices, each corresponding to a mode.
This results in slices for each task. Fig. 4(c) depicts this
model, showing that task runs first in mode , then in mode

, and that runs first in mode , then in . This ordering
is captured by the subtasks: the first subtask of executes 20
clock cycles in mode , the second subtask executes one clock
cycle in , and the remaining nine cycles are executed by the
last subtask in mode executes in its first subtask four
clock cycles in mode , one clock cycle is executed during
the second subtask in mode , and the last subtask executes
15 clock cycles in the mode . Note that there is no overhead
between subsequent subtasks that run in the same mode.

VIII. VOLTAGE SELECTION WITH PROCESSOR SHUTDOWN

In this section, we discuss the integration of two system
level energy minimization techniques: voltage selection and
processor shutdown. Voltage selection is effective in mini-
mizing the active energy consumption (the energy consumed
while executing a certain task). However, specially in multi-
processor environments, processors alternate between active
and idle periods. During idle times, a certain amount of energy,
proportional to the length of the idle period is consumed. A
solution for saving this energy is to shutdown the processor.
The transition to the shutdown state and from shutdown back
to operation implies a time and an energy overhead.

Idle times may be present due to multiple reasons, even after
performing voltage selection. Consider, for example, the three
tasks in Fig. 5(a). If the application runs on a single processor
system at the lowest speed, it still finishes before the deadline, as
depicted in Fig. 5(b). In the idle interval between the finishing
time and the deadline, the processor consumes energy. In this
situation, we could shut down the processor and thus save en-
ergy. In the case of a single processor system with tasks that
do not have arbitrary arrival times, deciding weather or not to
shutdown and for how long is relatively easy. In [16], the notion
of threshold time interval is defined as the minimul length of an
idle period that would provide energy savings by shutting down.
A shutdown is decided if the idle interval available is larger than
the threshold time.

Imagine now a more complex case, when the application runs
on two processors, as in Fig. 5(c). Due to dependencies between
tasks that are mapped on different processors, there is a certain
amount of slack that cannot be exploited by voltage selection.
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Fig. 5. Schedules with idle times. (a) Task graph. (b) Single processor.
(c) Multiprocessor.

Fig. 6. Voltage selection with shutdown. (a) Task graph. (b) Voltage scaling
and shutdown. (c) Voltage scaling + shutdown.

For example, task can start only after task has finished.
Consequently, there is an idle interval on from time 0,
until the start of . Deciding in this case weather or not to
shutdown is a complex problem that will be addressed in the
Section IX.

Even though voltage selection aims at optimizing the active
energy, while processor shutdown minimizes the energy con-
sumed during idle periods, these two techniques are not orthog-
onal. Let us consider an application consisting of three tasks, ,

, and , as in Fig. 6(a). The tasks are mapped on two proces-
sors and . The resulting schedule, after performing
voltage selection is depicted in Fig. 6(b), with all three tasks
running at the lowest speeds. Task is running for 2 ms with
200 mW, while and run at 400 mW for 1.5 and 2 ms, re-
spectively. A brief analysis of the idle times present after voltage
selection on both processors, allows us to further reduce the en-
ergy consumption by shutting down after the execution
of and of after . The energy overhead for shutdown
is on and 125 J on . We notice the idle in-
terval of 0.5 ms on , between the executions of and

. The idle power on is 250 mW, resulting in an energy
consumption of 125 J. Please note that the energy consumed
during this idle period equals the energy overhead of a shut-
down, so it would not pay off to shutdown after . However, let
us consider the possibility of running faster, such that it fin-
ishes in 1.5 ms. The power consumption that corresponds to this
frequency is 300 mW. This slight increase on is compen-
sated by the fact that we can now execute task immediately
after , use one shutdown operation to exploit all the idle time
on and thus save 125 J.

A. Processor Shutdown: Problem Complexity

Theorem 2: The shutdown problem (SNVS) is NP-complete.
The proof is given in [30]. It is based on the fact that the

multiple choice continuous knapsack problem can be reduced
to the SNVS problem. If the simple shutdown problem without
performing voltage selection is NP complete, then the combined
voltage selection problem with shutdown (even in the case with
continuous voltages) is NP complete as well.

B. Continuous Voltage Selection With Processor Shutdown
(CVSSH)

In this section, we present an exact integer nonlinear formu-
lation as well as a polynomial time heuristic for the voltage se-

lection with processor shutdown.2 The following gives the mod-
ified nonlinear programming formulation (CVSSH):

Minimize

(20)

subject to

(21)

(22)

(23)

(24)

(25)

(26)

(27)

(28)

There are two noticeable differences between this formulation
and the one in Section VI-A: the inclusion in the objective (20)
of the energy spent during idle and shutdown intervals and (24)
and (23) introduced in order to account for the idle and off times.

, and are constants for each task
and capture the power consumed by the processor on which
is mapped, during idle and shutdown time intervals and, respec-
tively, the energy and the time overhead associated to a shut-
down operation. Please note the usage in (20), (23), and (24) of
binary variables and , associated to each task, with the
following semantics: if task is followed by a shutdown, then

and , otherwise and . In case
of a shutdown, captures the amount of time the processor is
off. If there is no shutdown after the execution of cap-
tures the amount of idle time ( is 0 if the next task starts
immediately after ).

The binary variables and change the complexity of
this nonlinear programming formulation, compared to the ones
presented in Sections VI-A and VI-B. While the problems pre-
sented there are convex nonlinear, the CVSSH problem is in-
teger nonlinear. Indeed, as shown in Section VIII, the voltage se-
lection with shutdown problem is NP complete, even in the case
when continuous voltage selection is used. Therefore, in the fol-
lowing, we propose a heuristic to efficiently solve the problem.

Let us consider particular instances of the CVSSH problem,
where and are given constants for each task . We de-
note this simplified problem CVSI. Such a particular instance
can be solved in polynomial time and computes the optimal volt-

2For simplicity of the presentation, we omit here the consideration of voltage
transition overheads. Nevertheless, these overheads can be easily included, as
shown in Section VI-B
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Fig. 7. Voltage selection with shutdown heuristic.

ages for a system in which we know the position of the shut-
down operations. For example, if , for all the tasks ,
CVSI computes the task voltages such that the energy is mini-
mized, taking into account the idle energy, without performing
any shutdown. Running CVSI for all possible combinations for

and and selecting the one with the minimum energy,
provides the optimal solution for the voltage selection with shut-
down problem. This is, practically, not possible, of course. We
will present in the following a heuristic that solves the CVSSH
problem in polynomial time. The pseudocode of the heuristic
is given in Fig. 7. The algorithm takes as input the mapped
and scheduled task graph with each task characterized as in
Section V. It returns, the supply and body bias voltage for each
task as well as the position and length of each shutdown opera-
tion and idle time.

As a first step (line 02), we perform voltage selection, using
the CVSI nonlinear formulation. This will optimize the active
and idle energy, without performing any shutdown operation
( and ).

In a second step, (lines 03–11), the idle intervals are inspected
one by one, and, if an interval is large enough (line 08) a shut-
down is introduced. In more detail, we find iteratively the idle
time with the highest energy that is large enough to allow a shut-
down. For this purpose, we compute, for each task , the ear-
liest finishing time and the latest start time (lines
04–05), assuming that each task is running at a fixed speed using
the voltages computed by CVSI at line 02 or in the previous it-
eration at line 10. We select for shutdown the idle time that con-
sumes the most energy (lines 08–09). We set the corresponding
binary variables and in order to schedule
a shutdown after the task . Then, we run CVSI with the up-
dated values for and (line 10). At each new iteration the
global energy consumption is improved.

When the algorithm exits the loop from lines 03–11, there is
no idle interval that is large enough to produce energy savings
by a shutdown (line 07). However, in principle, there are the
following two ways to further reduce the consumed energy:

1) increase the voltages of some tasks such that the idle inter-
vals following them become longer and, thus, can be ex-
ploited by shutdowns;

2) increase the voltages of some tasks such that several idle in-
tervals can be merged and exploited by a single shutdown.

The first alternative can be excluded based on a simple rea-
soning. Let us assume that we have a task that runs in mode

and consumes a certain amount energy . Task is fol-
lowed by an idle interval of length , that is too small to
provide savings via shutdown: . The total
energy consumed in this case is . Consider that
we increase the speed of by running it with execution mode

instead of . In this case, will consume
and the idle interval becomes long enough to make a shutdown
operation efficient. As a result the total energy is .
Since and , the energy of the
system obtained by running in execution mode with a
shutdown during the idle time is actually higher than the en-
ergy of the system obtained by running in execution mode

without a shutdown. As a conclusion, increasing the speed
of a task such that an idle interval becomes large enough for a
shutdown does not provide any energy savings.

The second alternative is illustrated in Fig. 6. The energy is
reduced by speeding up certain tasks in order to create the pos-
sibility of merging several small idle intervals. In this way, the
resulting idle interval can be exploited by a single shutdown
operation. This alternative is explored as the third step of our
heuristic (lines 12–26). We inspect all the groups of three con-
secutive tasks mapped on the same processor, , , and
with and explore the savings achievable by
merging and . More exactly, for all sets of three tasks

, we compute the
maximum set idle time as the difference between the
latest start time of task , the execution time of , and the ear-
liest finishing time of (line 15). We select the set with
the highest energy (line 17). For this set, there are two candidate
locations of the shutdown operation: after the execution of or
after the execution of . Our algorithm explores both possibil-
ities (lines 18–21). Using CVSI, we first compute the energy
considering the showdown after , and second, after

. If both and are higher then the energy obtained
without a shutdown after and , no shutdown is scheduled
during this iteration (line 24). Otherwise, the algorithm sched-
ules a shutdown after or after (lines 22–23). The global
energy is improved at each iteration (line 25). The loop exits
when no idle time corresponding to a set is large enough to pro-
duce savings via shutdown (line 16).

This heuristic relies on a continuous formulation for the com-
putation of the task voltages. We use the heuristic presented in
[29] in order to translate the computed voltage levels into the
discrete ones available on the processors.

IX. COMBINED VOLTAGE SELECTION FOR PROCESSORS AND

COMMUNICATION LINKS

In this section, we consider the supply and body-bias voltage
selection problem for processors and communication links. We
introduce a set of communication models for energy and delay
estimation. We study two different bus implementations and
show the implication of the bus implementation type on the
voltage selection strategy. We introduce a nonlinear model of
the continuous voltage selection problem, which is optimally
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Fig. 8. Optimum swing on a fat wire bus.

solvable in polynomial time, while for the discrete voltage se-
lection case, we use a heuristic similar to the one presented in
[29]. For simplicity of the explanation, we have not considered
the processor shutdown during the formulation of the optimiza-
tion problems in this section, however, the extension is straight-
forward.

A. Voltage Selection on Repeater-Based Buses

Repeaters are simple CMOS invertors introduced on long
wires in order to speed-up the communication time. The same
voltage selection techniques as in the case of processors can be
applied for buses implemented with repeaters [29].

B. Voltage Swing Selection on Fat Wire Buses

In this example, we illustrate the influence that a dynamic
variation of the voltage swing (the voltage on the wire) has on
the energy efficiency of the bus. Fig. 8 shows the total power
consumption of a fat wire bus (including drivers and receivers),
depending on the voltage swing at which data is sent. These
plots have been generated via SPICE simulations using the
Berkeley predictive 70-nm CMOS technology library. The
two plots show the total power consumption on the bus for
two different voltage settings of the bus drivers and receivers.
For example, if the driver connected to CPU1 and the receiver
at CPU2 operate at 1.0 V, the lowest bus power dissipation
(0.55 mW) is achieved by a voltage swing of 0.14 V. Let us
assume that the voltages of the driver and receiver are changed
during runtime to 1.8 V due to voltage selection. The bus
power/voltage swing relation for this situation is indicated by
the dashed line. As we can observe, by keeping the voltage
swing at 0.14 V, the power dissipation on the bus will be
4.5 mW. However, inspecting the plot reveals that it is possible
to reduce the bus power dissipation by changing the voltage
swing from 0.14 to 0.6 V. At this voltage swing, the bus dissi-
pates a power of 2.2 mW, i.e., a 51% reduction can be achieved
by changing the voltage swing.

Now, assume that the driver and receiver voltages are changed
back from 1.8 to 1.0 V. Keeping the swing at 0.6 V results in a
power of 0.83 mW, which is, compared to the optimal 0.55 mW
at 0.14 V, 33% higher than necessary.

C. Communication Models

We consider a bus-based communication system as in Fig. 9.
Whenever the processor sends data to over the
bus, is converted to the bus voltage by the bus adapter

Fig. 9. Interconnect structures. (a) Interconnect structure. (b) Repeater-based
bus. (c) Fat wire-based bus.

of . At the destination processor is converted
to . Each voltage conversion in the bus adapter requires an
energy overhead, which is

(29)

Thus, the total energy consumed when communicating between
two processors and over the bus is

(30)

Feature size scaling in deep-submicrometer circuits is respon-
sible for an increasing wire delay of the global interconnects.
This is mainly due to higher wire resistances caused by a
shrinking cross-sectional area. Two approaches to cope with
this problem have been proposed: 1) the usage of repeaters [19],
[20] and 2) the usage of fat wires [17], [18]. The bus energy

in (30) depends on which of these two approaches is used.
1) Repeater-Based Bus: The wire delay depends quadrat-

ically on the wire length, which can be approximated using
an RC model. In order to reduce this quadratic dependency,
it is possible to break the wire into smaller segments by in-
serting repeaters. Sylvester and Keutzer [18] estimate an in-
creasing number of repeaters with technology scaling down. For
instance, up to 138 repeaters are used in 50-nm technology for
a corner-to-corner wire with a die size of 750 mm . Repeaters
are implemented as simple CMOS inverter circuits [Fig. 9(b)].
In accordance, the power dissipated by a bus implemented with
repeaters is given by

(31)

where is the number of repeaters, is the average switching
activity caused by communication task is the load
capacity of a repeater (the sum of the output capacity of a re-
peater , the wire capacity , and the input capacity of the
next repeater ), and , , and are the supply voltage,
body bias voltage, and the frequency at which the repeaters op-
erate. Further, the constants , and depend on the
repeater circuits (see Section III). The bus speed is constrained
by the repeater frequency. Since repeaters are implemented as
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CMOS inverters, we use (3) to approximate the operational fre-
quency of the bus. The execution time of a communication

is given by

(32)

where denotes the number of bits to be transmitted by
communication and is the width of the bus (i.e., the
number of bits transmitted with each clock cycle). According
to (31) and (32), the bus energy dissipation is given by

. Scaling the supply and body-bias voltage of the repeaters
requires also an overhead in terms of energy and time, similar
to the overheads required by processor voltage selection [see (4)
and (5)].

2) Fat Wire-Based Bus: Another approach for reducing the
wire delay is to increase the physical dimensions of the wire, in-
stead of scaling them down with technology. The usage of “fat”
wires, on the top metal layer, has been proposed in [17]. The
main advantage of such wires is their low resistance. Provided
that ( is the wire length, is the wire
resistance per unit length and its characteristic impedance),
they exhibit a transmission line behavior, as opposed to the RC
behavior in the repeater-based architecture. Using fat wires, the
transmission speed approaches the physical limits (the speed of
light in the particular dielectric). However, only a limited wire
length can be accomplished with the available width of the top
metal layer. For example, for a 4-mm-long wire in 180-nm tech-
nology, Caputa and Svensson [36] obtained a fat wire width of
2 m on the top metal layer. The dynamic power consumption of
a fat wire-based bus is mainly due to its large line capacitance.
This capacitance is driven by a driver, with the dynamic power
consumption

(33)

where is the switching activity caused by communication
task is the bus frequency, and and represent
the capacitance of the driver and the wire, respectively.

One way to limit the dynamic power is to transmit data at
a lower voltage swing, , instead of using the higher bus
voltage . Correspondingly, the dynamic power consumed by
the driver is given by

if is generated on chip
otherwise.

(34)

The driver dissipates a nonnegligible leakage power

(35)

Since the lower swing corresponds to lower signal values, a
receiver has to restore the “original” signal. This requires an am-
plification, for which a dynamic and a leakage power consump-
tion can be calculated as

(36)

(37)

Please note that the leakage power exponentially depends on the
difference between the bus voltage and the voltage swing

( is a technology dependent parameter), i.e., a lower
voltage swing results in a higher static energy [while the dy-
namic power is reduced, (34)]. In order to find the most efficient
solution we need to find an appropriate voltage swing that mini-
mizes the total bus power

. Using the optimal voltage swing can significantly re-
duce the power consumption of the bus [36], [17].

The speed at which the data can be transmitted over the
fat wires can be considered to be independent of the voltage
swing . Yet, the bus driver and receiver circuits introduce a
delay that depends on the voltages and . This delay
and the corresponding operational frequency can be calculated
according to (3). In order to lower the power dissipation of
the drivers and receivers, it is possible to reduce and/or to
increase , which, in turn, necessitates the reduction of the
bus speed. However, it is important to note that the optimal
voltage swing depends on the and settings of the drivers
and receivers (see Fig. 8). Since these settings are dynamically
changed during runtime via voltage selection, the value of the
optimal voltage swing changes as well during runtime, and has
to be adapted accordingly.

In addition to the transition overheads in terms of energy
and time, which are required when scaling the voltages of the
drivers and receivers [see (4) and (5)], the dynamic scaling of
the voltage swing necessitates additional overheads. For a tran-
sition from to these overheads in energy and time are
given by

(38)

where is the wire power rail capacitance and is the
time/voltage slope.

D. Problem Formulation

We assume that all computation tasks and communications
have been mapped and scheduled onto the target architecture.
For each computation task its deadline , its worst case
number of clock cycles to be executed , and the switched
capacitance are given. Each processor can vary its supply
voltage and body-bias voltage within certain contin-
uous ranges (for the continuous voltage selection problem), or
within a set of discrete voltages pairs (for
the discrete voltage selection problem). A transition between
two different performance modes on a processor requires a time
and an energy overhead.

For each communication task , the number of bytes
is given. Depending on the employed bus implementation

style, either using repeaters or fat wires, we have to distinguish
between two subproblems.

1) Repeater Implementation: The communication speed as
well as the communication power on bus architectures imple-
mented through repeaters depend on the supply voltage and
body bias voltage. Similar to processing elements, these volt-
ages can be varied within a continuous range, or within a set of
discrete voltage pairs , and transitions be-
tween different bus performance modes require an energy and
time overhead. Furthermore, an energy overhead is required to
adapt the bus voltage to the processor voltage.
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2) Fat Wire Implementation: If communication is performed
over fat wires, it is necessary to dynamically adapt the voltage
swing at which data is transferred. Furthermore, in order to re-
duce the power dissipated by the bus drivers and receivers, it is
possible to dynamically scale the supply and body bias voltage
of these components. While the voltage swing can be scaled
without an influence on the bus speed, the operational speed of
the bus drivers and receivers is affected through voltage selec-
tion, i.e., the bus performance has to be adjusted in accordance
to the driver/receiver speed. In the case of continuous voltage se-
lection, the value for the voltage swing, the supply voltage, and
the body bias voltage can be changed within a continuous range.
On the other hand, for the discrete voltage selection case, the
components operate across sets of discrete voltages, referred to
as modes. For the voltage swing this set is and for
the bus drivers and receiver the set is . Of
course, changing the voltage swing value as well as the supply
and body-bias voltages requires an energy and time overhead.

Our overall goal is to find mode assignments for each pro-
cessing and communication task, such that the individual task
deadlines are satisfied and the total energy consumption, in-
cluding overheads, is minimal.

E. Voltage Selection With Processors and Communication
Links

We introduce a nonlinear programming model of the con-
tinuous voltage selection problem formulated in Section IX-D
which is optimally solvable in polynomial time, as follows:

Minimize

computation communication overhead
(39)

subject to

if

if

(40)

(41)

(42)

with a deadline (43)

(44)

(45)

(46)

(47)

The variables that need to be determined are the task and com-
munication execution times , the start times , as well as the
voltages , , and . The whole formulation can be
explained as follows. The total energy consumption [see (39)],
with its three contributors (energy consumption of tasks, com-
munication, and voltage transitions) has to be minimized. For
all these energies, both their dynamic and active leakage com-
ponents are considered. The dynamic energy of tasks and com-

munications is given by (derived from the equations discussed
in Section III)

if

if on repeaters

if on fat wires (intern)

if on fat wires (extern)

(48)

where and
are the total capacitances that have to be charged by bus imple-
mentation either repeater-based or fat wire-based, respectively.
Furthermore, in the case of fat wire implementations, we have
to distinguish between the chip-intern or chip-extern generation
of the voltage swing. The leakage power dissipation of proces-
sors and repeater-based buses is

(49)
For fat wire-based buses, we need to additionally account for
the leakage in the receiver [see (35) and (37)], given by

(50)

The energy overhead due to voltage transitions is given by (4)
and (38).

The constraints are similar to the ones in Section VI, ex-
pressing the execution order imposed by the scheduling and task
graph dependencies, as well as the time constraints.

We use a heuristic similar to the one presented in [29] in order
to translate the computed continuous voltages into the discrete
ones available for the processors and buses.

X. EXPERIMENTAL RESULTS

We have conducted experiments on two real-life applications:
a GSM voice codec and a generic multimedia system (MMS),
that includes a H263 video encoder and decoder and MP3 audio
encoder and decoder. Details regarding these applications can
be found in [37] and [38]. Experimental results using randomly
generated task graphs have been presented in [28]–[30].

The GSM voice codec consists of 87 tasks and is considered
to run on an architecture composed of three processing elements
with two voltage modes [(1.8 V, 0.1 V) and (1.0 V, 0.6)].
At the highest voltage mode, the application reveals a deadline
slack close to 10%. Switching overheads are characterized by

F, F, s/V, and s/V.
Table I shows the results in terms of dynamic , leakage

, overhead , and total energy (Columns 2–5).
Each line represents a different voltage selection approach.
Line 2 (Nominal) is used as a baseline and corresponds to an
execution at the nominal voltages. Lines 3 and 4 give the results
for the classical selection, without (DVDDNOH) and with
(DVDDOH) the consideration of overheads. As we can see,
the consideration of overheads achieves higher energy saving
(10.7%) than the overhead neglecting optimization (8.7%).
The results given in lines 5 and 6 correspond to the combined

and selection schemes. Again, we distinguish be-
tween overheads neglecting (DNOH) and overhead considering
(DOH) approaches. If the overheads are neglected, the energy
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TABLE I
OPTIMIZATION RESULTS FOR THE GSM CODEC

TABLE II
OPTIMIZATION RESULTS FOR THE MMS SYSTEM

consumption can be reduced by 22%, yet taking the overheads
into account results in a reduction of 24.3%, solely achieved by
decreasing the transition overheads. Compared to the classical
voltage selection scheme, the combined selection achieved a
further reduction of 14%. The last line shows the results of the
proposed heuristic approach. It should be noted that, since the
problem is NP-hard, such heuristic techniques are needed when
dealing with larger cases (increased number of voltage modes
and tasks). In the GSM application, although the number of
tasks is relatively large, we considered only two voltage modes.
Therefore, the optimal solutions could be obtained for the DOH
problem.

We have performed the same set of experiments on the MMS
system consisting of 38 tasks that is considered to run on an ar-
chitecture composed of 4 processors with four voltage modes
[(1.8 V, 0.0 V), (1.6 V, 0.8), (1.3 V, 0.9), and (1.0 V, 0.9)].
At the highest voltage mode, the application reveals a dead-
line slack close to 40%. Table II shows the results in terms
of dynamic , leakage , overhead , and total
energy (Columns 2–5). As with the GSM, the consideration
of overheads achieves higher energy savings (22.9% for the

-only selection and, respectively, 31.0% for the combined
approach) than the overhead neglecting optimization (20.4 and,
respectively, 27.7%). Compared to the classical voltage selec-
tion scheme (22.9% savings), the combined selection achieved
a further reduction of 8.1%.

We have performed a set of experiments on each of the two
real-life applications in order to show the efficiency of the
proposed voltage selection with processor shutdown technique.
The voltage modes are the same for GSM codec and, respec-
tively, for the MMS system as the ones used in the previous
experiments. The results are presented in Tables III and IV.
Each line represents a different approach. The first line (Nom-
inal) is the baseline and represents an execution at the highest
voltages, without any processor shutdown. The remaining four
lines represent the resulting energy consumptions for supply
voltage selection without (DVddNoSH) and with shutdown
(DVddSH) and, respectively, the supply and body-bias selection
without (DVddVbsNoSH) and with shutdown (DVddVbsSH).
For each approach, we list the active , idle and total
energy consumption. The overheads for a shutdown op-
eration are estimated in [16] as J and 1 ms.

TABLE III
RESULTS FOR THE GSM CODEC WITH SHUTDOWN

TABLE IV
RESULTS FOR THE MMS SYSTEM WITH SHUTDOWN

If we use these values for the GSM voice codec, we can not
perform any shutdown, due to the little amount of slack avail-
able after voltage selection. If we consider lower shutdown
overheads ( J and ms), we obtain the
results presented in Table III. As we can see, even considering a
reduced overhead, the energy can be improved via shutdown by
only 4%. It is interesting to compare the active and idle energy
values resulted after performing voltage selection without and
with processor shutdown from the lines 4 and 5 in Table III.
As we can see, the active energy is slightly increased when we
perform the shutdown (from 1.48 to 1.50 mJ), while the idle
energy is reduced (from 0.93 to 0.70 mJ). This means that a
situation similar to the one described in Fig. 6 is encountered
during the optimization (the voltages for a task are increased
in order to allow the merging of several idle intervals into
one big shutdown period). The difference between the total
energy and the sum of active and idle
energies represents the energy corresponding to the shutdown
overheads plus the low energy consumed in the shutdown state.
A simple calculation shows that only one shutdown is perfomed
in case of the GSM voice codec.

A similar experiment was performed for the MMS. We have
used the shutdown overheads estimated in [16] ( J
and ms). The results are presented in Table IV. It is in-
teresting to note that performing shutdown in conjunction with
supply voltage selection provides a reduction of 9%, compared
to a reduction of 5% obtained by the shutdown with the com-
bined and selection. This is due to the fact that the
combined supply and body-bias voltage selection exploits more
slack than the supply-only voltage selection, thus leaving less
idle time for potential shutdown operations. As opposed to the
GSM voice codec, the optimization determines five shutdowns
for the MMS.

The relatively reduced energy savings achievable by shut-
down are due to the small amount of static slack available. Ex-
ploiting the dynamic slack, resulted online from the tasks that
execute less then their worst case number of clock cycles, pro-
vides an additional opportunity for shutdowns. This is due to the
fact that considering the dynamic slack in addition to the static
one, provides a higher chance to find, online, large idle periods
that can be exploited for shutdown. We have presented in [31]
an online voltage selection technique that can make use of dy-
namic slack. The technique is based on an offline calculation of
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TABLE V
RESULTS FOR THE GSM CODEC CONSIDERING THE COMMUNICATION

TABLE VI
RESULTS FOR THE MMS SYSTEM CONSIDERING THE COMMUNICATION

lookup tables that are used online for voltage selection. The cal-
culation of the tables is based on the equations presented in this
paper. Applied on top of such an approach, a strategy which in-
cludes shutdown produces its entire potential. For example, for
the MMS system, in the case that the average execution time of
the tasks is half of the worst case, we can achieve a further en-
ergy reduction of 60% by using the shutdown.

In the previous experiments, communication energy has been
ignored. Another set of experiments was performed on the two
benchmarks in order to highlight the importance of combined
processor and communication links’ scaling. The GSM codec
is considered to run on an architecture composed of three pro-
cessors (with two voltage modes [(1.8 V, 0.1 V) and (1.0 V,

0.6 V)], communicating over a repeater-based shared bus. At
the nomimal voltages, the communication accounts for 15%
of the total energy consumption. Table V shows the resulting
total energy consumptions for six different situations. The first
column denotes the used voltage selection technique and the
second indicates if continuous or discrete voltages were consid-
ered. The third and fourth column give the energy consumption
and achieved reduction in percentage for each scaling approach.
For instance, according to the second row, the system dissipates
an energy of 2.273 J at nominal voltage settings, i.e., without
any voltage selection. This value serves as a baseline for the
reductions indicated in the fourth column. The third and fourth
rows present the results of systems in which the bus remains un-
scaled while the processors are either or and scaled
over a continuous range. As we can observe, savings of 9% and
20% are achieved. In order to adapt the continuous selected volt-
ages towards the two discrete voltage settings at which the pro-
cessor can possibly run, we apply our heuristic outlined in [29].
The achieved reduction in the discrete case is 17% (row 5). Nev-
ertheless, as shown by the values given in row 6, it is possible
to further reduce the energy by scaling the repeater-based bus.
Compared to the baseline, a saving of 27% is achieved. Using
the discrete voltage heuristic, the final energy dissipation results
in 1.723 J, which is 24% below the unscaled system.

The MMS system is mapped on four processors that commu-
nicate over two repeater-based buses. At the nomimal voltages,
the communication accounts for 25% of the total energy con-
sumption. The results are presented in Table VI.

XI. CONCLUSION

Energy reduction techniques, such as supply voltage selec-
tion and adaptive body biasing can be effectively exploited at
the system level. In this paper, we have investigated different
alternatives of the combined supply voltage selection, adaptive
body biasing and processor shutdown problems at the system
level. These include the consideration of transition overheads
as well as the discretization of the supply and threshold voltage
levels. We have shown that nonlinear programming and mixed
integer linear programming formulations can be used to solve
these problems. Further, the NP-hardness of the discrete voltage
selection case was shown, and a heuristic to efficiently solve
the problem has been proposed. Similarly, if the shutdown of
processors is considered, the problem becomes NP complete.
Therefore, we have proposed an efficient heuristic to solve this
problem. The voltage selection technique achieves additional
efficiency by simultaneously scaling the voltages of processors
and communication. We have investigated two alternatives, con-
sidering both buses with repeaters and fat wires. Several gen-
erated benchmark examples as well as two real-life applica-
tions were used to show the applicability of the introduced ap-
proaches.

In this paper, we have focused on the voltage selection
problem. The solutions presented and the heuristics proposed
can be included in design space exploration frameworks that
also perform other system level optimizations, such as task
mapping and scheduling. This has been demonstrated by inte-
grating our work in the frameworks proposed in [39] and [40].
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