
 

Linköping Studies in Science and Technology 

Dissertation No. 1127 

Energy Efficient and Predictable Design of Real-Time 
Embedded Systems 

by 

Alexandru Andrei 

Department of Computer and Information Science 
Linköpings universitet 

SE-581 83 Linköping, Sweden 

Linköping 2007 





Acknowledgments

First and foremost I would like to thank my adviser Professor Petru Eles. His
passion and thoroughness made this thesis possible. I will always remember the
nights before the paper submission deadlines when Petru was always there, actively
working to improve the papers. His commitment will always inspire me.

I would like to extend my gratitude towards my secondary adviser, Professor
Zebo Peng. By always challenging my ideas, he contributed significantly to my
progress as a researcher.

The former and present colleagues from the Embedded Systems Laboratory
have provided a friendly environment. Special thanks to my former office col-
league, Marcus Schmitz, who taught me how to write technical papers.

Gunilla Mellheden, Anne Moe and Lillemor Walgreen have been invaluable in
their efforts to simplify all the administrative details.

I would like to acknowledge the financial support of CUGS (Swedish National
Research School of Computer Science), SSF (Swedish Foundation for Strategic
Research via the STRINGENT program) and ARTIST Network of Excellence in
Embedded Systems. This work would not have been possible without their fund-
ing.

My friends from all over the world, are an endless source of joy and inspiration.
I would not be the same without them.

I am deeply grateful to Diana and to my family for their constant support. This
thesis is dedicated to them.

Alexandru Andrei
Linköping, September 2007



ii



Abstract

This thesis addresses several issues related to the design and optimization of em-
bedded systems. In particular, in the context of time-constrained embedded sys-
tems, the thesis investigates two problems: the minimization of the energy con-
sumption and the implementation of predictable applications on multiprocessor
system-on-chip platforms.

Power consumption is one of the most limiting factors in electronic systems
today. Two techniques that have been shown to reduce the power consumption ef-
fectively are dynamic voltage selection and adaptive body biasing. The reduction
is achieved by dynamically adjusting the voltage and performance settings accord-
ing to the application needs. Energy minimization is addressed using both offline
and online optimization approaches. Offline, we solve optimally the combined
supply voltage and body bias selection problem for multiprocessor systems with
imposed time constraints, explicitly taking into account the transition overheads
implied by changing voltage levels. The voltage selection technique is applied
not only to processors, but also to buses with repeaters and fat wires. We inves-
tigate the continuous voltage selection as well as its discrete counterpart. While
the above mentioned methods minimize the active energy, we propose an approach
that combines voltage selection and processor shutdown in order to optimize the
total energy.

In order to take full advantage of slack that arises from variations in the ex-
ecution time, it is important to recalculate the voltage and performance settings
during run-time, i.e., online. However, voltage scaling is computationally expen-
sive, and, thus, performed at runtime, significantly hampers the possible energy
savings. To overcome the online complexity, we propose a quasi-static voltage
scaling scheme, with a constant online time complexity O(1). This allows to in-
crease the exploitable slack as well as to avoid the energy dissipated due to online
recalculation of the voltage settings.

Worst-case execution time (WCET) analysis and, in general, the predictabil-
ity of real-time applications implemented on multiprocessor systems has been ad-



iv

dressed only in very restrictive and particular contexts. One important aspect that
makes the analysis difficult is the estimation of the system’s communication behav-
ior. The traffic on the bus does not solely originate from data transfers due to data
dependencies between tasks, but is also affected by memory transfers as result of
cache misses. As opposed to the analysis performed for a single processor system,
where the cache miss penalty is constant, in a multiprocessor system each cache
miss has a variable penalty, depending on the bus contention. This affects the tasks’
WCET which, however, is needed in order to perform system scheduling. At the
same time, the WCET depends on the system schedule due to the bus interference.
In this context, we propose, an approach to worst-case execution time analysis and
system scheduling for real-time applications implemented on multiprocessor SoC
architectures.

This work has been supported by CUGS–Swedish National Graduate School
of Computer Science– SSF–Swedish Foundation for Strategic Research-via the
STRINGENT program–and ARTIST– Network of Excellence on Embedded Systems
Design.



Contents

I Preliminaries 9

1 Introduction 11

1.1 Generic Design Flow for Embedded Systems . . . . . . . . . . . . . . . . . . . 12
1.2 System Level Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.2.1 Task Graph Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.2.2 Task Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.2.3 Task Mapping and Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.3 Energy Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.5 List of papers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.6 Thesis organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

II Energy Minimization by Voltage Selection 25

2 Introduction 27

2.1 Energy/Speed Trade-off . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2 Voltage Selection Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.3 Offline and Online Voltage Selection . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.4 Continuous and Discrete Voltage Selection . . . . . . . . . . . . . . . . . . . . . 31

3 Offline Energy Optimization by Voltage Selection 33

3.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2 System and Application Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.3 Processor Power and Delay Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.4 Motivational Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4.1 Optimizing the Dynamic and Leakage Energy . . . . . . . . . . . . 39
3.4.2 Considering the Transition Overheads . . . . . . . . . . . . . . . . . . 40



2 CONTENTS

3.5 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.6 Continuous Voltage Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.6.1 Continuous Voltage Selection without Overheads (CNOH) . 43
3.6.2 Continuous Voltage Selection with Overheads (COH) . . . . . 44

3.7 Discrete Voltage Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.7.1 Problem Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.7.2 Discrete Voltage Selection without Overheads (DNOH) . . . . 45
3.7.3 Discrete Voltage Selection with Overheads (DOH) . . . . . . . . 46
3.7.4 Discrete Voltage Selection Heuristic . . . . . . . . . . . . . . . . . . . . 49

3.8 Voltage Selection with Processor Shutdown . . . . . . . . . . . . . . . . . . . . 50
3.8.1 Processor Shutdown: Problem Complexity . . . . . . . . . . . . . . 51
3.8.2 Continuous Voltage Selection with Processor Shutdown

(CVSSH) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.8.3 Discrete Voltage Selection with Processor Shutdown . . . . . . 57

3.9 Combined Voltage Selection for Processors and
Communication Links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.9.1 Voltage Selection on Repeater-Based Buses . . . . . . . . . . . . . . 59
3.9.2 Voltage Swing Selection on Fat Wire Buses . . . . . . . . . . . . . . 60
3.9.3 Communication Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.9.4 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.9.5 Voltage Selection with Processors and

Communication Links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.10 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.10.1 Vdd and Vbs Selection on the Processors . . . . . . . . . . . . . . . . . 67
3.10.2 Significance of Transition Overheads . . . . . . . . . . . . . . . . . . . 70
3.10.3 Voltage Selection with Processor Shutdown . . . . . . . . . . . . . . 71
3.10.4 Combined Voltage Selection for Processors and Commu-

nication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.10.5 Real-Life Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4 Mapping, Scheduling and Voltage Selection 81

4.1 Introduction and Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.2 Hardware Architecture Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.3 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.4 Optimal Mapping, Scheduling and Dynamic Voltage Selection . . . . 85

4.4.1 The Master Problem Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.4.2 The Sub-Problem model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.5 Genetic-Based Optimization Heuristic . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.6 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95



CONTENTS 3

5 Quasi-Static Voltage Selection 99

5.1 Introduction and Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.2 Application and Architecture Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.3 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
5.4 Offline Algorithm: Overall Approach . . . . . . . . . . . . . . . . . . . . . . . . . . 108
5.5 Voltage Scaling with Continuous Voltage Levels . . . . . . . . . . . . . . . . 110

5.5.1 Offline Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
5.5.2 Online Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.6 Voltage Scaling Algorithm with Discrete Voltage Levels . . . . . . . . . . 113
5.6.1 Offline Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
5.6.2 Online Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
5.6.3 Consideration of the Mode Transition Overheads . . . . . . . . . 118

5.7 Calculation of the Look-Up Table Sizes . . . . . . . . . . . . . . . . . . . . . . . . 120
5.8 Quasi-Static Voltage Scaling for Multiprocessor Systems . . . . . . . . . 122
5.9 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

III Predictability of Multiprocessor Implementations 131

6 Predictable Implementation of Real-Time Applications on Multipro-

cessor Systems-on-Chip 133

6.1 Introduction and Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
6.2 System and Application Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6.2.1 Hardware Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
6.2.2 Application Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

6.3 Bus Access Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
6.4 Motivational Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
6.5 Analysis, Scheduling and Optimization Flow . . . . . . . . . . . . . . . . . . . 142

6.5.1 WCET Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
6.5.2 Bus Schedule Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

6.6 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

IV Conclusions and Future Work 157

7 Conclusions 159

7.1 Offline Energy Minimization by Voltage Selection . . . . . . . . . . . . . . . 159
7.2 Quasi-Static Energy Minimization by Voltage Selection . . . . . . . . . . 160



4 CONTENTS

7.3 Predictable Implementation of Real-Time Applications on Multi-
processor Systems-on-Chip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

8 Future Work 161

8.1 Energy Minimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
8.2 Predictability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

A The complete discrete voltage selection with overheads MILP formu-

lation 163

B The DDVS Problem is strongly NP-Hard 167

C Shutdown Problem Complexity 169

C.1 The Knapsack Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
C.2 The Shutdown Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

D Continuous Online Interpolation 173

E Quasi-Static Discrete Voltage Selection 177

Bibliography 181



List of Figures

1.1 Generic Embedded System Design Flow . . . . . . . . . . . . . . . . . . . . . . . 13
1.2 Simplified Embedded System Design Flow . . . . . . . . . . . . . . . . . . . . . 14
1.3 Instruction Cache Size Selection for an MP3 Decoder . . . . . . . . . . . . 15
1.4 Application Mapping and Scheduling on a Target Architecture . . . . . 16
1.5 Design Space Exploration for an MPEG2 Decoder . . . . . . . . . . . . . . . 18

2.1 Schedule with Idle and Slack Times . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.2 Continuous and Discrete Voltage Selection . . . . . . . . . . . . . . . . . . . . . 31

3.1 System model: Extended task graph . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2 Influence of Vbs scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.3 Influence of transition overheads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.4 Discrete mode model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.5 VS heuristic: mode reordering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.6 Schedules with idle times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.7 Voltage Selection with Shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.8 Voltage Selection with Shutdown Heuristic . . . . . . . . . . . . . . . . . . . . . 55
3.9 Voltage selection on a repeater-based bus . . . . . . . . . . . . . . . . . . . . . . . 59
3.10 Optimum swing on a fat wire bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.11 Interconnect structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.12 Optimization Results for Processor DVS & ABB . . . . . . . . . . . . . . . . 68
3.13 Influence of voltage selection overheads . . . . . . . . . . . . . . . . . . . . . . . 70
3.14 Voltage Selection with Shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.15 Optimization Results for Different Bus Implementations . . . . . . . . . . 73

4.1 Target Hardware Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.2 Optimal Mapping & Scheduling & Frequency Selection . . . . . . . . . . 85
4.3 Genetic Optimization Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93



6 LIST OF FIGURES

4.4 Task mapping string describing the mapping of five tasks to an
architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.5 List scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.6 Optimal vs. Genetic-based Optimization . . . . . . . . . . . . . . . . . . . . . . . 97
4.7 Energy Deviation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.1 System architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.2 Ideal online voltage scaling approach . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.3 Quasi-static voltage scaling based on pre-stored look-up tables . . . . 107
5.4 Pseudocode: Quasi-Static Offline Algorithm . . . . . . . . . . . . . . . . . . . . 109
5.5 Pseudocode: Continuous Online Algorithm . . . . . . . . . . . . . . . . . . . . . 112
5.6 Look-up tables with discrete modes . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
5.7 Pseudocode: Discrete Online Algorithm . . . . . . . . . . . . . . . . . . . . . . . 117
5.8 Mode Transition Overheads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
5.9 Multiprocessor system architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
5.10 Experimental results: online voltage scaling . . . . . . . . . . . . . . . . . . . . 124
5.11 Experimental results: online voltage scaling . . . . . . . . . . . . . . . . . . . . 125
5.12 Experimental results: influence of LUT sizes . . . . . . . . . . . . . . . . . . . 127
5.13 Experimental results: discrete voltage scaling . . . . . . . . . . . . . . . . . . . 128
5.14 Experimental results: voltage scaling on multiprocessor systems . . . 129

6.1 System and task models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
6.2 Bus Schedule Table (system with two CPUs) . . . . . . . . . . . . . . . . . . . 137
6.3 Schedule with various bus access policies . . . . . . . . . . . . . . . . . . . . . . 140
6.4 Overall Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
6.5 System level scheduling with WCET analysis . . . . . . . . . . . . . . . . . . . 143
6.6 Tasks executing less than their worst-case . . . . . . . . . . . . . . . . . . . . . . 145
6.7 Example task WCET calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
6.8 The four bus access policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
6.9 BSA3 with different amount of memory accesses . . . . . . . . . . . . . . . . 154

D.1 Continuous interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

E.1 Pseudocode: Calculation of the Compatible Mode Pairs . . . . . . . . . . 180



List of Tables

3.1 Optimization results for the GSM codec . . . . . . . . . . . . . . . . . . . . . . . . 75
3.2 Optimization results for the MMS system . . . . . . . . . . . . . . . . . . . . . . 76
3.3 Results for the GSM codec with shutdown. . . . . . . . . . . . . . . . . . . . . . 77
3.4 Results for the MMS system with shutdown . . . . . . . . . . . . . . . . . . . . 77
3.5 Results for the GSM codec considering the communication . . . . . . . 78
3.6 Results for the MMS system considering the communication . . . . . . 79

4.1 Optimization results for the GSM encoder . . . . . . . . . . . . . . . . . . . . . . 96

5.1 Simulation results of different applications . . . . . . . . . . . . . . . . . . . . . 104
5.2 Simulation results: Voltage scaling algorithms . . . . . . . . . . . . . . . . . . 105
5.3 Optimization results for the MPEG algorithm . . . . . . . . . . . . . . . . . . . 128

6.1 Results for the smart phone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155



8 LIST OF TABLES



Part I

Preliminaries





Chapter 1

Introduction

The electronic industry has grown in an unprecedented way, from the invention of
the transistor in 1947. As a result, we are surrounded today by various gadgets,
ranging from mobile phones, digital cameras and PDAs to complex electronic con-
trol units in automobiles and planes or powerful computers. Due to the ever de-
creasing feature size, the number of transistors in a chip doubles every 18 month.
This development, predicted by Gordon Moore [Moo65] in 1965 and known as
Moore’s law, is the main factor driving this growth.

The design of such complex systems is a difficult task. The heavy competition
is escalating the demand for small, high-performance, low-power consumer elec-
tronics products that are affordable and, at the same time, offer new functionality at
each new generation. These characteristics will increasingly conflict, as advanced
features consume power and area, as well as increasing development costs. This
challenge is hitting a critical point at the sub-90nm realm, resulting in an ever-
widening productivity gap [ITR].

The best way to close this gap and cost-effectively meet new consumer de-
mands is through the use of advanced electronic design automation (EDA) tools
that already address these challenges at early design stages.

We can differentiate two big classes of electronic systems: general purpose
computer systems and embedded systems.

In this thesis, we will restrict the discussion to the class of embedded systems.
Embedded systems must not only implement the desired functionality but must also
satisfy diverse constraints (power and energy consumption, performance, safety,
size, cost, flexibility, etc.) that typically compete with each other. Moreover, the
ever increasing complexity of embedded systems combined with small time-to-
market windows poses great challenges to the design comunity.



12 CH. 1. INTRODUCTION

This chapter briefly presents some issues related to the the embedded systems
design flow. In particular, the chapter emphasizes the issue of power consumption
and introduces some of the possible solutions that will be further explored in the
thesis. The challenges of such an endeavor are discussed and the contributions of
the thesis are highlighted. The section concludes by presenting the outline of the
thesis.

1.1 Generic Design Flow for Embedded Systems

Fig. 1.1 presents a generic design flow for embedded systems development. The
design usually starts from an informal specification, that describes the desired func-
tionality as well as possible constraints (physical size of the device, performance,
energy consumption, lifetime, etc.). This informal specification is later refined in
a model of the system. The model can be validated against the specification by
performing formal verification or functional simulation.

Assuming that the model is correct, the next step is the selection of the hard-
ware architecture. This step is crucial, because it impacts the cost of the final
product. Moreover, it has a big impact on other parameters, such as performance
and energy consumption, restricting the possible choices that are made in the next
steps. Implicitly, at this stage of the design, the functionality is partitioned in
time-critical components that require dedicated hardware (ASICs) and software
components (tasks) that will be running on programmable processors.

Once the architecture is selected, we proceed with mapping of the software
tasks to the programable processors. The processors composing the hardware ar-
chitecture may come from different families or even from different manufacturers.
Thus, they can have different characteristics. For example, the processors can have
different instruction sets, can potentially operate at different frequencies, or they
might have different cache parameters. This leads to potentially different execu-
tion times of a certain software task, depending on the processor where the task is
mapped. During the next step the tasks are scheduled, i.e. the order of execution,
priorities, and, possibly, the times when the tasks will start are decided. During
this stage, several issues have to be considered. A key factor that must be taken
into account is the set of dependencies that might exist between the tasks. Such a
dependency states, for example, that a certain task can only start when all the tasks
it depends on have finished. In time-constrained systems, where some of the tasks
must finish before a certain deadline, mapping and scheduling are closely coupled
with an analysis that decides if the timing constraints are met. If this is not the
case, other schedules and mappings are explored. These decisions can be made at



1.1 Generic Design Flow for Embedded Systems 13

Modelling

System model

Mapped and
scheduled model

Estimation

System
architecture

Architecture
selection

Prototype

Hardware model

Hardware synthesis

Hardware blocks

Software model

Software generation

Software blocks

Fabrication

not oknot ok

okok

ok

S
ys

te
m

 le
ve

l
Lo

w
er

 le
ve

ls

Formal
verification

Functional
simulation

Simulation

Simulation

Testingnot ok

Simulation

Formal
verification

Analysis

Mapping

Scheduling

Informal specification,
constraints

Figure 1.1: Generic Embedded System Design Flow



14 CH. 1. INTRODUCTION

Extract task parameters task graph
Extract

Implementation

Hardware
Platform

Generic
Applications

Software

−Voltage Selection

−Task mapping
−Task scheduling

Optimization loop:

Figure 1.2: Simplified Embedded System Design Flow

design time, because embedded systems have a known functionality, as opposed to
general purpose computers that must work with a variety of unknown applications.

The system level design phase is considered finished when a feasible mapped
and scheduled model is produced. At this point, we can proceed with generating
the software, synthesizing the custom hardware and finally producing a prototype
after the integration of all the components. During this phase, before the prototype
production, validation can be performed via simulation and formal verification.
The validation of the prototype is performed via testing.

1.2 System Level Design

In the following we will concentrate on some of the key system level steps from
the design flow introduced in Fig. 1.1. In order to simplify the explanation, let
us consider a simplified flow, as illustrated in Fig. 1.2. We assume that the target
embedded system consists only of programable processors and memories, inter-
connected by a communication infrastructure (buses, point-to-point connections or
network). The starting point of the design flow is the functionality of the system,
specified in a high-level programming language (such as C or C++). We also con-
sider the hardware platform as given (possibly as a result of legacy from an earlier
product). Even with the generic hardware platform fixed, some of its parameters
are still subject to optimization. Such a parameter, for example, can be the size of
the instruction or data cache. The selection of the size of the instruction cache can
be performed by running the software application on an adequate platform simula-



1.2 System Level Design 15
t [

cy
cl

es
]

log2(CacheSize)

E
[m

J]

log2(CacheSize)

(a) Instruction cache size vs. execution time (b) Instruction cache size vs. total energy

 5e+07

 5.5e+07

 6e+07

 6.5e+07

 7e+07

 7.5e+07

 8e+07

 8.5e+07

 9e+07

 9.5e+07

 1e+08

 9  10  11  12  13  14
 8.50

 9.00

 9.50

 10.0

 10.5

 11.0

 11.5

 12.0

 12.5

 9  10  11  12  13  14

Figure 1.3: Instruction Cache Size Selection for an MP3 Decoder

tor. Fig. 1.3 presents the results obtained for an MP3 decoder running on an ARM7
processor. In Fig. 1.3(a), we present the execution time necessary to decode one
MP3 frame, as a function of the size of the cache. As expected, when the cache
size increases, the execution time decreases. It is interesting to note that the im-
provements in execution time are modest for cache sizes larger then 4kbytes. If we
examine the energy values in Fig. 1.3(b), we observe that increasing the size of the
instruction cache is only efficient up to a point. In case of the MP3 decoder run-
ning on the ARM7 processor, a cache of 4kbytes is optimal from the energy point
of view. Smaller caches consume more energy due to a longer execution time. On
the other hand, larger caches have a higher energy overhead (the energy consumed
by the cache circuit itself) that cancels the potential benefits.

1.2.1 Task Graph Extraction

The task graph is extracted from the input specification (written in a high-level
programming language such as C or C++). Such a task graph is illustrated in
Fig. 1.4(b). Nodes τi ∈ Π correspond to tasks. Edges γ ∈ Γ indicate data dependen-
cies between these tasks. The dependencies also capture the restrictions imposed
to the order of execution. An important aspect that must be highlighted at this
stage is the potential parallelism between the tasks. On a multiprocessor hardware
platform, tasks that are not restricted by dependencies can be executed in parallel.
This leads to a shorter execution time. There are no strict rules on how to partition
the code in tasks. [VJ03] presents an automatic approach for task graph extraction.
A study regarding the partitioning of the MPEG2 decoder into tasks, exposing the
task level parallelism is presented in [Ogn07].



16 CH. 1. INTRODUCTION

τ1

τ2 τ3

τ4

τ5

γ2−5

γ1−2 γ1−3

γ3−4

γ4−5
dl=7ms

time

τ1

τ2 τ3

γ
1−3

γ
1−2

γ
2−5

γ
3−4

τ4 τ5

C
P

U
1

C
P

U
2

C
P

U
3

B
U

S

In
te

rf
ac

e

CPU3

In
te

rf
ac

e

CPU2

CPU1

In
te

rf
ac

e

B
U

S

τ1

τ2

τ4
τ5

τ3

γ 1−
2

γ 2−
5

γ 1−
3

γ 3−
4

(b) Task Graph(a) Target Architecture

mapped task graph
(c) Target architecture with

(d) Multiple component schedule

CPU1

In
te

rf
ac

e

In
te

rf
ac

e CPU2

CPU3

In
te

rf
ac

e

BUS

Figure 1.4: Application Mapping and Scheduling on a Target Architecture

It is important to select the ”right” granularity for the tasks, such that the right
balance between the potential parallelism and the resulting number of tasks is
achieved. A large number of tasks might offer an increased flexibility. However,
this comes with a cost. The complexity of any system level optimization depends
strongly on the number of tasks. Furthermore, the number of context switches
strongly depends on the number of tasks. Thus, the size of the tasks has to be
chosen such that overheads are comparatively small.

1.2.2 Task Parameters

Given the task graph and the target hardware architecture, certain properties of the
tasks (the task parameters) have to be extracted. For example, for each task, two
key parameters are the execution time and the power consumption. The task aver-
age power consumption can be derived via simulation. In hard real-time systems,
we are interested in a particular execution time, the so called worst-case execution
time. The worst-case execution time (WCET) is an upper bound of all possible
execution times and is needed in order to guarantee that any possible scenario of



1.2 System Level Design 17

execution will not lead to deadline misses. While average task execution times
can be derived via simulation [And06], the worst-case execution time is obtained
by performing worst-case execution time analysis [PB00, TFW00, RM05, SSE05].
In real-time systems, where delivering a result within a specified time frame is an
intrinsic aspect of the correct functionality, worst-case execution time analysis is a
key issue. In Part III of this thesis we will further explore this topic.

1.2.3 Task Mapping and Scheduling

Given a task graph (Fig. 1.4(b)) and a target hardware platform (Fig. 1.4(a)), the
designer has to map and schedule the tasks on the processors. Mapping is the
step in which the tasks are assigned for execution to the processors and the com-
munications to the bus(es). In Fig. 1.4(c), we have depicted a possible mapping
for the task graph in Fig. 1.4(b). The next step is to compute a schedule for the
system. In the case of static cyclic scheduling this implies to decide in which
order to run the tasks mapped on the same processor. One important set of con-
straints that have to be respected during mapping and scheduling are the prece-
dence constraints given by the dependencies in the task graph. An example sched-
ule is depicted in Fig. 1.4(d). Please note that task τ2, for example, starts only
after task τ1 and the communication γ1−2 have finished. Most embedded applica-
tions must also respect the real-time constraints, such as the application deadline.
Computing the task mapping and schedule for a set of tasks with precedence con-
straints on a multiprocessor architecture is in general an NP complete problem
[GJ79]. Nevertheless many algorithms have been proposed to solve the problem
[VM03, HM03, SHE05, SAHE04, SAHE02, DJ98, DJ99, ACD74, WG90, OH96,
PP92, SL93, KA99, BJM97, BGM+06, RGA+06]. Some of the approaches pro-
pose exact, optimal solutions, while others are heuristics producing suboptimal
results. In Chapter 4 we will present two approaches where on top of guarantee-
ing the timing constraints, the objective of minimizing the energy consumption is
added.

We illustrate the relation between mapping and the energy consumption, using
an MPEG2 decoder that has to be implemented on a multiprocessor platform. The
number of ARM7 processor cores, as well as the voltage/frequency of the platform
can be statically configured. From the energy perspective, a low clock speed is
desirable. The real-time constraint is to finish decoding each video frame in 40ms.
The design space exploration has to decide between using many processors at a
low voltage/frequency or few processors that run fast. The parallelism of the ap-
plication is key in selecting the right configuration. The results are presented in
Fig. 1.5. Fig. 1.5(a) presents the normalized execution time as a function of the
number of processors. The execution time for decoding one frame for each core



18 CH. 1. INTRODUCTION

N
or

m
al

iz
ed

 e
xe

cu
tio

n 
tim

e

Number of CPUs

N
or

m
al

iz
ed

 e
ne

rg
y

(b) Energy consumption

Number of CPUs

(a) Execution time

 2  4  6  8  10  12
 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 2  4  6  8  10  12

Figure 1.5: Design Space Exploration for an MPEG2 Decoder

count is normalized against the execution time obtained for the execution on one
single processor. We notice that there is no strict monotonicity relation between the
number of processors and the resulting execution time. Nevertheless, the execution
time can be improved by more then 60% if more then 8 cores are used. The energy
consumption achieved for each number of processors is shown in Fig. 1.5(b). The
energy obtained for a certain number of processors is normalized against the energy
consumed by a single processor implementation. For each number of processors,
experiments were performed using several frequencies of the platform. The results
with the lowest energy are the ones reported in Fig. 1.5(b). We observe that us-
ing 9 processors provides the best energy savings. When using a smaller number
of processors, the platform has to be clocked a higher frequency/voltage and thus
consumes more. Adding more processors, due to the extra hardware and the fact
that there is no more parallelism to exploit, results in increased energy.

1.3 Energy Optimization

The number of battery powered embedded devices as well as their complexity con-
tinues to grow. In [ITR] it is projected that the amount of power required by new
devices increases by 35-40% per year. However, the capacity of the batteries in-
creases by only 10-15% per year, leaving a gap that must be filled by various
optimization techniques. Energy can be improved at various stages during the
embedded system design flow, from the system level, down to the circuit level
[AMR+06, SAHE04, BD00]. In this thesis we will concentrate on energy opti-
mization techniques at the system level.

Although, until recently, the dynamic power dissipation has been dominating,
the trend to reduce the overall circuit supply voltage and, consequently, threshold
voltage, is raising concerns about the leakage currents [Bor99, KR02, MFMB02,



1.4 Contributions 19

HASM+03]. In this thesis we propose algorithms that target the minimization of
both dynamic and leakage energy.

In the previous section, we have shown that energy consumption can be re-
duced by an intelligent mapping of the tasks to the processors. Even with a good
mapping, the energy consumption can be further optimized. During architecture
selection and mapping, the best processors that can provide the required perfor-
mance are selected. Nevertheless, due to a finite set of available processors, the
selected ones are always more powerful then required. Furthermore, many appli-
cations have a variable execution time, but the hardware has to be powerful enough
to accommodate the worst-case scenario. Thus, a certain amount of slack is present
in the task schedules. We will present in this thesis algorithms that are exploiting
this slack and thus, reduce the energy consumption.

1.4 Contributions

In the vast context of system-level design of embedded systems, the contributions
of this thesis are the following:

1. Offline energy minimization technique:

(a) We consider both supply voltage and body-bias voltage selection at the
system-level, where several tasks with dependencies execute a time-
constrained application on a multiprocessor system.

(b) Four different voltage selection schemes are formulated as nonlinear
programming (NLP) and mixed integer linear programming (MILP)
problems which can be solved optimally. The formulations are equally
applicable to single and multiprocessor systems.

(c) We prove that discrete voltage selection with and without the consid-
eration of transition overheads in terms of energy and time is strongly
NP-hard, while the continuous voltage selection cases can be solved in
polynomial time (with an arbitrary given approximation ε > 0).

(d) We solve the combined voltage selection problem for processing ele-
ments and communications links. To allow an effective voltage selec-
tion on the communication links, we outline a set of delay and energy
models. Further, we take into account the possibility of dynamic volt-
age swing scaling on fat wires and address the leakage power dissipa-
tion in bus repeaters.

(e) Since voltage selection for components that operate with discrete volt-
ages is proofed to be NP-hard, we introduce a simple yet effective



20 CH. 1. INTRODUCTION

heuristic based on the NLP formulation for the continuous voltage se-
lection problem.

(f) We study the combined voltage selection and processor shutdown prob-
lem. In particular, we demonstrate that the processor shutdown is an
NP complete problem even isolated from the voltage selection. We
propose two solutions that integrate the shutdown with the continuous
and respectively with the discrete voltage selection.

2. Online energy minimization technique:

(a) Two quasi-static voltage selection algorithms for multi-task applica-
tions are proposed. Both continuous and discrete voltage selection are
investigated.

(b) We propose online algorithms for systems consisting of both single and
multiprocessors

(c) We perform an evaluation of the impact of the overhead of different
dynamic voltage scaling approaches on realistic applications.

3. Predictability

(a) We identify the inaccuracies of classical worst-case execution time
analysis techniques when used for the analysis of tasks implemented
on multiprocessor platforms with a shared bus.

(b) We propose a TDMA-based bus scheduling policy that provides a pre-
dictable bus access.

(c) We propose a new framework that integrates system level task schedul-
ing, bus access optimization and worst-case execution time analysis for
real-time applications implemented on multiprocessor systems.

1.5 List of papers

Parts of the contents of this dissertation have been presented in the following pa-
pers:

• [AERP07]: Alexandru Andrei, Petru Eles, Zebo Peng, Jakob Rosen ”Pre-
dictable Implementation of Real-Time Applications on Multiprocessor Sys-
tems on Chip”, submitted.

• [AEP+07b]: Alexandru Andrei, Petru Eles, Zebo Peng, Marcus Schmitz,
Bashir Al-Hashimi ”Voltage Selection for Time-Constrained Multiprocessor



1.5 List of papers 21

Systems on Chip”, chapter in ”Designing Embedded Processors: A Low
Power Perspective”, pages 259-284, edited by J. Henkel, S.Parameswaran,
Springer 2007.

• [AEP+07a]: Alexandru Andrei, Petru Eles, Zebo Peng, Marcus Schmitz,
Bashir Al-Hashimi ”Energy Optimization of Multiprocessor Systems on Chip
by Voltage Selection”, IEEE Transactions on Very Large Scale Integration
Systems, volume 15, number 3, pages 262-275, March, 2007.

• [RGA+06]: Martino Ruggiero, Pari Gioia, Guerri Alessio, Luca Benini ,
Michela Milano, Davide Bertozzi, Alexandru Andrei ”A Cooperative, Accu-
rate Solving Framework for Optimal Allocation, Scheduling and Frequency
Selection on Energy-Efficient MPSoCs”, International Symposium on Sys-
tem on Chip, pages 1-4, 2006, Tampere, Finland.

• [ASE+05a]: Alexandru Andrei, Marcus Schmitz, Petru Eles, Zebo Peng,
Bashir Al-Hashimi ”Overhead-Conscious Voltage Selection for Dynamic
and Leakage Energy Reduction of Time-Constrained Systems”, IEE Pro-
ceedings Computers & Digital Techniques, special issue with the best con-
tributions from the DATE 2004 Conference, Volume 152, Issue 01, pages
28-38, January, 2005

• [ASE+05b]: Alexandru Andrei, Marcus Schmitz, Petru Eles, Zebo Peng,
Bashir Al-Hashimi ”Quasi-Static Voltage Scaling for Energy Minimization
with Time Constraints”, Design Automation and Test in Europe (DATE),
pages 514-519, 2005, Munchen, Germany.

• [ASE+04b]: Alexandru Andrei, Marcus Schmitz, Petru Eles, Zebo Peng,
Bashir Al-Hashimi ”Simultaneous Communication and Processor Voltage
Scaling for Dynamic and Leakage Energy Reduction in Time-Constrained
Systems”, The International Conference on Computer Aided Design (IC-
CAD), pages 362-369, 2004, San Jose, USA.

• [ASE+04a]: Alexandru Andrei, Marcus Schmitz, Petru Eles, Zebo Peng,
Bashir Al-Hashimi ”Overhead-Conscious Voltage Selection for Dynamic
and Leakage Energy Reduction of Time-Constrained Systems”, Design Au-
tomation and Test in Europe (DATE), pages 518-523, 2004, Paris, France.

Other papers where the author of the thesis was involved:

• [RAEP07]: Jakob Rosen, Alexandru Andrei, Petru Eles, Zebo Peng ”Bus
Access Optimization for Predictable Implementation of Real-Time Applica-
tions on Multiprocessor Systems on Chip”, Real-Time Systems Symposium
(RTSS), 2007, Tucson, USA.



22 CH. 1. INTRODUCTION

• [And06]: Alexandru Andrei ”System Design of Embedded Systems Run-
ning on an MPSoC Platform”, Technical report Linkoping University, 2006.

• [PPE+06]: Traian Pop, Paul Pop, Petru Eles, Zebo Peng, Alexandru An-
drei ”Timing Analysis of the FlexRay Communication Protocol”, Euromicro
Conference on Real-Time Systems (ECRTS), 2006, pages 203-213 ,Dres-
den, Germany.

• [ASEP04] Alexandru Andrei, Marcus Schmitz, Petru Eles, Zebo Peng, Bashir
Al-Hashimi ”Simultaneous Communication and Processor Voltage Scaling
for Energy Reduction in Time-Constrained Systems”, Power Aware Real-
Time Computing Workshop (PARC), 2004, Pisa, Italy.

1.6 Thesis organization

The thesis is organized as follows. In the first Part, in Chapter 1, we present a
generic design flow for real-time embedded systems. This design flow serves as a
general framework for the following parts.

In Part II, we define energy minimization as a problem for today’s battery op-
erated embedded systems. Chapter 2 gives an overview to energy/speed trade-offs
in general and introduces supply voltage scaling and adaptive body biasing as the
two techniques that can be used efficiently at the system level in order to minimize
the energy consumption. The energy minimization problem is addressed with of-
fline and online algorithms. In Chapter 3 we solve optimally the combined supply
voltage and body bias selection problem for multiprocessor systems with imposed
time constraints, explicitly taking into account the transition overheads implied by
changing voltage levels. Moreover, we show that voltage selection can be applied
not only to processors, but also to the communication infrastructure.

The mapping of the tasks on the processors and the schedule have a big impact
on the achievable energy savings. In Chapter 4, we present an integrated approach.
The algorithms described in Chapter 3 are used within two system level optimiza-
tion frameworks that perform architecture selection, task mapping and scheduling.

The previously mentioned approaches belong to the offline category. The opti-
mization is performed at design time, assuming worst-case execution times. How-
ever, many applications exhibit variations of their execution time, which lead to a
certain amount of dynamic slack, that is known only during runtime. In order to
exploit this additional slack, an online recalculation of the voltages is needed. We
present in Chapter 5 such an approach. Since the complexity of any online algo-
rithm is critical, we propose a quasi-static solution that calculates offline the task
voltages for several possible execution times and stores them in look-up tables.



1.6 Thesis organization 23

The online algorithm is using the precalculated values from the look-up table, de-
pending on the actual execution times.

In Part III, Chapter 6, we identify the estimation of the worst-case execution
time as a potential problem for systems with several processors and memories con-
nected by a shared bus. In this context, we propose an approach to worst-case
execution time analysis and system scheduling for real-time applications.

Part IV presents the conclusions and sketches the future work.



24 CH. 1. INTRODUCTION



Part II

Energy Minimization by

Voltage Selection





Chapter 2

Introduction

An obvious trend in the last years is to pack more and more functionality into
smaller and smaller electronic devices. A typical example are mobile phones with
digital cameras and media players. This leads to an increase in the amount of
power needed to run all these applications. Since a large fraction of such embedded
systems are powered by batteries, energy consumption becomes a major design
issue. The gap between the amount of power provided by advances in battery
technologies and the power demanded by new functionality is increasing. This
motivates the work on energy minimization techniques presented in Chapters 3, 4,
5.

2.1 Energy/Speed Trade-off

Embedded computing systems need to be energy efficient, yet they have to de-
liver adequate performance to computational expensive applications, such as voice
processing and multimedia. Energy minimization can be performed at different
levels during the design. We have shown in Chapter 1 how mapping can be used
to improve the energy consumption. Another orthogonal approach is based on the
fact that the workload imposed on an embedded system is non-uniform over time.
This introduces slack times during which the system can reduce its performance
and thus save energy.

Let us examine the schedule depicted in Fig. 2.1(a) (obtained for the task graph
from Fig. 1.4). If the tasks are running at the highest speed, τ5 finishes before the
deadline dl and thus reveals a certain amount of slack. In real-time systems, the
task execution times must not exceed their deadlines, but there is no reward for fin-



28 CH. 2. INTRODUCTION

time

τ1

τ1 τ2

τ1 τ2

τ1

τ1
time0

po
w

er

20

4020

time0
po

w
er

20

10

4020

slack

dl

dl

E=400

7
E=280

τ2

γ 3−
4

τ4 τ5

γ 1−
2

γ 1−
3

γ 2−
5

τ3

time

τ1

τ2

τ5τ4

γ 1−
2

γ 1−
3

γ 2−
5

γ 3−
4

τ3

dl

(c) Schedule after voltage scaling

C
P

U
1

C
P

U
2

C
P

U
3

B
U

S

idle idle

idle

idle
13

19 39 51

time

τ1

τ2

τ5τ4

γ 1−
2

γ 1−
3

γ 2−
5

γ 3−
4

τ3

SHUTIDLE

160 sμ

160 sμ

C
P

U
1

C
P

U
2

C
P

U
3

B
U

S

idle

idle slack+idle

slack+idle

dl

(a) Schedule with slack and idle times

(d) Energy reduction with voltage scaling

(f) Energy reduction with processor shutdown(e) Schedule after processor shutdown

time0

po
w

er

20

4010 30

shutdown

time0

po
w

er

20

4010 30

dl

E=200

E=200

E=100

idle
10

E=10

(b) Processor with voltage scaling and shutdown capabilities

dl

E=200

E=200

dldl

10

16 31 41

59 695347

slack

dl

C
P

U
1

C
P

U
2

C
P

U
3

B
U

S

shutdown

13

19 39 51

shutdown shutdown

shutdown

6357

6357

RUN

RUN

RUN

1.3V, 450mW
600MHz

0.75V, 60mW
150MHz

800MHz
1.6V, 900mW

140ms10 s 1.5msμ

90 sμ

μW

10μs

1605mW

Figure 2.1: Schedule with Idle and Slack Times

ishing earlier. On the other hand, due to the dependencies, task τ2 running CPU1
can start only after the message γ1−2 sent at the end of τ1 is transmitted. This
results in a certain amount of idle time on CPU1, from time 0 until 16, when τ2
can be started. The slack and idle times are key factors that influence the achiev-
able energy savings. Many processors produced today (general purpose mobile
processors as well as embedded ones) have the capability to dynamically change
their frequency [Kla00, pow00, xsc00] at runtime. Using a high frequency results
in faster execution times and a higher power consumption then using lower fre-
quencies. Moreover, during idle periods when no instruction has to be executed,
it is possible to save the current state of the processor, shut it down in order to



2.1 Energy/Speed Trade-off 29

save the energy and then restart executing. A simplified diagram of the possible
power states of such a processor (Intel Xscale [xsc00]) is depicted in Fig.2.1(b).
Tasks can be executed using 3 performance modes. Each mode is characterized by
a certain frequency (800, 600, 150MHz) and a corresponding power consumption
(900, 450, 60mW). At runtime, any combination of these modes can be used to
execute a task. Switching between two performance modes comes with a certain
time and energy penalty. Two other states can be used when the processor is not
executing any task. If the first one (Idle) is used, the processor consumes 5mW, as
opposed to the lowest power consumption of 60mW that can be achieved during
the execution of a task. During this state, clock gating is activated, and so there is
no switching activity in the processor. The overhead associated with a transition
to this state is very small. If the period when the processor is not executing any
task is longer, there exists a state when it consumes only 160muW . The overhead
associated with switching to this state (140ms) is high, so it must be used only after
a careful analysis.

The usage of voltage scalable processors opens the possibility for various en-
ergy/speed trade-offs. We will show in the following how to exploit the available
slack and idle times in order to reduce the energy consumption, in the context of
real-time systems. Throughout the thesis, we will use the terms voltage scaling,
voltage selection, frequency scaling and frequency selection interchangeably.

Let us focus on the example depicted in Fig. 2.1(d). Task τ1 is executed at
100MHz and finishes in the worst-case at 20ms, while its deadline is 40ms. The
power consumption at 100MHz is 20mW, resulting in an energy consumption for
τ1 of 400μJ. If voltage scaling is performed and τ1 is executed at 50MHz, it finishes
exactly at the deadline, using all the available slack. With a power consumption
of 7mW at 50MHz, an energy of 280μJ is consumed, 30% less then the nominal
case. Performing voltage scaling for a multi-task system is a complex issue, due to
the potential dependencies between the tasks that influence the distribution of the
slack. Let us consider performing voltage scaling for the schedule in Fig. 2.1(a).
Please note that τ5 finishes its execution at time 59, before the deadline that is set at
69 and thus yielding a slack of 10 time units. This slack can be exploited by voltage
scaling. The question that needs to be addressed at this point is how to distribute
this slack among the 5 tasks. Fig. 2.1(c) shows one possibility. τ1 executed at a
lower frequency, finishes in 13 time units instead of 10 at the nominal frequency.
τ2 that needs 15 time units at the nominal frequency uses 20 time units at a lower
frequency. τ3 is extended with 3 time units. If we propagate the dependencies
and calculate the new end times, we observe that the deadline is met, but tasks τ4
and τ5 cannot be scaled. We will present in Chapter 3, both optimal and heuristic
algorithms for the voltage selection problem.



30 CH. 2. INTRODUCTION

The examples from Fig. 2.1(c) and (d) have illustrated the efficiency of voltage
scaling for the minimization of the energy consumed by the tasks. We will refer to
this energy in the following as active energy. Let us focus now on the minimization
of the energy that is consumed when the processor is not running any task. A small
example is depicted in Fig. 2.1(f). Let us assume that τ1 has a deadline at 10ms,
τ2 can start at 30ms and must finish at 40ms. As a result, the processor is idle
(not running any task) between 10 and 30ms. Assuming that during idle times the
processor consumes 5mW, the energy spent idling is 100μJ. If the processor can
be shut down during this time, energy is consumed only to save and later restore
the state of the processor. In our case this energy is 10μJ. So overall, by shutting
down the processor we save 18% of the total energy.

An examination of the schedule resulted after performing voltage scaling from
Fig. 2.1(c), shows that even if there is no more slack, there exists a certain amount
of idle time on each of the 3 processors. If the idle times are long enough (ie.
the achievable savings are higher than the shutdown overhead), the energy can be
minimized if the processors are shutdown during these time intervals. The result-
ing schedule is illustrated in Fig. 2.1(e). In general, deciding when to shutdown
and furthermore, the integration of voltage scaling with processor shutdown is not
trivial. An efficient algorithm is presented in Chapter 3.

2.2 Voltage Selection Techniques

Two system-level approaches that allow an energy/performance trade-off during
run-time of the application are dynamic voltage selection (DVS) [IY98, MFMB02,
YDS95] and adaptive body biasing (ABB) [KR02, MFMB02]. While DVS aims
to reduce the dynamic power consumption by scaling down operational frequency
and circuit supply voltage Vdd , ABB is effective in reducing the leakage power
by scaling down frequency and increasing the threshold voltage Vth through body-
biasing. Up to date, most research efforts at the system-level were devoted to
DVS, since the dynamic power component had been dominating. Nonetheless,
the trend in deep-submicron CMOS technology to reduce the supply voltage levels
and consequently the threshold voltages (in order to maintain peak performance)
is resulting in the fact that a substantial portion of the overall power dissipation
will be due to leakage currents [Bor99, KR02]. This makes the adaptive body-
biasing approach and its combination with dynamic voltage selection attractive for
energy-efficient designs in the foreseeable future.



2.3 Offline and Online Voltage Selection 31

τ1
τ1 τ1

τ1

μs]t[ μs]t[ μs]t[0

(b) Continuous voltage selection

dl

(c) Discrete voltage selection

dl

7

(a) Schedule with slack

20
20

dl

4020

slack
f=66MHz

f=33MHzf=50MHz

20

90

f=100MHz

3

P [mW] P [mW] P [mW]

400 20.60 40

Figure 2.2: Continuous and Discrete Voltage Selection

2.3 Offline and Online Voltage Selection

Voltage selection approaches can be broadly classified into online and offline tech-
niques.

Offline techniques perform the optimization statically. This is useful for real-
time systems, where one of the most important issues is guaranteeing that the tim-
ing constraints are met. In the context of voltage selection, offline means that the
calculation of the voltages to be assigned to each task is performed at design time.
These values are then used, without any additional computational effort, at runtime.
The fact that the optimization is performed before runtime has several advantages.
First, even if long optimization times are not desired, they can often be afforded.
So, complex algorithms can be used. In many cases, the computer system where
the optimization is performed is powerful, as opposed to the target embedded sys-
tem. However, offline optimizations have disadvantages. The most important is
the lack of flexibility. Let us assume, for example, that voltage selection was per-
formed offline for a real-time system. In order to guarantee the correct timing,
worst-case execution time had to be used for each task. However, at runtime most
of the tasks finish before their estimated worst-case. This creates a certain amount
of dynamic slack, known only at runtime, that is not exploited by the voltages cal-
culated offline. In order to exploit this dynamic slack, an online recalculation of
the voltages is needed. Since this calculation is performed at runtime, it has to be
very efficient. We will present both offline and online approaches in Chapters 3
and 5.

2.4 Continuous and Discrete Voltage Selection

Depending on the assumption regarding the scale of available voltages and frequen-
cies on the target processor, two voltage selection problems are formulated. First,
if the task voltages and frequencies can be chosen within a continuous interval, the
resulting problem is called continuous voltage selection. Second, if the variables
can be selected from a discrete set, the problem is called discrete voltage selection.



32 CH. 2. INTRODUCTION

These two flavors are illustrated with the example from Fig. 2.2. Fig. 2.2(a) shows
the execution of the task τ1 at the nominal speed of 100MHz. With a worst-case
number of 2000 clock cycles, τ1 finishes at 20μs, before the deadline at 40μs. If
continuous voltage scaling is used, the frequency is selected for τ1 such that it fin-
ishes exactly at the deadline, like in Fig. 2.2(b). For 2000 clock cycles that are
executed in 40μs, a frequency of 50MHz is needed.

Discrete voltage selection is illustrated in Fig. 2.2(c). Let us assume that the
processor is capable of operating in three different performance modes, using 3
discrete frequencies: 100MHz, 66MHz and 33MHz. Moreover, τ1 is executed
cycle by cycle, and, during each cycle, a different frequency can potentially be
used. [IY98] presents a heuristic for the calculation of the performance modes and
the corresponding number of clock cycles for a task, given an available execution
time. After the calculation of the optimal voltage assuming the continuous case, it
proposes the usage of the two voltages corresponding to frequencies that surround
the continuous one. For the example in Fig. 2.2, where the calculated continuous
frequency is 50MHz, the discrete modes are 66 and 33MHz. In order to calculate
the number of clock cycles to be executed in each of these modes, a system of two
equations has to be solved:

NC1

66
+

NC2

33
= 40

NC1 +NC2 = 2000

The first equation establishes that the times executed in the two modes has to sum
up to the available execution time for the task. The second equation states that
all the task’s clock cycles have to be distributed between the two modes. For the
example from Fig. 2.2, it will result in 1640 clock cycles to be executed at 66MHz
and 370 clock cycles to be executed at 33MHz.

For systems consisting of more then one task, with possible dependencies and
a different amount of power consumed by each task, the voltage selection problem
is not trivial. This classification in continuous and discrete voltage selection was
done due to complexity reasons. While real processors can operate using a discrete
range of performance modes, computationally, the continuous voltage selection al-
gorithms are easier (polynomial) then their discrete counterparts (NP hard). These
aspects will be addressed in Chapter 3.



Chapter 3

Offline Energy Optimization

by Voltage Selection

Dynamic voltage selection and adaptive body biasing have been shown to reduce
dynamic and leakage power consumption effectively. In this chapter, we restrict
to offline techniques, where the scaled supply voltages are calculated at design
time and then applied at run-time according to the pre-calculated voltage sched-
ule. We present an optimal approach for the combined supply voltage and body
bias selection problem for multiprocessor systems with imposed time constraints,
explicitly taking into account the transition overheads implied by changing voltage
levels. Both energy and time overheads are considered. The voltage selection tech-
nique achieves energy efficiency by simultaneously scaling the supply and body
bias voltages in the case of processors and buses with repeaters, while energy ef-
ficiency on fat wires is achieved through dynamic voltage swing scaling. We in-
vestigate the continuous voltage selection as well as its discrete counterpart, and
we prove strong NP-hardness in the discrete case. Furthermore, the continuous
voltage selection problem is solved using nonlinear programming with polynomial
time complexity, while for the discrete problem we use mixed integer linear pro-
gramming and a polynomial time heuristic. We propose an approach that combines
voltage selection and processor shutdown in order to optimize the total energy.

3.1 Related Work

There has been a considerable amount of work on dynamic voltage selection.
Yao et al. [YDS95] proposed the first DVS approach for single processor systems



34 CH. 3. OFFLINE ENERGY OPTIMIZATION BY VOLTAGE SELECTION

which can change the supply voltage over a continuous range. Ishihara and Ya-
suura [IY98] modeled the discrete voltage selection problem using an integer linear
programming (ILP) formulation. Kwon and Kim [KK05] proposed a linear pro-
gramming (LP) solution for the discrete voltage selection problem with uniform
and non-uniform switched capacitance. Although this work gives the impression
that the problem can be solved optimally in polynomial time, we will show in
this chapter that the discrete voltage selection problem is indeed strongly NP-hard
and, hence, no optimal solution can be found in polynomial time, for example us-
ing LP. Dynamic voltage selection has also been successfully applied to heteroge-
neous distributed systems, mostly using heuristics [GK01, LJ03, SAH01]. Zhang
et al. [ZHC02] approached continuous supply voltage selection in distributed sys-
tems using an ILP formulation. They solved the discrete version of the problem
through an approximation.

While the approaches mentioned above scale only the supply voltage Vdd and
neglect leakage power consumption, Kim and Roy [KR02] proposed an adap-
tive body-biasing approach (in their work referred to as dynamic Vth scaling) for
active leakage power reduction. They demonstrate that the efficiency of ABB
will become, with advancing CMOS technology, comparable to DVS. Duarte et
al. [DVI+02] analyze the effectiveness of supply and threshold voltage selection,
and show that simultaneously adjusting both voltages provides the highest savings.
Martin et al. [MFMB02] presented an approach for combined dynamic voltage
selection and adaptive body-biasing. At this point we should emphasize that, as
opposed to these three approaches, we investigate in this chapter how to select volt-
ages for a set of tasks, possibly with dependencies, which are executed on multipro-
cessor systems under real-time constraints. Furthermore, as opposed to our work,
the techniques mentioned above neglect the energy and time overheads imposed
by voltage transitions. Noticeable exceptions are [HQPS98, MHQ02, MHQ07,
ZHC03], yet their algorithms ignore leakage power dissipation and body-biasing,
and further they do not guarantee optimality. In this work, we consider simulta-
neous supply voltage selection and body biasing, in order to minimize dynamic
as well as leakage energy. In particular, we investigate four different notions of
the combined dynamic voltage selection and adaptive body-biasing problem —
considering continuous and discrete voltage selection with and without transition
overheads. A similar problem for continuous voltage selection has been formulated
in [YLJ05]. However, it is solved using a suboptimal heuristic. The combination of
dynamic supply voltage selection and processor shutdown was presented in [RJ05]
for single processor systems. The authors demostrate the existence of a critical
speed, under which scaling the processor frequency becomes energy inefficient,
due to the fact that the leakage energy increases faster than the dynamic energy



3.1 Related Work 35

decreases. The leakage energy reduction is achieved there by shutting down the
processor during the idle intervals, without performing adaptive body biasing.

To fully exploit the potential performance provided by multiprocessor archi-
tectures (e.g. systems-on-a-chip), communication has to take place over high per-
formance buses, which interconnect the individual components, in order to prevent
performance degradation through unnecessary contention. Such global buses re-
quire a substantial portion of energy, on top of the energy dissipated by the com-
putational components [Sve01, SK01]. The minimization of the overall energy
consumption requires the combined optimization of both the energy dissipated by
the computational processors as well as the energy consumed by the interconnec-
tion infrastructure.

A negative side-effect of the shrinking feature sizes is the increasing RC delay
of on-chip wiring [IF99, SK01]. The main reason behind this trend is the ever-
increasing line resistance. In order to maintain high performance it becomes nec-
essary to “speed-up” the interconnects. Two implementation styles which can be
applied to reduce the propagation delay are: (a) The insertion of repeaters and (b)
the usage of fat wires. In principle, repeaters split long wires into shorter (faster)
segments [IF99, KCS02, SK01, CTH05] and fat wires reduce the wire resistance
[Sve01, SK01]. Techniques for the determination of the optimal quantity of re-
peaters are introduced in [IF99, KCS02]. An approach to calculate the optimal
voltage swing on fat wires has been proposed in [Sve01]. Similar to processors
with supply voltage selection capability, approaches for link voltage scaling were
presented in [SPJ02, WKL+00]. An approach for communication speed selection
was outlined in [LCB02]. Another possibility to reduce communication energy
is the usage of bus encoding techniques [BMM+98]. In [HP02], it was demon-
strated that shared-bus splitting, which dynamically breaks down long, global buses
into smaller, local segments, also helps to improve energy savings. An estimation
framework for communication switching activity was introduced in [FSS99].

Until now, energy estimation for system-level communication was treated in
a largely simplified manner [LCB02, VM03] and based on naive models that ig-
nore essential aspects such as bus implementation technique (repeaters, fat wires),
leakage power, and voltage swing adaption. This, however, very often leads to
oversimplifications which affect the correctness and relevance of the proposed ap-
proaches and, consequently, the accuracy of results. On the other hand, issues
like optimal voltage swing and increased leakage power due to repeaters are not
considered at all for implementations of voltage-scalable embedded systems.

As mentioned earlier, in this chapter we will concentrate on off-line voltage
selection techniques, that make use of the static slack existing in the application.
In Chapter 5 we present an efficient technique that dynamically makes use of slack



36 CH. 3. OFFLINE ENERGY OPTIMIZATION BY VOLTAGE SELECTION

created online, due to the fact that tasks execute less then their worst case number
of clock cycles.

The remainder of this chapter is organized as follows: Preliminaries regard-
ing the system specification, the processor power and delay models are given in
Sections 3.2 and 3.3. This is followed by a motivational example in Section 3.4.
The four investigated processor voltage selection problems are formulated in Sec-
tion 3.5. Continuous and discrete voltage selection problems are discussed in Sec-
tions 3.6 and 3.7, respectively. We study the combined voltage selection and shut-
down problem in Section 3.8. Power and delay models for the communication
links are given and the general problem of voltage selection for processors and
the communication is addressed in Section 3.9. Extensive experimental results are
presented in Section 3.10.

3.2 System and Application Model

We consider embedded systems which are realized as heterogeneous distributed
architectures. Such architectures consist of several different processing elements
(PEs), such as programmable microprocessors, ASIPs, FPGAs, and ASICs, some
of which feature DVS and ABB capability. These computational components com-
municate via an infrastructure of communication links (CLs), like buses and point-
to-point connections. We define P and L to be the sets of all processing elements
and all links, respectively. An example architecture is shown in Fig. 1.4(a). The
functionality of applications is captured by task graphs G(Π,Γ), as in Fig. 1.4(b).
Nodes τ ∈ Π in these directed acyclic graphs represent computational tasks, while
edges γ ∈ Γ indicate data dependencies between these tasks (communications).
Tasks τi require in the worst case WNCi clock cycles to be executed, depending on
the PE to which they are mapped. Further, tasks are annotated with deadlines dli
that have to be met at run-time.

If two dependent tasks are assigned to different PEs, px and py with x �= y, then
the communication takes place over a CL, involving a certain amount of time and
power.

We assume that the task graph is mapped and scheduled on the target archi-
tecture, i.e., it is known where and in which order tasks and communications take
place. Fig. 1.4(c) shows the task graph from Fig. 1.4(b) that has been mapped onto
the architecture in Fig. 1.4(a). Fig. 1.4(d) depicts a possible execution order.

To tie the execution order into the application model, we perform the following
transformation on the original task graph. First, all communications that take place
over communication links are captured by communication tasks, as indicated by
squares in Fig. 3.1. For instance, communication γ1−2 is replaced by task τ6 and



3.3 Processor Power and Delay Models 37

τ1

τ2 τ3

τ4τ5

τ6 τ7

τ8 τ9

r1

r3

r2r4

dl=7ms

Figure 3.1: System model: Extended task graph

the edges connecting τ6 to τ1 and τ2 are introduced. K defines the set of all such
communication tasks and C the set of graph edges obtained after the introduction
of the communication tasks. Furthermore, we denote with T = Π∪K the set of
all computations and communications. Second, on top of the precedence relations
given by data dependencies between tasks, we introduce additional precedence
relations r ∈ R , generated as result of scheduling tasks mapped to the same PE and
communications mapped on the same CL. In Fig. 3.1, corresponding to the initial
task graph from Fig. 1.4(b) and the schedule from Fig. 1.4(d), the dependencies R
are represented as dotted edges. We define the set of all edges as E = C ∪R . We
construct the mapped and scheduled task graph G(T ,E). Further, we define the
set E• ⊆ E of edges, as follows: an edge (i, j) ∈ E• if it connects task τi with its
immediate successor τ j (according to the schedule), where τi and τ j are mapped
on the same PE or CL.

3.3 Processor Power and Delay Models

Digital CMOS circuitry has two major sources of power dissipation: (a) dynamic
power Pdyn, which is dissipated whenever active computations are carried out (swi-
tching of logic states), and (b) leakage power Pleak which is consumed whenever
the circuit is powered, even if no computations are performed. The dynamic power



38 CH. 3. OFFLINE ENERGY OPTIMIZATION BY VOLTAGE SELECTION

is expressed by [CB95, MFMB02]:

Pdyn = Ce f f · f ·V 2
dd (3.1)

where Ce f f , f , and Vdd denote the effective charged capacitance, operational fre-
quency, and circuit supply voltage, respectively. Although, until recently, dynamic
power dissipation has been dominating, the trend to reduce the overall circuit sup-
ply voltage and consequently threshold voltage is raising concerns about the leak-
age currents. For near future technology (< 65nm) it is expected that leakage will
account for a significant part of the total power. The leakage power is given by
[MFMB02]:

Pleak = Lg ·Vdd ·K3 · eK4·Vdd · eK5·Vbs + |Vbs| · IJu (3.2)

where Vbs is the body-bias voltage and IJu represents the body junction leakage
current (constant for a given technology). The fitting parameters K3, K4 and K5
denote circuit technology dependent constants and Lg reflects the number of gates.
For clarity reasons we maintain the same indices as used in [MFMB02], where
also actual values for these constants are given. Please note that the leakage power
is stronger influenced by Vbs than by Vdd , due to the fact that the constant K5 is
larger than the constant K4 (e.g., for the Crusoe processor described in [MFMB02],
K5 = 4.19 while K4 = 1.83).

Nevertheless, scaling the supply and the body-bias voltage for power saving,
has a side-effect on the circuit delay d and hence the operational frequency [CB95,
MFMB02]:

f =
1
d

=
((1+K1) ·Vdd +K2 ·Vbs −Vth1)α

K6 ·Ld ·Vdd
(3.3)

where α reflects the velocity saturation imposed by the used technology (common
values 1.4 ≤ α ≤ 2), Ld is the logic depth, and K1, K2, K6 and Vth1 are circuit
dependent constants.

Another important issue, which often is overlooked, is the consideration of
transition overheads, i.e., each time the processor’s supply and body bias voltage
are altered, the change requires a certain amount of extra energy and time. These
energy εk, j and delay δk, j overheads, when switching from Vddk to Vdd j and from
Vbsk to Vbs j , are given by: [MFMB02],

εk, j = Cr · |Vddk −Vdd j |2 +Cs · |Vbsk −Vbs j |2 (3.4)

δk, j = max(pV dd · |Vddk −Vdd j |, pV bs · |Vbsk −Vbs j |) (3.5)

where Cr denotes power rail capacitance, and Cs the total substrate and well capac-
itance. Since transition times for Vdd and Vbs are different, the two constants pV dd



3.4 Motivational Examples 39

7.97 2.49

τ1 τ2 τ3 τ3τ2τ1

dynamic

leakage

μJ

μJ

μJ

μJ

μJ

μJ

μJ5.20

μJ4.67

μJ2.21

μJ1.85

dynamic

leakage

μJ

μJ

μJ μJ

μJ

μJ

μJ4.29

μJ μJ

Deadline

(m
W

)

time

po
w

er

(ms)

(a) Vdd  scaling only

Deadline

time

(m
W

)
po

w
er

(ms)

(b) Simultaneous  V  and  V
bs

 scaling
dd

0.43

3.05

5.05

0.75

2.49

0.32

0.36

0.42
0.89

1.00

E  =29.73Σ E  =26.02Σ

3.49 μJ J6.95 μ 1.87
μJ

 0  0.1  0.2  0.3  0  0.1  0.2  0.3
 0

 100

 50

 0

 100

 50

Figure 3.2: Influence of Vbs scaling

and pV bs are used to calculate both time overheads independently. Considering that
supply and body-bias voltage can be scaled in parallel, the transition overhead δk, j
depends on the maximum time required to reach the new voltage levels.

In the following, we assume that the processors can operate in several execu-
tion modes. An execution mode mz is characterized by a pair of supply and body
bias voltages: mz = (Vddz ,Vbsz). As a result, an execution mode has an associated
frequency and power consumption (dynamic and leakage) that can be calculated
using Eq. 3.3 and respectively Eq. 3.1 and 3.2. Upon a mode change, the corre-
sponding delay and energy penalties are computed using Eq. 3.5 and 3.4.

Tasks that are mapped on different processors communicate over one or more
shared buses. In Sections 3.4-3.8 we assume that the buses are not voltage scal-
able and thus working at a given frequency. Each communication task has a fixed
execution time and energy consumption depeding proportionally on the amount of
communication. For simplicity of the explanations, in Sections 3.4-3.8 we will not
differentiate between computation and communication tasks. A more refined com-
munication model, as well as the benefits of simultaneously scaling the voltages of
the processors and communication links is introduced in Section 3.9.

3.4 Motivational Examples

3.4.1 Optimizing the Dynamic and Leakage Energy

Fig. 3.2 shows two optimal voltage schedules for a set of three tasks (τ1, τ2, and
τ3), executing in two possible voltage modes. While the first schedule relies on
Vdd scaling only (i.e., Vbs is kept constant), the second schedule corresponds to the



40 CH. 3. OFFLINE ENERGY OPTIMIZATION BY VOLTAGE SELECTION

simultaneous scaling of Vdd and Vbs. Please note that the figures depict the dynamic
and the leakage power dissipation as a function of time. For simplicity we neglect
transition overheads in this example. Further, we consider processor parameters
that correspond to CMOS technology (< 65nm) which leads to a leakage power
consumption close to 40% of the total power consumed (at the mode with the
highest performance).

Let us consider the first schedule in which the tasks are executed either at
Vdd1 = 1.8V , or Vdd2 = 1.5V , while Vbs1 and Vbs2 are kept at 0V . In accordance,
the system dissipates Pdyn1 = 100mW and Pleak1 = 75mW in mode 1 running at
700MHz, while Pdyn2 = 49mW and Pleak2 = 45mW in mode 2 running at 525MHz,
as observable from the figure. We have also indicated the individual energy con-
sumed in each of the active modes, separating between dynamic and leakage en-
ergy. The total leakage and dynamic energies of the schedule in Fig. 3.2(a) are
13.56μJ and 16.17μJ, respectively. This results in a total energy consumption of
29.73μJ.

Consider now the schedule given in Fig. 3.2(b), where tasks are executed at two
different voltage settings for Vdd and Vbs (m1 = (1.8V,0V ) and
m2 = (1.5V,−0.4V )). Since the voltage settings for mode m1 did not change,
the system runs at 700MHz and dissipates Pdyn1 = 100mW and Pleak1 = 75mW .
In mode m2 the system performs at 480Mhz and dissipates Pdyn2 = 49mW and
Pleak2 = 5mW . There are two main differences to observe compared to the schedule
in Fig. 3.2(a). Firstly, the leakage power consumption during mode m2 is consider-
ably smaller than in Fig. 3.2(a); this is due to the fact that in mode m2 the leakage
is reduced through a body-bias voltage of −0.4V (see Eq. (3.2)). Secondly, the
high voltage mode m1 is active for a longer time; this can be explained by the fact
that scaling Vbs during mode m2 requires the reduction of the operational frequency
(see Eq. (3.3)). Hence, in order to meet the system deadline, the high performance
mode m1 has to compensate for this delay. Although here the dynamic energy was
increased from 16.17μJ to 18.0μJ, compared to the first schedule, the leakage was
reduced from 13.56μJ to 8.02μJ. The overall energy dissipation is 26.02μJ, a re-
duction by 12.5%. This example illustrates the advantage of simultaneous Vdd and
Vbs scaling compared to Vdd scaling only.

3.4.2 Considering the Transition Overheads

We consider a single processor system that offers three voltage modes,
m1 = (1.8V,−0.3V ), m2 = (1.5V,−0.45V ), and m3 = (1.2V,−0.8V ), where mz =
(Vddz ,Vbsz). The rail and substrate capacitance are given as Cr = 10μF and Cs =
40μF . The processor needs to execute two consecutive tasks (τ1 and τ2) with
a deadline of 0.225ms. Fig. 3.3(a) shows a possible voltage schedule. Each of



3.4 Motivational Examples 41

τ1 τ2

Vdd
bs−V

Vdd
bs−V

τ1 τ2

Vdd
bs−V

τ1 τ2

Vdd
bs−V

τ2τ1

t (ms)

bs−V

Vdd

t (ms)

t (ms)t (ms)

interintra

Jμ
Jμ5.8

JμE=57.2

JμE=36 JμE=43.6

JμE=36

m1 m3m3m1
Jμ9
m2 m2

Jμ

Jμ15
m1

Jμ9
m2 m2 m3

Jμ7.5
m2

Jμ4.5
m3

Jμ9
m2m1

Jμ15

Jμ Jμ7.5Jμ15

Jμ4.5Jμ7.5

Jμ
Jμ

Jμ15
m2
Jμ7.5Jμ4.5Jμ9

m2

0
0 0.1 0.2

1.8

(a) before reordering, without overheads

Voltage Selection

1.8

0
0.20 0.1

(c) after reordering, without overheads

0

1.8

O O O
1 2 3

0 0.2250.2

deadline
violation

(b) before reordering, with overheads

!

1.8

0

1.8

O1 O3
0.2 0.2250

(d) after reordering, with overheads

Real Processor Schedule

0.225

0.225

Deadline

Deadline Deadline

Deadline

5.8
13.61.8

4.5

Figure 3.3: Influence of transition overheads

the two tasks is executed in two different modes: task τ1 executes first in mode
m2 and then in mode m1, while task τ2 is initially executed in mode m3 and
then in mode m2. The total energy consumption of this schedule is E = 9μJ +
15μJ + 4.5μJ + 7.5μJ = 36μJ. However, if this voltage schedule is applied to a
real voltage-scalable processor, the resulting schedule will be affected by transi-
tion overheads, as shown in Fig. 3.3(b). The processor requires a given time to
adapt to the new execution mode. During this adaption no computations can be
performed [xsc00, pow00], which increases the schedule length such that the im-
posed deadline is violated. Moreover, transitions do not only require time, they
also cause an additional energy dissipation. For instance, in the given sched-
ule, the first transition overhead O1 from mode m2 and m1 requires an energy
of 10μF · (1.8V − 1.5V )2 + 40μF · (0.3V − 0.45V )2 = 1.8μJ, based on Eq. (3.4).
Similarly, the energy overheads for transitions O2 and O3 can be calculated as
13.6μJ and 5.8μJ, respectively. The overall energy dissipation of the schedule
from Fig. 3.3(b) accumulates to 36μJ +1.8μJ +13.6μJ +5.8μJ = 57.2μJ.



42 CH. 3. OFFLINE ENERGY OPTIMIZATION BY VOLTAGE SELECTION

Compared to the schedule in Fig. 3.3(a), the mode activation order in Fig. 3.3(c)
has been swapped for both tasks. As long as the transition overheads are neglected,
the energy consumption of the two schedules is identical. However, considering
transition overheads would result in the schedule shown in Fig. 3.3(d). We can
observe that this schedule exhibits only two mode transitions (O1 and O3) within
the tasks (intra task switches), while the switch between the two tasks (inter task
switch) has been eliminated. The overall energy consumption has been reduced to
E = 43.6μJ, a reduction by 23.8% compared to the schedule given in Fig. 3.3(b).
Further, the elimination of transition O2 reduces the overall schedule length, such
that the imposed deadline is satisfied. With this example we have illustrated the
effects that transition overheads can have on the energy consumption and the timing
behavior and the impact of taking them into consideration when elaborating the
voltage schedule.

3.5 Problem Formulation

Consider a set of tasks T = {τi} with precedence constraints, that have been
mapped and scheduled on a set of variable voltage processors. For each task τi
its deadline dli, its worst case number of clock cycles to be executed WNCi and the
switched capacitance Ce f fi are given. Each processor can vary its supply voltage
Vdd and body bias voltage Vbs within certain continuous ranges (for the continu-
ous problem), or, within a set of discrete voltage pairs mz = {(Vddz ,Vbsz)} (for the
discrete problem). The power dissipations (leakage and dynamic) and the cycle
time (processor speed) depend on the selected voltage pair (mode). Tasks are exe-
cuted cycle by cycle, and each cycle can potentially execute at a different voltage
pair, i.e., at a different speed. Our goal is to find voltage pair assignments for each
task such that the individual task deadlines are met and the total energy consump-
tion is minimal. Furthermore, whenever the processor has to alter the settings for
Vdd and/or Vbs, a transition overhead in terms of energy and time is required (see
Eqs. (3.4) and (3.5)).

For reasons of clarity we introduce the following four distinctive problems
which will be considered in this chapter: (a) Continuous voltage selection with
no consideration of transition overheads (CNOH), (b) continuous voltage selection
with consideration of transition overheads (COH), (c) discrete voltage selection
with no consideration of transition overheads (DNOH), and (d) discrete voltage
scaling with consideration of transition overheads (DOH).



3.6 Continuous Voltage Selection 43

3.6 Continuous Voltage Selection

In this section we consider that the supply and body-bias voltage of the processors
can be selected within a certain continuous range. We first formulate the prob-
lem neglecting transition overheads (Section 3.6.1, CNOH) and then extend this
formulation to include the energy and delay overheads (Section 3.6.2, COH).

3.6.1 Continuous Voltage Selection without Overheads (CNOH)

We model the continuous voltage selection problem, excluding the consideration of
transition overheads (the CNOH problem), using the following nonlinear problem
formulation.
Minimize

|T |
∑
k=1

(
WNCk ·Ce f fk ·V 2

ddk︸ ︷︷ ︸
Edynk

+Lg(K3 ·Vddk · eK4·Vddk · eK5·Vbsk + IJu · |Vbsk |) · tk︸ ︷︷ ︸
Eleakk

)
(3.6)

subject to

tk = WNCk ·
(K6 ·Ld ·Vddk)

((1+K1) ·Vddk +K2 ·Vbsk −Vth1)α (3.7)

Dk + tk ≤ Dl ∀(k, l) ∈ E (3.8)
Dk + tk ≤ dlk ∀ τk that have a deadline (3.9)

Dk ≥ 0 (3.10)

Vddmin ≤Vddk ≤Vddmax and Vbsmin ≤Vbsk ≤Vbsmax (3.11)

The variables that need to be determined are the task execution times tk, the task
start times Dk as well as the voltages Vddk and Vbsk . The total energy consump-
tion, which is the sum of dynamic and leakage energy, has to be minimized, as in
Eq. (3.6)1. The task execution time has to be equivalent to the number of clock
cycles of the task multiplied by the circuit delay for a particular Vddk and Vbsk set-
ting, as expressed by Eq. (3.7). Given the execution time of the tasks, it becomes
possible to express the precedence constraints between tasks (Eq. (3.8)), i.e., a task
τl can only start its execution after all its predecessor tasks τk have finished their
execution (Dk + tk). Predecessors of task τl are all tasks τk for which there exists

1Note that abs and max operations cannot be used directly in mathematical programming, yet there
exist standard techniques to overcome this limitation by equivalent formulations [Wil99].



44 CH. 3. OFFLINE ENERGY OPTIMIZATION BY VOLTAGE SELECTION

an edge (k, l) ∈ E in the mapped and scheduled task graph. Similarly, tasks with
deadlines have to be completed (Dk +tk) before their deadlines dlk (Eq. (3.9)). Task
start times have to be positive (Eq. (3.10)) and the imposed voltage ranges should
be respected (Eq. (3.11)). It should be noted that the objective (Eq. (3.6)) as well as
the task execution time (Eq. (3.7)) are convex functions. Hence, the problem falls
into the class of general convex nonlinear optimization problems. Such problems
can be efficiently solved in polynomial time (given an arbitrary precision ε > 0),
[NN94].

3.6.2 Continuous Voltage Selection with Overheads (COH)

In this section we modify the previous formulation in order to take transition over-
heads into account (COH problem). The following formulation highlights the mod-
ifications.

Minimize
|T |
∑
k=1

(Edynk +Eleakk)︸ ︷︷ ︸
Task energy dissipation

+ ∑
(k, j)∈E•

εk, j

︸ ︷︷ ︸
Transition energy overhead

(3.12)

subject to
Dk + tk +δk, j ≤ D j ∀(k, j) ∈ E• (3.13)

δk, j = max(pV dd · |Vddk −Vdd j |, pV bs · |Vbsk −Vbs j |) (3.14)

εk, j = Cr · |Vddk −Vdd j |2 +Cs · |Vbsk −Vbs j |2 (3.15)

The objective function Eq. (3.12) now additionally accounts for the transition over-
heads in terms of energy. The energy overheads can be calculated according to
Eq. (3.4) for all consecutive tasks τk and τ j on the same processor (E• is defined
in Section 3.2). However, scaling voltages does not only require energy but it in-
troduces delay overheads as well. Therefore, we introduce an additional constraint
similar to Eq. (3.8), which states that a task τ j can only start after the execution of
its predecessor τk (Dk + tk) on the same processor and after the new voltage mode
is reached (δk, j). This constraint is given in Eq. (3.13). The delay δk, j and energy
εk, j penalties are introduced as a set of new variables and are constrained subject
to Eq. (3.14) and Eq. (3.15). Similar to the CNOH formulation, the COH model is
a convex nonlinear problem, i.e., it can be solved in polynomial time.



3.7 Discrete Voltage Selection 45

3.7 Discrete Voltage Selection

The approaches presented in the previous section provide a theoretical upper bound
on the possible energy savings. In reality, however, processors are restricted to a
discrete set of Vdd and Vbs voltage pairs. In this section we investigate the discrete
voltage selection problem without and with the consideration of overheads. We
will also analyze the complexity of the discrete voltage selection problem.

3.7.1 Problem Complexity

Theorem 1 The discrete voltage selection problem is NP-hard.

Proof 1 We proof by restriction. The discrete time-cost trade-off (DTCT) problem
is known to be NP-hard [DDGW97]. By restricting the discrete voltage selection
problem (DNOH) to contain only tasks that require an execution of one clock cycle,
it becomes identical to the DTCT problem. Hence, DTCT ∈ DNOH which leads to
the conclusion DNOH ∈ NP.

The details of the proof are given in Appendix A. The problem is NP-hard, even
if restricted to supply voltage selection (without adaptive body-biasing) and even if
transition overheads are neglected. It should be noted that this finding renders the
conclusion of [KK05]2 impossible, which states that the discrete voltage selection
problem (considered in [KK05] without body-biasing and overheads) can be solved
optimally in polynomial time.

3.7.2 Discrete Voltage Selection without Overheads (DNOH)

In the following we will give a mixed integer linear programming (MILP) for-
mulation for the discrete voltage selection problem without overheads (DNOH).
We consider that processors can run in different modes m ∈ M . Each mode m
is characterized by a voltage pair (Vddm ,Vbsm), which determines the operational
frequency fm, the normalized dynamic power Pdnomm , and the leakage power dis-
sipation Pleakm . The frequency and the leakage power are given by Eqs. (3.3) and
(3.2), respectively. The normalized dynamic power is given by Pdnomm = fm ·V 2

ddm
.

Accordingly, the dynamic power of a task τk operating in mode m is computed as
Ce f fk ·Pdnomm . Based on these definitions, the problem is formulated as follows:

2The flaw in [KK05] lies in the fact that the number of clock cycles spent in a mode is not restricted
to be integer.



46 CH. 3. OFFLINE ENERGY OPTIMIZATION BY VOLTAGE SELECTION

Minimize
|T |
∑
k=1

∑
m∈M

(
Ce f fk ·Pdnomm · tk,m +Pleakm · tk,m

)
(3.16)

subject to

Dk + ∑
m∈M

tk,m ≤ dlk ∀τk with deadline (3.17)

Dk + ∑
m∈M

tk,m ≤ Dl ∀(k, l) ∈ E (3.18)

ck,m = tk,m · fm and ∑
m∈M

ck,m = WNCk ck,m ∈ N (3.19)

Dk ≥ 0 and tk,m ≥ 0 (3.20)

The total energy consumption, expressed by Eq. (3.16), is given by two sums. The
inner sum indicates the energy dissipated by an individual task τk, depending on
the time tk,m spent in each mode m. The outer sum adds up the energy of all tasks.
Unlike the continuous voltage selection case, we do not obtain the voltage Vdd and
Vbs directly, but rather we find out how much time to spend in each of the modes.
Therefore, task execution time tk,m and the number of clock cycles ck,m spent within
a mode become the optimization variables in the MILP formulation. The number
of clock cycles ck,m is restricted to the integer domain. We exemplify this model
graphically in Figures 3.4(a) and 3.4(b). The first figure shows the schedule of
two tasks executing each at two different voltage settings (two modes out of three
possible). Task τ1 executes for 20 clock cycles in mode m2 and for 10 clock cycles
in m1, while task τ2 runs for 5 clock cycles in m3 and 15 clock cycles in m2. The
same is captured in Fig. 3.4(b) in what we call a mode model. The modes that are
not active during a task’s runtime have the corresponding time and number of clock
cycles 0 (mode m3 for τ1 and m1 for τ2). The overall execution time of task τk is
given as the sum of the times spent in each mode (∑m∈M tk,m). Eq. (3.17) ensures
that all the deadlines are met and Eq. (3.18) maintains the correct execution order
given by the precedence relations. The relation between execution time and number
of clock cycles as well as the requirement to execute all clock cycles of a task are
expressed in Eq. (3.19). Additionally, task start times Dk and task execution times
have to be positive (Eq. (3.20)).

3.7.3 Discrete Voltage Selection with Overheads (DOH)

We now proceed with the incorporation of transition overheads into the MILP for-
mulation given in Section 3.7.2. The order in which the modes are activated has



3.7 Discrete Voltage Selection 47

Vdd
bs−V

t

m3m2m1 m3m2m1 m3m2m1 m3m2m1 m3m2m1 m3m2m1
τ1
2 τ1

3τ1
1 τ2 τ2τ2

1 2 3

τ1 τ2

m3m2m1 m3m2m1

c1 c2 c3 c1 c2 c3

τ1 τ2

m2 m1 m2m3
τ2

τ1 (a) Schedule and mode
execution order

(b) Tasks and clock cycles in

090 4

each mode (mode execution
order is not captured)

1020
5
15

Tasks

Slices

Subtasks

10 20 0 0 15 5

20 0 1 0 0 0 0 0 0 0 1 0 15 0
of tasks into subtasks and slices
(c) Solution vector with division

(mode execution order is captured)

Figure 3.4: Discrete mode model

an influence on the transition overheads, as we have illustrated in Section 3.4.2.
Nevertheless, the formulation in Section 3.7.2 does not capture the order in which
modes are activated, it solely expresses how many clock cycles are spent in each
mode. We introduce the following extensions needed in order to take both delay
and energy overheads into account. Given m operational modes, the execution of
a single task τk can be subdivided into m subtasks τs

k,s = 1, ...,m. Each subtask is
executed in one and only one of the m modes. Subtasks are further subdivided into
m slices, each corresponding to a mode. This results in m ·m slices for each task.
Fig. 3.4(c) depicts this model, showing that task τ1 runs first in mode m2, then in
mode m1, and that τ2 runs first in mode m3, then in m2. This ordering is captured
by the subtasks: the first subtask of τ1 executes 20 clock cycles in mode m2, the
second subtask executes one clock cycle in m1 and the remaining 9 cycles are exe-
cuted by the last subtask in mode m1; τ2 executes in its first subtask 4 clock cycles
in mode m3, 1 clock cycle is executed during the second subtask in mode m3, and
the last subtask executes 15 clock cycles in the mode m2. Note that there is no
overhead between subsequent subtasks that run in the same mode. The following
gives the modified MILP formulation:



48 CH. 3. OFFLINE ENERGY OPTIMIZATION BY VOLTAGE SELECTION

Minimize

|T |
∑
k=1

∑
s∈M

∑
m∈M

(
Ce f fk ·Pdnomm · tk,s,m +Pleakm · tk,s,m

)
︸ ︷︷ ︸

Task energy dissipation

+
|T |
∑
k=1

∑
s∈M

∑
i∈M

∑
j∈M

(
bk,s,i, j ·EPi, j

)
︸ ︷︷ ︸

Transition energy overhead

(3.21)

subject to
δk = ∑

s∈M ∗
∑

i∈M
∑

j∈M
bk,s,i, j ·DPi, j (3.22)

δk,l = ∑
i∈M

∑
j∈M

bk,m,i, j ·DPi, j where (k, l) ∈ E• (3.23)

Dk + ∑
s∈M

∑
m∈M

tk,s,m +δk ≤ dlk ∀τk with deadline (3.24)

Dk + ∑
s∈M

∑
m∈M

tk,s,m +δk +δpl,l ≤ Dl ∀(k, l) ∈ E ,(pl, l) ∈ E• (3.25)

ck,s,i = tk,s,i · fi s ∈ M , i ∈ M , ck,s,i ∈ N (3.26)

∑
s∈M

∑
i∈M

ck,s,i = WNCk (3.27)

In order to capture the energy overheads in the objective function (Eq. (3.21)),
we introduce the boolean variables bk,s,i, j. In addition, we introduce an energy
penalty matrix EP, which contains the energy overheads for all possible mode tran-
sitions, i.e., EPi, j denotes the energy overhead necessary to change form mode i to
j. These overheads are precomputed based on the available modes (voltage pairs)
and Eq. (3.4). The overall energy overhead is given by all intratask and intertask
transitions. The intratask and intertask delay overheads, given in Eq. (3.22) and
(3.23), are calculated based on a delay penalty matrix DPi, j, which, similarly to
the energy penalty matrix, can be precomputed based on the available modes and
Eq. (3.5). For a task τk and for each of its subtasks τs

k, except the last one, the
variable bk,s,i, j = 1 if mode i of subtask τs

k and mode j of τs+1
k are both active (s

in 1, ..., |M | − 1, i, j in 1, ...,m). These are used in order to capture the intratask
overheads, as in Eq. (3.22). For intertask overheads, we are interested in the last
mode of task τk and the first mode of the subsequent task τl (running on the same
processor). Therefore, bk,m,i, j = 1 if the mode i of the last subtask τm

k and the



3.7 Discrete Voltage Selection 49

τ 2 τ 3τ 1

td2
1 td1

2 td2
2 td1

3 td2
3td1

1t1 t2 t3

τ 1 τ 2τ 1 τ 2 τ 3

t3t2t1

θ

τ 1 τ 1 τ 2 τ 2 τ 3
θ θ

τ 3

V V V

(solely inter−task mode transitions)
(a) Continuous Voltage Schedule (b) Discrete Voltage Schedule

(5 performance mode transitions)

t t t

inter−task
transitions

inter−task
transition

3τ

intra−task
transition

(c) Reordered Discrete Schedule
(3 performance mode transitions)

DeadlineDeadline Deadline

Figure 3.5: VS heuristic: mode reordering

mode j of first subtask τ1
l are both active. For the example given in Fig. 3.4(c),

b1,1,2,1, b1,2,1,1, b1,3,1,3, b2,1,3,3, b2,2,3,2 are all 1 and the rest are 0. Deadlines and
precedence relations, taking the delay overheads into account, have to be respected
according to Eq. (3.24) and (3.25). Here ∑s∈M ∑m∈M tk,s,m represents the total ex-
ecution time of a task τk, based on the number of cycles in each of the subtasks and
modes. Eq. (3.26) and (3.27) are a reformulation of Eq. (3.19), which expresses
the relation between the execution time and the number of clock cycles and the re-
quirement to execute all clock cycles of a task. To ease the explanation, the above
given MILP formulation has been simplified to a certain degree. We have omitted
here details on the computation of the b variables as well as the constraints that
make sure that one and only one mode is used by a subtask. The complete MILP
model can be found in Appendix B.

3.7.4 Discrete Voltage Selection Heuristic

As shown earlier, discrete voltage selection is NP-hard. Thus, solving it using the
presented MILP formulation for large instances is time consuming. We propose
a heuristic to effectively solve the discrete voltage selection problem. The main
idea behind this heuristic is to perform a continuous voltage selection (as outlined
in Section 3.6). As a result of this calculation, for each task, a continuous voltage
pair (Vddcon ,Vbscon), as well as the corresponding frequency fcon will be determined.
Using the approach introduced in [IY98], for each task the two surrounding discrete
performance modes are chosen such that fd1 < fcon < fd2. That is, the execution of
a task is split into two regions with td1 and td2 being the execution times in the mode
with fd1 and fd2, respectively. Fig. 3.5(a) and 3.5(b) illustrate this transformation
for an application with three tasks. In the continuous scaling case, Fig. 3.5(a), each
task executes at a single voltage level, i.e., the voltages are changed only between
tasks. In the discrete case, the voltage setting is changed during the task execution.



50 CH. 3. OFFLINE ENERGY OPTIMIZATION BY VOLTAGE SELECTION

τ2

τ3

τ1

τ3
t0 t0

τ3

t1 t2 t3 t4 t1 t2 t3

(c) Multiprocessor(b)Single processor

2ττ1
Idle time

Idle time

C
P

U
2

C
P

U
1

τ1

2τ
C

P
U

1

DeadlineDeadline

(a)Task graph
time time

Figure 3.6: Schedules with idle times

Of course, the required time overhead δi for the mode change has to be considered
as well, i.e., ti = ti

d1 + ti
d2 +δi, where ti is the execution time with continuous volt-

age setting of the task τi. In general, executing tasks in two performance modes,
determined as above, leads to close to optimal discrete voltage selection. Having
determined the discrete performance mode settings, the inter-task transition over-
heads are reduced by reordering the mode sequence of each task. We reorder the
modes in a greedy manner, such that the inter-task overhead between consecutive
tasks is minimized. This is outlined in Fig. 3.5(c). While this reordering tech-
nique is optimal for processors that offer two performance modes, this is not true
for components with three or more modes. Nevertheless, as demonstrated by our
experiments, this heuristic is fast and efficient.

3.8 Voltage Selection with Processor Shutdown

In this section we discuss the integration of two system level energy minimization
techniques: voltage selection and processor shutdown. Voltage selection is effec-
tive in minimizing the active energy consumption (the energy consumed while exe-
cuting a certain task). However, specially in multiprocessor environments, proces-
sors alternate between active and idle periods. During idle times, a certain amount
of energy, proportional to the length of the idle period is consumed. A solution
for saving this energy is to shutdown the processor. The transition to the shutdown
state and from shutdown back to operation implies a time and an energy overhead.

Idle times may be present due to multiple reasons, even after performing volt-
age selection. Consider, for example, the three tasks in Fig. 3.6(a). They are con-
sidered to run periodically with a deadline equal to the period. If the application
runs on a single processor system at the lowest speed, it still finishes before the
deadline, as depicted in Fig. 3.6(b). In the idle interval between the finishing time



3.8 Voltage Selection with Processor Shutdown 51

and the deadline, the processor consumes energy. In this situation, we could shut
down the processor and thus save energy. In the case of a single processor system
with tasks that do not have arbitrary arrival times, deciding weather or not to shut-
down and for how long is relatively easy. In [RJ05], the notion of threshold time
interval is defined as the minimul length of an idle period that would provide en-
ergy savings by shuting down. A shutdown is decided if the idle interval available
is larger than the threshold time.

Imagine now a more complex case, when the application runs on two proces-
sors, as in Fig. 3.6(c). Due to dependencies between tasks that are mapped on
different processors, there is a certain amount of slack that cannot be exploited by
voltage selection. For example, task τ2 can start only after task τ1 has finished.
Consequently, there is an idle interval on CPU1 from time 0, until the start of τ2.
Deciding in this case weather or not to shutdown is a complex problem that will be
addressed in the following section.

Even though voltage selection aims at optimizing the active energy, while pro-
cessor shutdown minimizes the energy consumed during idle periods, these two
techniques are not orthgonal. Let us consider an application consisting of 3 tasks,
τ1, τ2 and τ3, as in Fig. 3.7(a). The tasks are mapped on two processors CPU1 and
CPU2. The resulting schedule, after performing voltage selection is depicted in
Fig. 3.7(b), with all the 3 tasks running at the lowest speeds. Task τ1 is running for
2ms with 200mW , while τ2 and τ3 run at 400mW for 1.5ms and respectively 2ms.
A brief analysis of the idle times present after voltage selection on both processors,
allows us to further reduce the energy consumption by shutting down CPU1 after
the execution of τ1 and of CPU2 after τ3. The energy overhead for shutdown is
75μJ on CPU1 and 125μJ on CPU2. We notice the idle interval of 0.5ms on CPU2,
between the executions of τ2 and τ3. The idle power on CPU2 is 250mW , resulting
in an energy consumption of 125μJ. Please note that the energy consumed during
this idle period equals the energy overhead of a shutdown, so it would not pay off
to shutdown after τ2. However, let us consider the possibility of running τ1 faster,
such that it finishes in 1.5ms. The power consumption that corresponds to this fre-
quency is 300mW . This slight increase on CPU1 is compensated by the fact that
we can now execute task τ3 immediately after τ2, use one shutdown operation to
exploit all the idle time on CPU2 and thus save 125μJ.

3.8.1 Processor Shutdown: Problem Complexity

The shutdown problem without voltage selection (SNVS) is formulated as follows:
Consider a set of tasks with precedence constraints T = {τi} that have been

mapped and scheduled on a set of processors. Each processor operates at a given
fixed frequency. For each task τi, its deadline dli and number of clock cycles to



52 CH. 3. OFFLINE ENERGY OPTIMIZATION BY VOLTAGE SELECTION

τ2

τ3

1τ

τ2

τ1 E
soh

E
sohτ3

τ1
τ2

E
soh

τ3

E
soh

C
P

U
2

C
P

U
1

2 41.5

P

6

(a)Task graph (b) Voltage Scaling and Shutdown (c) Voltage Scaling + Shutdown

Shutdown ShutdownIdle

C
P

U
2

C
P

U
1

2 41.5

P

60 0

Deadline Deadline

timetime

Figure 3.7: Voltage Selection with Shutdown

be executed WNCi are given. The start time of each task is variable (with the
constraints imposed by the precedences in the scheduled task graph). When a
processor is idle, an amount of energy proportional to the length of the idle interval
is consumed. In order to save energy, during such an idle interval the particular
processor can be shut down. A shutdown operation comes with a fixed time and
energy penalty. Our goal is to minimize the energy consumed by the system while
the processors are idle. This translates into spending as much as possible of the
idle time in the shutdown state. In order to be energy efficient, the best solution
will assign the task start times such that idle times are grouped together in long
intervals that can be covered with few shutdown operations.

Theorem 2 The shutdown problem (SNVS) is NP-complete.

The proof is given in Appendix C. It is based on the fact that the multiple choice
continuous knapsack problem can be reduced to the SNVS problem. If the simple
shutdown problem without performing voltage selection is NP complete, then the
combined voltage selection problem with shutdown (even in the case with contin-
uous voltages) is NP complete as well.

3.8.2 Continuous Voltage Selection with Processor Shutdown

(CVSSH)

In this section we present an exact integer nonlinear formulation as well as a
polynomial time heuristic for the voltage selection with processor shutdown 3. The
following gives the modified nonlinear programming formulation (CVSSH):

3For simplicity of the presentation, we omit here the consideration of voltage transition overheads.
Nevertheless, these overheads can be easily included, as shown in Section 3.6.2



3.8 Voltage Selection with Processor Shutdown 53

Minimize

|T |
∑
k=1

WNCk ·Ce f fk ·V 2
ddk︸ ︷︷ ︸

Edyn

+
|T |
∑
k=1

Lg · (K3 ·Vddk · eK4·Vddk · eK5·Vbsk + IJu · |Vbsk |) · tk︸ ︷︷ ︸
Eleak

+
|T |
∑
k=1

xik · tidlek ·Pidlek + xsk · (Esohk + to f fk ·Po f fk)︸ ︷︷ ︸
Eidle+Eo f f

(3.28)

subject to

tk = WNCk ·
(K6 ·Ld ·Vddk)

((1+K1) ·Vddk +K2 ·Vbsk −Vth1)α (3.29)

Dk + tk ≤ Dl ∀(k, l) ∈ E −E• (3.30)
Dk + tk + xik · tidlek = Dl ∀(k, l) ∈ E• (3.31)

Dk + tk + xsk ·Tsohk + to f fk = Dl ∀(k, l) ∈ E• (3.32)
xik + xsk = 1 ∀τk (3.33)

Dk + tk ≤ dlk ∀ τk with dl (3.34)
Dk ≥ 0 (3.35)

xik,xsk ∈ {0,1} (3.36)

Vddmin ≤Vddk ≤Vddmax and Vbsmin ≤Vbsk ≤Vbsmax (3.37)

There are two noticeable differences between this formulation and the one in Sec-
tion 3.6.1: the inclusion in the objective (Eq. 3.28) of the energy spent during idle
and shutdown intervals and Eq. 3.32 and 3.31 introduced in order to account for
the idle and off times. Pidlek , Po f fk , Esohk and Tsohk are constants for each task τk
and capture the power consumed by the processor on which τk is mapped, during
idle and shutdown time intervals and respectively the energy and the time over-
head associated to a shutdown operation. Please note the usage in Eq. 3.28, 3.31
and 3.32 of binary variables xik and xsk, associated to each task, with the following
semantics: if task τk is followed by a shutdown, then xsk = 1 and xik = 0, otherwise
xik = 1 and xsk = 0. In case of a shutdown, to f fk captures the amount of time the



54 CH. 3. OFFLINE ENERGY OPTIMIZATION BY VOLTAGE SELECTION

processor is off. If there is no shutdown after the execution of τk, tidlek captures the
amount of idle time (tidlek is 0 if the next task starts immediately after τk).

The binary variables xik and xsk change the complexity of this nonlinear pro-
gramming formulation, compared to the ones presented in Sections 3.6.1 and 3.6.2.
While the problems presented there are convex nonlinear, the CVSSH problem is
integer nonlinear. Indeed, as shown in the previous section, the voltage selection
with shutdown problem is NP complete, even in the case when continuous voltage
selection is used. Therefore, in the following, we propose a heuristic to efficiently
solve the problem.

Let us consider particular instances of the CVSSH problem, where xik and xsk
are given constants for each task τk. We denote this simplified problem CVSI. Such
a particular instance can be solved in polynomial time and computes the optimal
voltages for a system in which we know the position of the shutdown operations.
For example, if xik = 1, for all the tasks τk, CVSI computes the task voltages
such that the energy is minimized, taking into account the idle energy, without
performing any shutdown. Running CVSI for all possible combinations for xsk and
xik and selecting the one with the minimum energy, provides the optimal solution
for the voltage selection with shutdown problem. This is, practically, not possible,
of course. We will present in the following a heuristic that solves the CVSSH
problem in polynomial time. The pseudocode of the heuristic is given in Fig. 3.8.
The algorithm takes as input the mapped and scheduled task graph with each task
characterized as in Section 3.5. It returns, the supply and body bias voltage for
each task as well as the position and length of each shutdown operation and idle
time.

As a first step (line 02), we perform voltage selection, using the CVSI nonlinear
formulation. This will optimize the active and idle energy, without performing any
shutdown operation (xsk = 0 and xik = 1).

In a second step, (lines 03-11), the idle intervals are inspected one by one, and,
if an interval is large enough (line 08) a shutdown is introduced. In more detail, we
find iteratively the idle time with the highest energy that is large enough to allow
a shutdown. For this purpose, we compute, for each task τk, the earliest finishing
time EFTk and the latest start time LSTk (line 04-05), assuming that each task is
running at a fixed speed using the voltages computed by CVSI at line 02 or in the
previous iteration at line 10. We select for shutdown the idle time that consumes
the most energy (line 08-09). We set the corresponding binary variables xsk = 1
and xik = 0 in order to schedule a shutdown after the task τk. Then we run CVSI
with the updated values for xi and xs (line 10). At each new iteration the global
energy consumption is improved.



3.8 Voltage Selection with Processor Shutdown 55

Algorithm: CONT VS SHUT HEU

Input: - Mapped and scheduled task graph
- For each task: WNCk, Ce f fk, dlk

Output:- Vddk, Vbsk, xsk, xik, to f fk, tidlek

01: for all τk xsk = 0, xik = 1
02: Ecurrent=call CVSI
03: while(1) {
04: for all τk EFTk=earliest start time(τk)
05: for all τk LSTk=latest start time(τk)
06: for all (k, l) ∈ E• tidlek = LSTl −EFTk
07: if ∀τk tidlek ·Pidlek ≤ Esohk break
08: *select τk with tidlek ·Pidlek = max{tidlel ·Pidlel |τl ∈ T }
09: set xsk = 1,xik = 0
10: Ecurrent=call CVSI
11: }
12: while(1) {
13: for all τk EFTk=earliest start time(τk)
14: for all τk LSTk=latest start time(τk)
15: for all (k, l),(l,m) ∈ E• tidlek,l,m = LSTm − tl −EFTk

16: if ∀(k, l),(l,m) ∈ E•, tidlek,l,m ·Pidle ≤ Esohk break
17: *select set σk,l,m with

tidlek,l,m ·Pidlek = max{tidleh,i, j ·Pidleh |(h, i),(i, j) ∈ E•}
18: set xsk = 1,xik = 0,xsl = 0,xil = 1
19: E1=call CVSI
20: set xsk = 0,xik = 1,xsl = 1,xil = 0
21: E2=call CVSI
22: *set (xsk = 1,xsl = 0) if E1 > Ecurrent&E1 > E2
23: *set (xsk = 0,xsl = 1) if E2 > Ecurrent&E2 > E1
24: *set (xsk = 0,xsl = 0) if E1 < Ecurrent&E2 < Ecurrent
25: Ecurrent = min{Ecurrent ,E1,E2}
26: }
27: return (Vddk, Vbsk,xsk,xik,to f fk, tidlek)

Figure 3.8: Voltage Selection with Shutdown Heuristic



56 CH. 3. OFFLINE ENERGY OPTIMIZATION BY VOLTAGE SELECTION

When the algorithm exits the loop from lines 03-11, there is no idle interval
that is large enough to produce energy savings by a shutdown (line 07). However,
in principle, there are two ways to further reduce the consumed energy:

1) Increase the voltages of some tasks such that the idle intervals following
them become longer and, thus, can be exploited by shutdowns.

2) Increase the voltages of some tasks such that several idle intervals can be
merged and exploited by a single shutdown.

The first alternative can be excluded based on a simple reasoning. Let us as-
sume that we have a task τk that runs in mode m1 and consumes a certain amount
energy E1

k . Task τk is followed by an idle interval of length t1
idlek

, that is too small
to provide savings via shutdown:t1

idlek
·Pidlek < Esohk . The total energy consumed in

this case is E1
k + t1

idlek
·Pidlek . Consider that we increase the speed of τk by running

it with execution mode m2 instead of m1. In this case τk will consume E2
k (E2

k > E1
k )

and the idle interval becomes long enough to make a shutdown operation efficient.
As a result the total energy is E2

k + Esohk . Since E2
k > E1

k and Esohk > t1
idlek

·Pidlek ,
the energy of the system obtained by running τk in execution mode m2 with a shut-
down during the idle time is actually higher than the energy of the system obtained
by running τk in execution mode m1 without a shutdown. As a conclusion, in-
creasing the speed of a task such that an idle interval becomes large enough for a
shutdown does not provide any energy savings.

The second alternative is illustrated in Fig. 3.7. The energy is reduced by
speeding up certain tasks in order to create the possibility of merging several small
idle intervals. In this way, the resulting idle interval can be exploited by a single
shutdown operation. This alternative is explored as the third step of our heuris-
tic (lines 12-26). We inspect all the groups of three consecutive tasks mapped on
the same processor, τk, τl and τm with (k, l),(l,m) ∈ E• and explore the savings
achievable by merging tidlek and tidlel . More exactly, for all sets of three tasks
σk,l,m = {(τk,τl ,τm)|(k, l),(l,m) ∈ E•}, we compute the maximum set idle time
tidlek,l,m as the difference between the latest start time of task τm, the execution time
of τl and the earliest finishing time of τk (line 15). We select the set σk,l,m with
the highest energy (line 17). For this set, there are two candidate locations of the
shutdown operation: after the execution of τk or after the execution of τl . Our algo-
rithm explores both possibilities (lines 18-21). Using CVSI, we first compute the
energy considering the showdown after τk (E1) and secondly after τl (E2). If both
E1 and E2 are higher then the energy obtained without a shutdown after τk and τl ,
no shutdown is scheduled during this iteration (line 24). Otherwise, the algorithm
schedules a shutdown after τk or after τl (lines 22-23). The global energy is im-
proved at each iteration (line 25). The loop exits when no idle time corresponding
to a set is large enough to produce savings via shutdown (line 16).



3.8 Voltage Selection with Processor Shutdown 57

This heuristic relies on a continuous formulation for the computation of the task
voltages. We use the heuristic presented in Section 3.7.4 in order to translate the
computed voltage levels into the discrete ones available on the processors. While
this is the practical way to solve the problem, for completion, we present in the
next section a MILP formulation for the discrete voltage selection with processor
shutdown.

3.8.3 Discrete Voltage Selection with Processor Shutdown

In the following we will give a mixed integer linear programming (MILP) formula-
tion for the combined processor shutdown problem with discrete voltage selection.
For the clarity of the explanation, we will not include in the mathematical program-
ming model the overheads corresponding to transitions between different execution
modes.

As in the Section 3.7.2, we consider that processors can run in different modes
m ∈ M . Each mode m is characterized by a voltage pair (Vddm ,Vbsm), which de-
termines the operational frequency fm, the normalized dynamic power Pdnomm , and
the leakage power dissipation Pleakm . A processor shutdown operation has both a
time and an energy penalty tsoh and, respectively, Esoh. During the shutdown state,
the power consumption is Po f f . Alternatively, the power consumed while the pro-
cessor is idle is Pidle. to f fk denotes the time the processor is shut down after the
execution of task τk. tidlek denotes the time the processor is idle after the execu-
tion of task τk. The binary variable xsk corresponding to task τk is 1 if a shutdown
occurs after task τk and 0 otherwise.

Based to these definitions, the MILP problem is formulated as:
Minimize

|T |
∑
k=1

∑
m∈M

(
Ce f fk ·Pdnomm · tk,m +Pleakm · tk,m

)
+

|T |
∑
k=1

xsk · (Esoh + to f fk ·Po f f )+(1− xsk) · tidlek ·Pidle (3.38)



58 CH. 3. OFFLINE ENERGY OPTIMIZATION BY VOLTAGE SELECTION

subject to

Dk + ∑
m∈M

tk,m ≤ dlk (3.39)

Dk + ∑
m∈M

tk,m ≤ Dl ∀(k, l) ∈ E (3.40)

Dk + ∑
m∈M

tk,m + xsk · tsoh + to f fk ≤ Dl and (3.41)

Dl −Dk − ∑
m∈M

tk,m = tidlek ∀(k, l) ∈ E• (3.42)

ck,m = tk,m · fm and ∑
m∈M

ck,m = WNCk ck,m ∈ N (3.43)

Dk ≥ 0 and tk,m ≥ 0 (3.44)

The total energy consumption, expressed by Eq. (3.38), is given by two sums. The
first sum adds up the energy dissipated by an individual task τk, running in different
modes. The second sum adds up the energy of all the idle and shutdown intervals4.
If a shutdown operation is decided after the end of task τk, then xs[k] = 1 and
to f fk will equal the amount of time the processor is off. If there is no shutdown,
tidlei captures the corresponding idle time. The objective will select the energy
corresponding to one of these two alternatives.

3.9 Combined Voltage Selection for Processors and

Communication Links

In this section, we consider the supply and body bias voltage selection problem for
processors and communication links. We introduce a set of communication mod-
els for energy and delay estimation. We study two different bus implementations
and show the implication of the bus implementation type on the voltage selection
strategy. We introduce a nonlinear model of the continuous voltage selection prob-
lem, which is optimally solvable in polynomial time, while for the discrete voltage
selection case we use a heuristic similar to the one presented in Section 3.7.4.
For simplicity of the explanation, we have not considered the processor shutdown
during the formulation of the optimization problems in this section, however, the
extension is straightforward.

4There are standard ways of rewriting the objective in order to use only linear expressions (eliminate
the multiplication between variables xsk , to f fk and tidlek ). We reffer the interested reader to [Wil99].



3.9 Combined Voltage Selection for Processors and
Communication Links 59

3.9.1 Voltage Selection on Repeater-Based Buses

Consider an architecture consisting of two voltage-scalable processing elements
(CPU1 and CPU2) that communicate via a repeater-based, shared bus (CL1), which
also allows voltage selection. CPU1 executes task τ1 and CPU2 runs τ2. Task τ2
can only start after receiving data from τ1, and it has to finish execution before a
deadline of 2ms. Fig. 3.9(a) shows the schedule for this system, considering an
execution at the nominal voltage settings (highest supply voltage and body bias
voltage). The diagram shows the energy dissipation (dynamic and leakage) of the

Edyn

Eleak

Edyn

EleakEleak

Edyn

τ1τ1

γ1−2

τ1

τ2

γ1−2

τ2τ2

γ1−2

μJ

μJ

μJ

μJ

μJ

μJ

μJ

μJ

μJ

μJ

μJ

μJ

μJ

μJ

μJ

μJ
μJ

μJ

μJ μJ μJ

0
0

0

0

Slack

C
L1

C
P

U
1

C
P

U
2

1.00.5

P
 (

m
W

)

1.5 t (ms)

(a) Schedule without voltage scaling

0 1.00.5 1.5 t (ms)

0.5ms

0 1.00.5 1.5 t (ms)

(b) Scaling of CPUs (c) Scaling of CPUs and CL

80

160

125

125

65

65

78
51.5

45
40

62.5

45

56.8
3.9

45

40

60.7
4.2

49.5
3.3

46.1

2.8

35.2
10.1

E=323 E=195 E=163

Figure 3.9: Voltage selection on a repeater-based bus

individual components. For clarity we assume in this example that the processors
as well as the repeaters of the bus have the same nominal voltage values (Vdd =
1.8V and Vbs = 0V ). Furthermore, we assume that the supply voltages and the body
bias voltages of all components can be varied continuously in the ranges [0.6,1.8]V
and [−1,0]V , respectively. Given the power consumptions at the nominal voltages,
we can compute a total energy consumption of the tasks and communication in
the initial schedule as (156 + 103)mW · 0.5ms + (90 + 80)mW · 0.5ms + (125 +
90)mW · 0.5ms = 323μJ. As can be observed, at the nominal voltages the system
over-performs, leading to a slack of 0.5ms.

We can exploit this slack by scaling the voltages of the processing elements.
Using the technique described in Section 3.6, the resulting voltages for tasks τ1
and τ2 are (1.43V,−0.42V ) and (1.54V,−0.49V ), respectively. The correspond-
ing, voltage scaled schedule is shown in Fig. 3.9(b). The dynamic and leakage
power consumptions of the tasks are reduced to (72mW,5mW ) and (65mW,4mW );
however, the execution times have increased to 0.79ms and 0.71ms respectively.



60 CH. 3. OFFLINE ENERGY OPTIMIZATION BY VOLTAGE SELECTION

With these settings, the system dissipates 195μJ, a reduction by 39% compared to
the energy at nominal voltages.

To demonstrate the importance of combined voltage selection of the processors
and the repeater-based bus, we have produced the schedule in Fig. 3.9(c). The opti-
mal voltage settings can be calculated as
(1.48V,−0.42V ) for CPU1, (1.77V,−0.61V ) for CPU2, and (1.59V,−0.50V ) for
the bus repeaters. Correspondingly the power dissipations are (81mW,5.6mW ),
(73.8mW,4.9mW ) and (55.8mW,16mW ) thereby, reducing the overall system en-
ergy dissipation to 163μJ. This is a reduction of 49% compared to the nominal
energy consumption, which is 10% more than in the case when only the PEs are
voltage scaled.

3.9.2 Voltage Swing Selection on Fat Wire Buses

In this example, we illustrate the influence that a dynamic variation of the voltage
swing (the voltage on the wire) has on the energy efficiency of the bus. Fig. 3.10
shows the total power consumption of a fat wire bus (including drivers and re-
ceivers), depending on the voltage swing at which data is sent. These plots have
been generated via SPICE simulations using the Berkeley predictive 70nm CMOS
technology library. The two plots show the total power consumption on the bus
for two different voltage settings of the bus drivers and receivers. For example, if
the driver connected to CPU1 and the receiver at CPU2 operate at 1.0V , the lowest
bus power dissipation (0.55mW ) is achieved by a voltage swing of 0.14V . Let us
assume that the voltages of the driver and receiver are changed during run-time
to 1.8V due to voltage selection. The bus power/voltage swing relation for this
situation is indicated by the dashed line. As we can observe, by keeping the volt-
age swing at 0.14V , the power dissipation on the bus will be 4.5mW . However,
inspecting the plot reveals that it is possible to reduce the bus power dissipation
by changing the voltage swing from 0.14V to 0.6V . At this voltage swing, the bus
dissipates a power of 2.2mW , i.e., a 51% reduction can be achieved by changing
the voltage swing.

Now assume that the driver and receiver voltages are changed back from 1.8V
to 1.0V . Keeping the swing at 0.6V results in a power of 0.83mW , which is, com-
pared to the optimal 0.55mW at 0.14V , 33% higher than necessary.

3.9.3 Communication Models

We consider a bus-based communication system as in Fig. 3.11. Whenever the
processor CPU1 sends data to CPU2 over the bus, Vdd1 is converted to the bus
voltage Vdd3 by the bus adapter of CPU1. At the destination processor CPU2, Vdd3



3.9 Combined Voltage Selection for Processors and
Communication Links 61

Voltage Swing (V)

Po
w

er
 (

m
W

)

1.0V

1.8V

 0
 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8

 5

4.5

4

3.5

3

2.5

2

1.5

1

0.5

Figure 3.10: Optimum swing on a fat wire bus

is converted to Vdd2 . Each voltage conversion in the bus adapter requires an energy
overhead, which is:

Eadapter = Cadapter · (VddCPU −Vddbus)
2 (3.45)

Thus, the total energy consumed when communicating between two processors
CPU1 and CPU2 over the bus is:

Ecomm = Eadapter1 +Ebus +Eadapter2 (3.46)

Feature size scaling in deep-submicron circuits is responsible for an increasing
wire delay of the global interconnects. This is mainly due to higher wire resis-
tances caused by a shrinking cross-sectional area. Two approaches to cope with
this problem have been proposed: (a) the usage of repeaters [IF99, KCS02] and (b)
the usage of fat wires [Sve01, SK01]. The bus energy Ebus in Eq. (3.46) depends
on which of these two approaches is used.

Repeater-Based Bus

The wire delay depends quadratically on the wire length, which can be approx-
imated using an RC model. In order to reduce this quadratic dependency, it is
possible to break the wire into smaller segments by inserting repeaters. The au-



62 CH. 3. OFFLINE ENERGY OPTIMIZATION BY VOLTAGE SELECTION
D

riv
er

R
ec

ei
ve

r

D
riv

er

R
ec

ei
ve

r

f1 f2
f3

D
ri/

R
ec

3Vdd/Vbs

3Vdd/Vbs 3Vdd/VbsVsw
3Vdd/Vbs

3Vdd/Vbs

1

A
1

D
ri/

R
ec

A
2BUS (CL1)

(a) Interconnect Structure

(c) Fat Wire−Based Bus(b) Repeater−Based Bus

...
...

...
...

...
...

...
...

...
...

...
...

2Vdd/Vbs

Voltage/Frequency Island 1 Voltage/Frequency Island 3 Voltage/Frequency Island 2

Vdd/Vbs

CPU2CPU1

Figure 3.11: Interconnect structures

thors in [SK01] estimate an increasing number of repeaters with technology scal-
ing down. For instance, up to 138 repeaters are used in 50nm technology for a
corner-to-corner wire with a die size of 750mm2. Repeaters are implemented as
simple CMOS inverter circuits (Fig. 3.11(b)). In accordance, the power dissipated
by a bus implemented with repeaters is given by,

Prep = N · (sτ ·Crep ·V 2
dd · f︸ ︷︷ ︸

Pdyn

+Vdd ·K3 · eK4·Vdd · eK5·Vbs + |Vbs| · IJu︸ ︷︷ ︸
Pleak

) (3.47)

where N is the number of repeaters, sτ is the average switching activity caused by
communication task τ ∈ K , Crep is the load capacity of a repeater (the sum of the
output capacity of a repeater Cd , the wire capacity Cw, and the input capacity of
the next repeater Cg), and Vdd , Vbs, and f are the supply voltage, body bias voltage,
and the frequency at which the repeaters operate. Further, the constants K3, K4, K5,
and IJu depend on the repeater circuits (see Section 3.3).

The bus speed is constrained by the repeater frequency. Since repeaters are
implemented as CMOS inverters, we use Eq. (3.3) to approximate the operational



3.9 Combined Voltage Selection for Processors and
Communication Links 63

frequency f of the bus. The execution time of a communication τ ∈ K is given by,

t =
⌈

NBτ

Wbus

⌉
· 1

f
(3.48)

where NBτ denotes the number of bits to be transmitted by communication τ and
Wbus is the width of the bus (i.e. the number of bits transmitted with each clock
cycle). Accordingly to Eq. (3.47) and (3.48), the bus energy dissipation is given by
Ebus = Prep · t. Scaling the supply and body bias voltage of the repeaters requires
also an overhead in terms of energy and time, similar to the overheads required by
processor voltage selection (see Eq. (3.4) and (3.5)).

Fat Wire-Based Bus

Another approach for reducing the wire delay is to increase the physical dimen-
sions of the wire, instead of scaling them down with technology. The usage of
“fat” wires, on the top metal layer, has been proposed in [Sve01]. The main ad-
vantage of such wires is their low resistance. Provided that L ·Rw/Z0 < 2ln2 (L is
the wire length, Rw is the wire resistance per unit length and Z0 its characteristic
impedance), they exhibit a transmission line behavior, as opposed to the RC be-
havior in the repeater-based architecture. Using fat wires, the transmission speed
approaches the physical limits (the speed of light in the particular dielectric). How-
ever, only a limited wire length can be accomplished with the available width of
the top metal layer. For example, for a 4mm long wire in 180nm technology, the
authors in [CS02] obtained a fat wire width of 2μm on the top metal layer.

The dynamic power consumption of a fat wire-based bus is mainly due to its
large line capacitance. This capacitance is driven by a driver, with the dynamic
power consumption:

Pdridyn = sτ · f · (Cdri +Cw) ·V 2
dd (3.49)

where sτ is the switching activity caused by communication task τ ∈ K , f is the
bus frequency, and Cdri and Cw represent the capacitance of the driver and the wire,
respectively.

One way to limit the dynamic power is to transmit data at a lower voltage swing,
Vsw, instead of using the higher bus voltage Vdd . Correspondingly, the dynamic
power consumed by the driver is given by:

Pdridyn = sτ · f · (Cdri +Cw) ·V 2
sw (3.50)



64 CH. 3. OFFLINE ENERGY OPTIMIZATION BY VOLTAGE SELECTION

The driver dissipates a non-negligible leakage power

Pdrileak = Lg · (Vdd ·K3 · eK4·Vdd · eK5·Vbs + |Vbs| · IJu) (3.51)

Since the lower swing corresponds to lower signal values, a receiver has to
restore the “original” signal. This requires an amplification, for which a dynamic
and a leakage power consumption can be calculated as:

Precdyn = sτ · f ·Crec ·V 2
dd (3.52)

Precleak = Lg · (Vdd ·K3 · eK4·Vdd · eKL·(Vdd/2−Vsw/2) · eK5·Vbs + |Vbs| · IJu) (3.53)

Please note that the leakage power exponentially depends on the difference be-
tween the bus voltage Vdd and the voltage swing Vsw (KL is a technology dependent
parameter), i.e., a lower voltage swing results in a higher static energy (while the
dynamic power is reduced, Eq. 3.50). In order to find the most efficient solution
we need to find an appropriate voltage swing that minimizes the total bus power
Pbus = Pdridyn +Pdrileak +Precdyn +Precleak . Using the optimal voltage swing can sig-
nificantly reduce the power consumption of the bus [CS02, Sve01].

The speed at which the data can be transmitted over the fat wires can be con-
sidered to be independent of the voltage swing Vsw. Yet, the bus driver and receiver
circuits introduce a delay that depends on the voltages Vdd and Vbs. This delay d and
the corresponding operational frequency can be calculated according to Eq. (3.3).
In order to lower the power dissipation of the drivers and receivers, it is possible
to reduce Vdd and/or to increase Vbs, which, in turn, necessitates the reduction of
the bus speed. However, it is important to note that the optimal voltage swing de-
pends on the Vdd and Vbs settings of the drivers and receivers (see Fig. 3.10). Since
these settings are dynamically changed during run-time via voltage selection, the
value of the optimal voltage swing changes as well during run-time, and has to be
adapted accordingly.

In addition to the transition overheads in terms of energy and time, which are
required when scaling the voltages of the drivers and receivers (see Eq. (3.4) and
(3.5)), the dynamic scaling of the voltage swing necessitates additional overheads.
For a transition from Vsw j to Vswk these overheads in energy and time are given by,

εk, j = Cwr · (Vswk −Vsw j)
2 and δk, j = pV sw · |Vswk −Vsw j | (3.54)

where Cwr is the wire power rail capacitance and pV sw is the time/voltage slope.



3.9 Combined Voltage Selection for Processors and
Communication Links 65

3.9.4 Problem Formulation

We assume that all computation tasks and communications have been mapped
and scheduled onto the target architecture. For each computation task τi ∈ Π its
deadline dli, its worst-case number of clock cycles to be executed WNCi, and
the switched capacitance Ce f fi are given. Each processor can vary its supply
voltage Vdd and body bias voltage Vbs within certain continuous ranges (for the
continuous voltage selection problem), or within a set of discrete voltages pairs
mz = {(Vddz ,Vbsz)} (for the discrete voltage selection problem). A transition be-
tween two different performance modes on a processor requires a time and an
energy overhead.

For each communication task τk ∈ K , the number of bytes NBk is given. De-
pending on the employed bus implementation style, either using repeaters or fat
wires, we have to distinguish between two subproblems:
Repeater Implementation: The communication speed as well as the communi-
cation power on bus architectures implemented through repeaters depend on the
supply voltage and body bias voltage. Similar to processing elements, these volt-
ages can be varied within a continuous range, or within a set of discrete voltage
pairs mz = {(Vddz ,Vbsz)}, and transitions between different bus performance modes
require an energy and time overhead. Furthermore, an energy overhead is required
to adapt the bus voltage to the processor voltage.
Fat Wire Implementation: If communication is performed over fat wires, it is
necessary to dynamically adapt the voltage swing at which data is transfered. Fur-
thermore, in order to reduce the power dissipated by the bus drivers and receivers,
it is possible to dynamically scale the supply and body bias voltage of these com-
ponents. While the voltage swing can be scaled without an influence on the bus
speed, the operational speed of the bus drivers and receivers is affected through
voltage selection, i.e., the bus performance has to be adjusted in accordance to the
driver/receiver speed. In the case of continuous voltage selection, the value for the
voltage swing, the supply voltage, and the body bias voltage can be changed within
a continuous range. On the other hand, for the discrete voltage selection case, the
components operate across sets of discrete voltages, referred to as modes. For the
voltage swing this set is nz = {Vswz} and for the bus drivers and receiver the set
is mz = {(Vddz ,Vbsz)}. Of course, changing the voltage swing value as well as the
supply and body bias voltages requires an energy and time overhead. �

Our overall goal is to find mode assignments for each processing and com-
munication task, such that the individual task deadlines are satisfied and the total
energy consumption, including overheads, is minimal.



66 CH. 3. OFFLINE ENERGY OPTIMIZATION BY VOLTAGE SELECTION

3.9.5 Voltage Selection with Processors and

Communication Links

We introduce a nonlinear programming model of the continuous voltage selection
problem formulated in Section 3.9.4 which is optimally solvable in polynomial
time, as follows:
Minimize

|Π|
∑
k

Edynk +Eleakk︸ ︷︷ ︸
computation

+
|K |
∑
k

Edynk +Eleakk︸ ︷︷ ︸
communication

+ ∑
(k, j)∈E•

εk, j

︸ ︷︷ ︸
overhead

(3.55)

subject to

tk =

⎧⎨
⎩

WNCk · (K6·Ld ·Vddk )
((1+K1)·Vddk +K2·Vbsk−Vth1 )α if τk ∈ Π⌈ NBk

Wbus

⌉ · (K6·Ld ·Vddk )
((1+K1)·Vddk +K2·Vbsk−Vth1 )α if τk ∈ K

(3.56)

Dk + tk ≤ Dl ∀(k, l) ∈ E (3.57)
Dk + tk +δk,l ≤ Dl ∀(k, l) ∈ E• (3.58)

Dk + tk ≤ dlk ∀τk ∈ Π with a deadline (3.59)
Dk ≥ 0 (3.60)

Vddmin ≤ Vddk ≤Vddmax (3.61)
Vbsmin ≤ Vbsk ≤Vbsmax (3.62)
Vswmin ≤ Vswk ≤Vswmax (3.63)

The variables that need to be determined are the task and communication execu-
tion times tk, the start times Dk, as well as the voltages Vddk , Vbsk , and Vswk . The
whole formulation can be explained as follows. The total energy consumption
(Eq. (3.55)), with its three contributors (energy consumption of tasks, communica-
tion, and voltage transitions) has to be minimized. For all these energies both their
dynamic and active leakage components are considered. The dynamic energy of
tasks and communications is given by the following equations (derived from the
equations discussed in Section 3.3):

Edynk =

⎧⎪⎨
⎪⎩

WNCk · sk ·Ce f fk ·V 2
ddk

if τk ∈ Π
∑N ⌈ NBk

Wbus

⌉ · sk ·Crep ·V 2
ddk

if τk ∈ K on repeaters⌈ NBk
Wbus

⌉ · sk ·Cf at ·V 2
swk

if τk ∈ K on fat wires

(3.64)



3.10 Experimental Results 67

where Crep = Cd +Cw +Cg and Cf at = Cdri +Cw +Crec are the total capacitances
that have to be charged by bus implementation either repeater-based or fat wire-
based, respectively.

The leakage power dissipation of processors and repeater-based buses is:

Eleakk = Lg(K3 ·Vddk · eK4·Vddk · eK5·Vbsk + IJu · |Vbsk |) · tk (3.65)

For fat wire-based buses we need to additionally account for the leakage in the
receiver (see Eq. (3.51) and (3.53)), given by,

Eleakk = (Pdrileak +Precleak) · tk (3.66)

The energy overhead due to voltage transitions is given by Eq. (3.4) and (3.54).
The constraints are similar to the ones in Section 3.6, expressing the execution

order imposed by the scheduling and task graph dependencies, as well as the time
constraints.

We use a heuristic similar to the one presented in Section 3.7.4 in order to
translate the computed continuous voltages into the discrete ones available for the
processors and buses.

3.10 Experimental Results

We have conducted several experiments using numerous generated benchmarks
as well as two real-life examples, in order to demonstrate the efficiency of the
presented approaches.

3.10.1 Vdd and Vbs Selection on the Processors

The first set of experiments was conducted in order to demonstrate the achiev-
able energy savings when comparing the classic Vdd selection with simultaneous
Vdd and Vbs selection. The automatically generated benchmarks consist of 100 task
graphs containing between 50 and 150 tasks, which are mapped and scheduled onto
architectures composed of 2 to 3 processors (we have considered that all processors
are Crusoe TM5600). The technology dependent parameters of these processors
were considered to correspond to a CMOS fabrication in 65nm, for which the leak-
age power represents 50% of the total power consumed, [MFMB02]. For experi-
mental purpose the amount of deadline slack in each benchmark was varied over
a range 0 to 90%, using a 10% increment, resulting in 900 performed evaluations.
The continuous voltage ranges were set to 0.6V ≤Vdd ≤ 1.8V and −1V ≤Vbs ≤ 0.
The values for Cr, Cs, pV dd , and pV bs were set to 10μF , 40μF , 100μs/V , and



68 CH. 3. OFFLINE ENERGY OPTIMIZATION BY VOLTAGE SELECTION

Vdd only

Vdd & Vbs

w/o OH
with OH

Heuristic

Slack Amount (%)

N
or

m
al

iz
ed

 E
ne

rg
y 

(%
)

(b) Discrete Voltage Selection 

Vdd only

Vdd & Vbs

w/o OH
with OH

N
or

m
al

iz
ed

 E
ne

rg
y 

(%
)

Slack Amount (%)

(a) Continuous Voltage Selection

 100

 80

 60

 40

 20

 0
 0

 100 80 60 40 20

 0
 0

 20

 40

 60

 80

 100

 100 80 60 40 20

Figure 3.12: Optimization Results for Processor DVS & ABB



3.10 Experimental Results 69

100μs/V , respectively. Fig. 3.12(a) shows the outcomes for the continuous voltage
selection with and without the consideration of transition overheads. The figure
shows the percentage of total energy consumed (relative to the baseline energy) as
a function of the available slack within the application. As a baseline we consider
the energy consumption at the nominal (highest) voltage for Vdd and Vbs. It is easy
to observe the advantage of the combined voltage selection scheme over the classi-
cal voltage selection, with a difference of up to 40%. These observations hold with
and without the consideration of overheads. Regarding the influence of the over-
head on the overall energy consumption, we can see that the savings are around
1% for the combined scheme and 2% for the Vdd-only selection. These moderate
amounts of additional savings have a straightforward explanation: Within the con-
tinuous scheme (which from a practical point of view is unrealistic), the voltage
differences between tasks are likely to be small, i.e., large overheads are avoided
(see Eq. (3.4) and Eq. (3.5)).

We have further evaluated the discrete voltage selection scheme. Here the pro-
cessors could switch between three different voltage settings (1.8,0), (1.5,−0.4),
and (1.2,−0.6) for the combined scheme, and 1.8, 1.5, and 1.2 for the classical Vdd
selection. The results are given in Fig 3.12(b). As in the continuous case, we can
observe the difference between the classical supply voltage selection and the more
efficient combined selection scheme. For low amounts of slack (around 10%), the
savings for the combined selection are significantly lower than in the continuous
case. The reason for this is that, due to the small slack available, the processors
have to run in the highest voltage mode, which does not reduce leakage power.
Further, we can see that with increasing slack, the overall energy approaches the
theoretical minimum given by the continuous case, since more time is spent in the
energy-efficient mode m3. It is interesting to observe the influence of the transition
overheads, in particular when not much system slack is available. In this situa-
tion the unnecessary switching between voltages to exploit the ”small” amounts of
slack causes an increased energy overhead. Compare, for instance, the cases where
the combined Vdd and Vbs selection has been optimized with and without consider-
ing the overheads. Between 10% to 40% of slack, the consideration of transition
overheads results in solutions with up to 12% higher savings. Of course, with an
increasing amount of slack, the number of tasks executed at the lowest voltage set-
ting increases, and hence the number of transitions is decreased. As a result, the
influence of the transition overheads reduces.

It should be noted that the reported results for the discrete scheme have been
evaluated using graphs with at most 80 tasks (without overhead, DNOH) and 40
tasks (with overhead, DOH), since the required optimization times become in-
tractable, as a result of the NP-hardness of the problem (Section 3.7.1). To over-
come this problem we have additionally investigated the voltage selection heuristic



70 CH. 3. OFFLINE ENERGY OPTIMIZATION BY VOLTAGE SELECTION

V
dd

p V
bs

μ, 200Fμ, 80μ F20
μ, 500μ F, 200Fμ50
μ, 1000μ F, 400Fμ100

1 μ , 4 μ , 10F F
μ, 100Fμ, 40Fμ10
μ s/V

s/V
s/V
s/V
s/V

Slack Amount (%)

C r,
 C

s
, p

N
or

m
al

iz
ed

 E
ne

rg
y 

(%
)

 100 90 80 70 60 50 40 30 20 10

 100

 90

 80

 70

 60

 50

 40

 30

Figure 3.13: Influence of voltage selection overheads

proposed in Section 3.7.4. The results of the heuristic are shown by the dotted
line in Fig 3.12(b) and, as can be seen, they are close to the optimal (maximum
8% deviation) solution. Moreover, due to its relatively reduced polynomial time
complexity, it can be applied to large instances of the problem. At this point it
is interesting to note that the optimization times for individual applications with
up to 300 tasks using continuous voltage selection were below 1 minute, using the
MOSEK solver [MOS] on a 2GHz AMD Athlon PC. Typically, for task graphs with
less then 100 tasks, the optimization time is below 15 seconds. The discrete volt-
age selection without the consideration of the transition overheads, runs between
5 and 20 minutes, for tasks graphs with less then 90 tasks. When considering the
overheads during the discrete optimization, an important parameter that affects the
optimization time, besides the number of tasks, is the number of execution modes.
We were not able to solve optimally task graphs with more then 30 tasks, con-
sidering 3 or more execution modes. Even for such a small number of tasks, the
optimization time is around 1 hour. The proposed heuristic for discrete voltages,
however, has a runtime comparable to the continuous voltage optimization, making
it suitable for large applications.

3.10.2 Significance of Transition Overheads

In order to further investigate the influence of transition overheads, we have car-
ried out an additional set of experiments in which the amount of the processors’
overheads in terms of energy and delay were varied by adjusting the values for Cr,



3.10 Experimental Results 71

Slack Amount (%)

VS+Shut (Opt)

VS+Shut (Heu)

V
ol

ta
ge

 S
el

ec
tio

n 
W

ith
ou

t S
hu

td
ow

n 
(%

)

E
ne

rg
y 

Sa
vi

ng
s 

C
om

pa
re

d 
to

 0

 5

10

 15

 20

 25

 0  10  20  30  40  50  60  70  80  90

 30

Figure 3.14: Voltage Selection with Shutdown

Cs, pV dd , and pV bs (see Section 3.3). In accordance, we use the discrete voltage
selection with consideration of overheads. The results are given in Fig 3.13. As
expected, the energy dissipation increases for higher values of the overhead de-
termining parameters. For instance, while a processor which requires Cr = 1μF ,
Cs = 4μF , pV dd = 10μs/V , and pV bs = 10μs/V transition overheads can reduce
the energy consumption by 56% if 40% of slack is available, another processor
with Cr = 20μF , Cs = 80μF , pV dd = 200μs/V , and pV bs = 200μs/V achieves only
42%. This highlights the importance to carefully consider the influence of transi-
tion overheads.

3.10.3 Voltage Selection with Processor Shutdown

Using the same setup as in the previous experiments, we have studied the achiev-
able energy savings that can be obtained by using the proposed voltage selection
with shutdown, presented in Section 3.8.2. We have assumed that the overheads
for a shutdown operation are Esoh = 300μJ and tsoh = 1ms, as in [RJ05]. The re-
sults are presented in Fig. 3.14. On the X axis, we have varied the amount of
available deadline slack. We plotted with the continuous line the energy savings
achievable by the combined voltage selection and shutdown heuristic presented in
Section 3.8.2, relative to a system that is optimized using solely DVS and ABB,
without shutdown. In order the measure the quality of the heuristic, we have also
represented with a dotted line the results obtained by an optimal solution. As we



72 CH. 3. OFFLINE ENERGY OPTIMIZATION BY VOLTAGE SELECTION

can observe from Fig. 3.14, if the amount of slack is low, shutting down does not
yield additional energy savings. However, the additional benefit of the shutdown
is significant for larger amounts of slack. For example, for systems having 30%
slack, the additional savings obtained with shutdown, relative to DVS and ABB
are only 2%. When the available slack is above 60%, the savings due to shutdown
range from 10% to almost 30%. It is interesting to note that the proposed heuristic
yields results that are close to the optimal solution.

3.10.4 Combined Voltage Selection for Processors and Commu-

nication

We have conducted a set of experiments in order to validate the presented tech-
niques for combined processor and bus voltage selection. The automatically gener-
ated benchmarks consist of 120 task graphs containing between 50 and 300 tasks,
which are mapped and scheduled onto architectures composed of 2 to 5 proces-
sors, interconnected via 1 to 4 buses either implemented repeater-based or fat wire-
based. The continuous voltage ranges were set to 0.6V ≤Vdd ≤ 1.8V and −1V ≤
Vbs ≤ 0, while the discrete voltage levels are
mz = {(1.8,0),(1.4,−0.2),(0.8,−0.6),(0.6,−1)}. The voltage ranges for repeater-
based systems are identical to the possible processor voltage settings. For the fat
wire-based buses the continuous voltage swing can be set between 0.2 and 1V , and
for the discrete case it can be adjusted to mz = 0.2,0.3,0.4,0.6,1V . The amount
of deadline slack in each benchmark was varied over a range 0 to 100%, using a
10% increment. Furthermore, the amount of communication within the generated
benchmarks was varied between 10 to 50% of the total execution time, with an
increment of 10%. Overall, these experiments resulted in 2400 performed evalua-
tions.

The first set of experiments was conducted with the aim to investigate the en-
ergy savings that are achievable when dynamically scaling the supply voltage as
well as body bias voltage of bus repeaters. The 32bit-wide bus architecture under
consideration consisted of 27 repeaters per bit-line of which each has a total length
of 27.4mm. The capacitance of a single wire including the repeaters was estimated
as 7.2pF , using the power optimized data from [BM02]. Fig. 3.15(a) shows the
outcomes of three system configurations for different amounts of system slack.
All plots have been normalized against the energy dissipation at nominal (highest)
voltages. The first plot gives the energy consumption for systems in which the
repeaters’ voltages are kept fixed, while the supply voltage (but not the body-bias
voltage) of the processors is dynamically scaled. The second plot represents a sys-
tem in which the repeater settings are still kept fixed, while combined Vdd and Vbs
scaling is applied to the processors. The third plot indicates the systems in which



3.10 Experimental Results 73

2. DVS+ABB (CPU)
1. DVS (CPU)

3. DVS+ABB (CPU+Rep.)

2. DVS+ABB (CPU)
1. DVS (CPU)

3. DVS+ABB (CPU+Rep.)

(a) Energy dissipation of a reapter−based system

(b) Energy dissipation of a fat wire−based system

 0

 10

 20

 30

 40

 50

 60

 70

 0  20  40  60  80  100
Amout of slack (%)

N
or

m
al

iz
ed

 E
ne

rg
y 

(%
)

 0

 10

 20

 30

 40

 50

 60

 70

 0  20  40  60  80  100
Amout of slack (%)

N
or

m
al

iz
ed

 E
ne

rg
y 

(%
)

Figure 3.15: Optimization Results for Different Bus Implementations

the repeater-based bus as well as the processors are scaled by changing Vdd and Vbs.
Please note that Fig. 3.15(a) gives the energy values for systems with a communi-



74 CH. 3. OFFLINE ENERGY OPTIMIZATION BY VOLTAGE SELECTION

cation amount of 30%, compared to the total execution time. Inspecting the graphs
reveals that the highest energy savings are achieved by considering the combined
Vdd and Vbs continuous voltage selection scheme on the buses as well as on the
processors (plot 3). We can also observe that the energy efficiency is increased
by approx. 12% if combined voltage selection is applied on the bus (difference
between plot 2 and 3). Generally, the combined Vdd and Vbs scaling yields higher
energy saving (around 30%) than the Vdd-only scaling (difference between plot 1
and 2). Since all plots in Fig. 3.15(a) represent the results for continuous voltage
selection, it is interesting to note that the proposed heuristic for discrete voltage
selection (Section 3.7.4) achieves results that are within 4% of the values obtained
at continuous voltage levels. It is important to note that the efficiency difference
of about 12% on average, between implementations with and without bus voltage
selection is preserved also when discrete voltage levels are used.

In the second set of experiments, shown in Fig. 3.15(b), we investigate the
achievable energy savings on a fat wire-based bus system, assuming the same bus-
width as in the previous experiment. Since fat wires are considered to be suitable
only for short distance connections, we consider a length of 4mm with a single
line capacitance of 609 f F . Similarly to the previous experiments, the plots 1 and
2 represent systems in which only the processing elements are scaled (Vdd only
for plot 1 and combined Vdd and Vbs for plot 2), while the third plot indicates
systems in which the processors and buses are voltage scaled in terms of Vdd , Vbs,
and Vsw. As expected, the fully voltage scalable systems, achieve the best energy
savings, with reductions between 4% to 18% compared to systems with fixed bus
voltages. Again, applying the heuristic for discrete voltage selection shows that
results comparable to the continuous case (within 4%) can be achieved.

Please note that we do not advocate here repeater-based or fat wire-based ap-
proaches and do not try to show that one is better than the other. What we do show
is that energy savings can be achieved if voltage selection is applied on the com-
munication links and that the communication energy models are highly dependent
on the actual technique used to implement the communication lines. The experi-
ments have also shown that with an increasing amount of communication data, the
bus voltage selection approach achieves increasingly higher energy reductions. If,
for example, the time spent for communications is around 15% of the total exe-
cution time, the energy savings due to bus voltage scaling are around 10%. With
communication time around 30%, the energy savings become around 16%.

3.10.5 Real-Life Examples

We have conducted experiments on two real-life applications: a GSM voice codec
and a generic multimedia system (MMS), that includes a H263 video encoder and



3.10 Experimental Results 75

decoder and MP3 audio encoder and decoder . Details regarding these applica-
tions can be found in [SAHE04] and [HM03]. The GSM voice codec consists
of 87 tasks and is considered to run on an architecture composed of 3 process-
ing elements with two voltage modes ((1.8V,−0.1V ) and (1.0V,−0.6)). At the
highest voltage mode, the application reveals a deadline slack close to 10%. Swi-
tching overheads are characterized by Cr = 1μF , Cs = 4μF , pV dd = 10μs/V , and
pV bs = 10μs/V . Tab. 3.1 shows the results in terms of dynamic Edyn, leakage Eleak,
overhead ε, and total energy Eactive (Columns 2–5). Each line represents a different

Edyn Eleak ε Eactive Reduction
Approach (mJ) (mJ) (mJ) (mJ) (%)
Nominal 1.342 0.620 non 1.962 —
DVDDNOH 1.185 0.560 0.047 1.792 8.7
DVDDOH 1.190 0.560 0.003 1.753 10.7
DNOH 1.253 0.230 0.048 1.531 22.0
DOH 1.255 0.230 0.002 1.487 24.3
Heuristic 1.271 0.250 0.008 1.529 22.1

Table 3.1: Optimization results for the GSM codec

voltage selection approach. Line 2 (Nominal) is used as a baseline and corresponds
to an execution at the nominal voltages. Lines 3 and 4 give the results for the clas-
sical Vdd selection, without (DVDDNOH) and with (DVDDOH) the consideration
of overheads. As we can see, the consideration of overheads achieves higher en-
ergy saving (10.7%) than the overhead neglecting optimization (8.7%). The results
given in lines 5 and 6 correspond to the combined Vdd and Vbs selection schemes.
Again we distinguish between overheads neglecting (DNOH) and overhead consid-
ering (DOH) approaches. If the overheads are neglected, the energy consumption
can be reduced by 22%, yet taking the overheads into account results in a reduction
of 24.3%, solely achieved by decreasing the transition overheads. Compared to the
classical voltage selection scheme, the combined selection achieved a further re-
duction of 14%. The last line shows the results of the proposed heuristic approach.
It should be noted that, since the problem is NP hard, such heuristic techniques are
needed when dealing with larger cases (increased number of voltage modes and
tasks). In the GSM application, although the number of tasks is relatively large,
we considered only two voltage modes. Therefore the optimal solutions could be
obtained for the DOH problem.

We have performed the same set of experiments on the MMS system con-
sisting of 38 tasks that is considered to run on an architecture composed of 4
processors with four voltage modes ((1.8V,0.0V ), (1.6V,−0.8), (1.3V,−0.9) and



76 CH. 3. OFFLINE ENERGY OPTIMIZATION BY VOLTAGE SELECTION

(1.0V,−0.9)). At the highest voltage mode, the application reveals a deadline slack
close to 40%. Tab. 3.2 shows the results in terms of dynamic Edyn, leakage Eleak,
overhead ε, and total Eactive energy (Columns 2–5). As with the GSM, the con-

Edyn Eleak ε Eactive Reduction
Approach (mJ) (mJ) (mJ) (mJ) (%)
Nominal 14.88 12.05 non 26.93 —
DVDDNOH 11.33 9.45 0.68 21.46 20.4
DVDDOH 11.31 9.46 0.0001 20.77 22.9
DNOH 11.40 7.18 0.89 19.47 27.7
DOH 11.41 7.18 0.01 18.60 31.0
Heuristic 11.62 7.30 0.40 19.32 29.3

Table 3.2: Optimization results for the MMS system

sideration of overheads achieves higher energy savings (22.9% for the Vdd-only
selection and respectively 31.0% for the combined approach) than the overhead
neglecting optimization (20.4 and respectively 27.7%). Compared to the classi-
cal voltage selection scheme (22.9% savings), the combined selection achieved a
further reduction of 8.1%.

We have performed a set of experiments on each of the two real-life applica-
tions in order to show the efficiency of the proposed voltage selection with pro-
cessor shutdown technique. The voltage modes are the same for GSM codec and
respectively for the MMS system as the ones used in the previous experiments.
The results are presented in tables 3.3 and 3.4. Each line represents a different
approach. The first line (Nominal) is the baseline and represents an execution at
the highest voltages, without any processor shutdown. The remaining four lines
represent the resulting energy consumptions for supply voltage selection without
(DVddNoSH) and with shutdown (DVddSH) and respectively the supply and body
bias selection without (DVddVbsNoSH) and with shutdown (DVddVbsSH). For
each approach we list the active (Eactive), idle and total energy (Eidle) consumption.
The overheads for a shutdown operation are estimated in [RJ05] as Esoh = 300μJ
and tsoh = 1ms. If we use these values for the GSM voice codec, we cannot perform
any shutdown, due to the little amount of slack available after voltage selection. If
we consider lower shutdown overheads (Esoh = 90μJ and tsoh = 0.3ms), we ob-
tain the results presented in table 3.3. As we can see, even considering a reduced
overhead, the energy can be improved via shutdown by only 4%. It is interesting
to compare the active and idle energy values resulted after performing voltage se-
lection without and with processor shutdown from the lines 4 and 5 in table 3.3.
As we can see, the active energy is slightly increased when we perform the shut-



3.10 Experimental Results 77

down (from 1.48mJ to 1.50mJ), while the idle energy is reduced (from 0.93mJ to
0.70mJ). This means that a situation similar to the one described in Fig. 3.7 is
encountered during the optimization (the voltages for a task are increased in order
to allow the merging of several idle intervals into one big shutdown period). The
difference between the total energy (Etotal) and the sum of active (Eactive) and idle
(Eidle) energies represents the energy corresponding to the shutdown overheads
plus the low energy consumed in the shutdown state. A simple calculation shows
that only one shutdown is perfomed in case of the GSM voice codec.

A similar experiment was performed for the MMS. We have used the shutdown
overheads estimated in [RJ05] (Esoh = 300μJ and tsoh = 1ms). The results are pre-
sented in table 3.4. It is interesting to note that performing shutdown in conjunction
with only supply voltage selection provides a reduction of 9%, compared to a re-
duction of 5% obtained by the shutdown with the combined Vdd and Vbs selection.
This is due to the fact that the combined supply and body bias voltage selection
exploits more slack than the supply-only voltage selection, thus leaving less idle
time for potential shutdown operations. As opposed to the GSM voice codec, the
optimization determines 5 shutdowns for the MMS.

Eactive Eidle Etotal Reduction
Approach (mJ) (mJ) (mJ) (%)
Nominal 1.96 1.02 2.98 —
DVddNoSH 1.74 0.93 2.68 10
DVddSH 1.75 0.62 2.56 14
DVddVbsNoSH 1.48 0.93 2.41 19
DVddVbsSH 1.50 0.70 2.30 23

Table 3.3: Results for the GSM codec with shutdown

Eactive Eidle Etotal Reduction
Approach (mJ) (mJ) (mJ) (%)
Nominal 26.93 6.94 33.87 —
DVddNoSH 20.78 4.83 25.61 25
DVddSH 20.83 0.20 22.53 34
DVddVbsNoSH 18.55 4.78 23.33 32
DVddVbsSH 19.85 0.20 21.56 37

Table 3.4: Results for the MMS system with shutdown

In the previous experiments, communication energy has been ignored. An-
other set of experiments was performed on the two benchmarks in order to high-



78 CH. 3. OFFLINE ENERGY OPTIMIZATION BY VOLTAGE SELECTION

light the importance of combined processor and communication links’ scaling. The
GSM codec is considered to run on an architecture composed of 3 processors (with
two voltage modes ((1.8V,−0.1V ) and (1.0V,−0.6V ))), communicating over a
repeater-based shared bus. At the nomimal voltages, the communication accounts
for 15% of the total energy consumption. Tab. 3.5 shows the resulting total en-
ergy consumptions for six different situations. The first column denotes the used

Approach VS type Etot (mJ) Reduc. (%)
Nominal — 2.273 —
CPU (Vdd) cont. 2.091 9
CPU (Vdd ,Vbs) cont. 1.831 20
Heu.CPU (Vdd ,Vbs) disc. 1.887 17
CPU+BUS (Vdd ,Vbs) cont. 1.665 27
Heu.CPU+BUS(Vdd ,Vbs) disc. 1.723 24

Table 3.5: Results for the GSM codec considering the communication

voltage selection technique and the second indicates if continuous or discrete volt-
ages were considered. The third and fourth column give the energy consumption
and achieved reduction in percentage for each scaling approach. For instance, ac-
cording to the second row, the system dissipates an energy of 2.273μJ at nominal
voltage settings, i.e., without any voltage selection. This value serves as a baseline
for the reductions indicated in the fourth column. The third and fourths row present
the results of systems in which the bus remains unscaled while the processors are
either Vdd or Vdd and Vbs scaled over a continuous range. As we can observe, sav-
ings of 9 and 20% are achieved. In order to adapt the continuous selected voltages
towards the two discrete voltage settings at which the processor can possibly run,
we apply our heuristic outlined in Section 3.7.4. The achieved reduction in the dis-
crete case is 17% (row 5). Nevertheless, as shown by the values given in row 6, it is
possible to further reduce the energy by scaling the repeater-based bus. Compared
to the baseline, a saving of 27% is achieved. Using the discrete voltage heuristic,
the final energy dissipation results in 1.723μJ, which is 24% below the unscaled
system. The MMS system is mapped on 4 processors that communicate over two
repeater-based buses. At the nomimal voltages, the communication accounts for
25% of the total energy consumption. The results are presented in table 3.6.

In this chapter we have focused on the voltage selection problem. The solutions
presented and the heuristics proposed can be included in design space exploration
frameworks that also perform other system level optimizations, such as task map-
ping and scheduling. This has been demonstrated by integrating our work in the



3.10 Experimental Results 79

Approach VS type Etot (mJ) Reduc. (%)
Nominal — 35.01 —
CPU (Vdd) cont. 28.99 18
CPU (Vdd ,Vbs) cont. 26.05 26
Heu.CPU (Vdd ,Vbs) disc. 26.82 24
CPU+BUS (Vdd ,Vbs) cont. 22.94 35
Heu.CPU+BUS(Vdd ,Vbs) disc. 23.48 33

Table 3.6: Results for the MMS system considering the communication

frameworks proposed in [RGA+06, SHE05]. We will discuss this aspect in Chapter
4.



80 CH. 3. OFFLINE ENERGY OPTIMIZATION BY VOLTAGE SELECTION



Chapter 4

Mapping, Scheduling and

Voltage Selection

Multiprocessor Systems-on-Chip (MPSoCs) represent today the main trend for
architectural designs, since they are able to provide scalable computation power
while still retaining the flexibility to support different task mixes [Wol05]. In this
chapter we present two system level energy optimization frameworks that integrate
task mapping, scheduling and voltage selection. The results are validated through
the optimization of a GSM voice codec that is implemented on a cycle accurate
simulation platform. The energies predicted by the optimization flow match the
ones measured on the simulator. This chapter is structured as follows: we first de-
scribe previous work in the field. The target architecture and the virtual platform
environment are presented in Section 4.2. Section 4.3 gives the problem formula-
tion, followed by an optimal solution in Section 4.4 and a genetic-based heuristic in
Section 4.5. Discussions on computational efficiency, validation and experimental
results conclude the chapter.

The main goal of this chapter is to demonstrate how voltage selection tech-
niques can be integrated in a broader system-level design flow. This work has been
done together with Martino Ruggiero, Pari Gioia, Guerri Alessio, Luca Benini ,
Michela Milano and Davide Bertozzi from Bologna University, Italy [RGA+06],
and, with Marcus Schmitz and Bashir M. Al-Hashimi from University of Southamp-
ton [AEP+07b].



82 CH. 4. MAPPING, SCHEDULING AND VOLTAGE SELECTION

4.1 Introduction and Related Work

Task mapping and scheduling are combinatorial optimization problems and have
been shown to be NP complete [GJ79]. Traditionally, there are two main ap-
proaches to these problems:

• Using optimal algorithms [PP92, RGA+06, BGM+06, LTK04], such as In-
teger Linear Programming (ILP) or Constraint Programming (CP) formula-
tions. Due to the problem complexity, such approaches must be carefully de-
ployed. For example, it is known that scheduling problems are not efficiently
tackled by ILP approaches. This is due to extra complexity introduced in the
ILP model in order to be able to capture precedence constraints.

• Deployment of heuristic methods [LJ07, VM03, HM03, SHE05, SAHE04,
SAHE02, DJ98, BTT98, DJ99, ACD74, WG90, OH96, SL93, KA99, BJM97,
EDPP00] to provide good (even if not optimal) solutions. However, heuristic
algorithms can still impose significant computational requirements without
guarantees on the quality of final solutions. Well-known heuristic techniques
include genetic algorithms, simulated annealing [OvG89, Ree93] and tabu
search [Glo89, Glo90].

Assuming the mapping of the tasks on the processors is given as input, the
authors from [GK01, GK03, Gru01] present a scheduling technique that maxi-
mizes the available slack, which is then used to reduce the energy via voltage
scaling. [LJ07] proposes a scheduling algorithm based on simulated annealing
and a heuristic based on energy gradients for voltage scaling. The allocation of the
tasks on the processors (mapping) has a great influence on the energy consumption.
[SHE05, SAHE02, SAHE04] present a heuristic approach for mapping, scheduling
and voltage scaling on multiprocessor architectures. In the context of a network-
on-chip platform, [HM03] presented a mapping and scheduling algorithm for tasks
and communications with the objective of minimizing the energy. They use a sub-
optimal heuristic and do not consider voltage-scalable cores. The closest approach
to the work presented in this chapter is the one from [LTK04]. They propose a
mixed integer linear programming (MILP) formulation for mapping, scheduling
and continuous voltage selection.

We present in this chapter two approaches for the mapping, scheduling and
voltage selection problem (MSDVS): one that is based on exact algorithms
[RGA+06] and one based on a genetic heuristic [AEP+07b]. In both approaches,
the voltage selection techniques introduced in Section 3 are integrated in the system
level optimization framework.



4.2 Hardware Architecture Model 83

Figure 4.1: Target Hardware Architecture

4.2 Hardware Architecture Model

The target architecture illustrated in Fig. 4.1 is a general platform for a distributed
MPSoC. It consists of processor cores, an AMBA AHB-compliant shared bus and
a shared memory for inter-core communication. The processors are homogeneous
and consist of ARM7 cores with instruction and data caches and of tightly cou-
pled software-controlled scratch-pad memories. The MPARM virtual platform
[BBB+03, LPB04, And06] is used as a cycle-accurate simulation environment
for this hardware architecture. Applications compiled with a cross-compiler can
be executed on the virtual platform. After the simulation, certain statistics can be
collected, such as, execution times, power and energy values for the hardware com-
ponents, as well as statistics regarding the memory accesses or the performance of
the bus.

Messages can be exchanged by tasks through communication queues, that are
allocated at design time either in scratchpad memories or in the shared memory, de-
pending on whether tasks are mapped onto the same processor or not. Synchroniza-
tion between tasks is implemented by means of two hardware semaphores. When
a producer generates a message, it locally checks an integer semaphore which con-



84 CH. 4. MAPPING, SCHEDULING AND VOLTAGE SELECTION

tains the number of free messages in the queue. If a space is available, it decre-
ments the semaphore and starts writing the message. When the message is ready,
it signals this to the consumer by incrementing the consumer pointer. Distributed
semaphores were implemented to avoid bus transaction overheads associated with
checking centralized hardware semaphores connected to the bus.

The software support is provided by a small executive and by a set of high-level
APIs to support message passing on the underlying hardware architecture. The
communication and synchronization library abstracts low level architectural details
to the programmers, such as memory maps or explicit management of hardware
semaphores and shared memory [FA05, And06]. The virtual platform supports a
set of frequencies and voltages for each processor core. For this purpose, additional
modules were integrated into the platform, namely a variable clock tree generator,
programmable registers and a synchronization module. The clock tree generator
feeds the hardware modules of the platform with independent and frequency scaled
clock trees. A set of programmable registers has been connected to the system bus:
each one of these registers contains the integer divider of the baseline frequency
for each processor. Finally, a synchronization module consisting of dual-clock
FIFOs was designed to interface each processor (which can be frequency-scaled)
to the bus, which is assumed to operate at the maximum frequency. The maximum
AMBA AHB frequency of 200MHz was kept as the maximum processing core
frequency, to which frequency dividers were applied.

The virtual platform environment provides power statistics for ARM cores,
caches, on-chip memories and AMBA AHB bus, leveraging technology homoge-
neous power models for a 0.13 nm technology provided by ST Microelectronics.
When all tasks mapped on a processor core are suspended, then the core enters
power save mode, where the power consumption is assumed to be negligible.

4.3 Problem Formulation

MSDVSP is the problem of determining the number of processors, mapping tasks
to processors, selecting the voltage/frequency mode for each task and scheduling
each of them such that the resulting energy is minimized and the timing constraints
are satisfied.

As input, we consider a set of tasks Π = {τi} with dependencies captured by a
task graph G(Π,Γ). Each task τi ∈ Π has a deadline dli. Edges γ ∈ Γ indicate the
dependencies between these tasks (communications). The hardware architecture
consists of a set of available processors P = {pk}. For each task τi, the deadline dli
is given. For each processor pk ∈ P , the worst-case number of clock cycles WNCp

i
to be executed by task τi is also given. In particular, without any loss in generality,



4.4 Optimal Mapping, Scheduling and Dynamic Voltage Selection 85

SYSTEM−LEVEL
SYNTHESIS

Application Specification Hardware Architecture

Im
pr

ov
e 

to
ta

l e
ne

rg
y

T
im

ing U
nfeasible

Scheduling

Frequency Selection
Task Mapping &

Task

(tasks+communications+overheads)

and communications
Energy of tasks Energy of freq.

switchig overheads

Improved total energy ?

Figure 4.2: Optimal Mapping & Scheduling & Frequency Selection

in this chapter we consider a homogeneous architecture, and thus the number of
clock cycles for each task does not depend on the processor. Each processor can
vary its frequency f and voltages within a set of discrete set of performance modes
M . The power dissipation of each task depends on the mode m ∈ M used to
execute it. Tasks are executed cycle by cycle. As opposed to Chapter 3, we assume
that each task is executed using one single mode. The goal is to find a mapping,
schedule and frequency/voltage assignment for each task such that the individual
task deadlines are met and the total energy consumption is minimal.

4.4 Optimal Mapping, Scheduling and Dynamic Volt-

age Selection

Many optimization problems can be decomposed into well known, structured and
widely studied sub-problems such as scheduling, packing, matching and resource
allocation. These applications have been considered and solved separately by both
the Operations Research (OR) and the Artificial Intelligence (AI) communities. It
is widely acknowledged that exploiting the structure of these problems improves
the performances of the corresponding algorithms. For example, solving schedul-



86 CH. 4. MAPPING, SCHEDULING AND VOLTAGE SELECTION

ing problems with ILP techniques is inefficient, while CP is extremely suitable. On
the other hand problems like resource allocation are better dealt using ILP solvers.
In general, merging different algorithmic aspects leads to an efficient solving pro-
cess and may determine significant performance speed ups in finding the optimal
solution. As a result, many practical problem configurations, traditionally tackled
by means of heuristic methods, become now tractable by complete approaches that
provide the optimal solution in reasonable time. We will present such an approach
in the following.

The proposed solution is based on the principle of logic-based Benders de-
composition [HO03]. The problem is decoupled in two parts: task mapping with
performance mode assignment (Master Problem) and scheduling (Subproblem).
The energy dissipation is minimized during the task mapping step, while mode
switching overhead is minimized during the scheduling process. The scheduling
part is also responsible for finding an execution order for the tasks that meets the
deadlines. The optimization approach is presented in Fig. 4.2. As the picture
shows, there are several mapping and scheduling iterations. The Master problem
produces candidate mappings and task frequency/voltage assignments with the ob-
jective of minimizing the system energy. As there is no timing information during
the mapping process, each candidate mapping has to be validated by scheduling
the tasks. Moreover, the energy overhead due to mode switching can only be com-
puted during scheduling. If several schedules are feasible for a given mapping,
the one with the lowest switching energy is reported. Successive candidate map-
pings will have the tasks and communications energy in increasing order. If the
energy overhead due to mode switching is neglected as in [BGM+06], the op-
timization stops when the first mapping is schedulable. However, if the energy
overhead is considered, the optimization stops when a mapping with an energy
consumed by the tasks and communications higher then the minimum total energy
(tasks+communications+overheads) found until that point is produced.

We will present in the following the mapping and the scheduling formulations.

4.4.1 The Master Problem Model

The Master problem is formulated as an ILP. The mapping of a certain task τt ∈ Π
on the processor pp ∈ P is modelled using the binary variables Xp,t,m. Xp,t,m = 1 if
task τt is mapped on the processor pp and runs in mode m (with frequency fm) and
Xp,t,m = 0 otherwise.

The communication between tasks is modelled as follows. We assume that two
tasks running on the same processor communicate over the scratchpad and thus
do not require the bus (intra-processor communications). Tasks that are mapped
on different processors communicate via the shared memory over the bus (inter-



4.4 Optimal Mapping, Scheduling and Dynamic Voltage Selection 87

processor communications). As opposed to Chapter 3, where a communication
is modeled by a single message exchanged via the bus, we now decouple it in
two parts: the sending task writes data to the shared memory and the receiving
task reads the data from the shared memory. This difference is due to the particular
MPSoC architecture used in this chapter to validate the resulting optimized system.

In order to capture the communication, the following binary variables are used:

• InterRsrc,dst,m =
{

1 if (τsrc,τdst) ∈ E and τdst runs in mode m
0 otherwise

This variable models the fact that the tasks τsrc and τdst are mapped on
different processors. Furthermore, the performance mode used during the
reading part of the inter-processor communication is also captured. For ex-
ample, if the communicating tasks τi and τ j are mapped on different pro-
cessors and τ j is executed with the frequency fk, then InterRi, j,k = 1 and
InterRi, j,l = 0,∀l �= k.

• InterWsrc,dst,m =
{

1 if (τsrc,τdst) ∈ Γ and τsrc runs in mode m
0 otherwise

This variable models the fact that the tasks τsrc and τdst are mapped on
different processors. Furthermore, the performance mode used during the
reading part of the inter-processor communication is also captured. For ex-
ample, if the communicating tasks τi and τ j are mapped on different pro-
cessors and τi is executed with the frequency fk, then InterWi, j,k = 1 and
InterRi, j,l = 0,∀l �= k.

• IntraRsrc,dst,m =
{

1 if (τsrc,τdst) ∈ Γ and τdst runs in mode m
0 otherwise

This variable models the fact that the tasks τsrc and τdst are mapped on the
same processor. The frequency of the reading part of the intra-processor
communication is also captured, similar to the InterR variable.

• IntraWsrc,dst,m =
{

1 if (τsrc,τdst) ∈ Γ and τsrc runs in mode m
0 otherwise

This variable models the fact that the tasks τsrc and τdst are mapped on the
same processor. The frequency of the writing part of the intra-processor
communication is also captured, similar to the InterW variable.

Additionally, as an input parameter, the binary matrix Dependencyi, j specifies,
according to the input task graph, if two tasks τi and τ j communicate (inter- or
intra-processor).



88 CH. 4. MAPPING, SCHEDULING AND VOLTAGE SELECTION

Depending on the type of communication used, the amount of time and en-
ergy differs. The sending task τsrc spends time and energy to write the data to the
scratchpad in case of intra-processor or to the shared memory via the bus in case
of inter-processor communication. Similarly, the receiving task τdst needs time
and energy to read the data from the scratchpad or from the shared memory. Both
the read and write activities are performed at the same speed of the corresponding
task that performs the operation. During all the transactions, the bus works at the
maximum speed.

Consequently, another set of input parameters is constituted by the worst-case
number of clock cycles for each read and write operation between any pair of
communicating tasks (τsrc,τdst):

(WNCIntraWsrc,dst ,WNCIntraRsrc,dst ,WNCInterWsrc,dst ,WNCInterRsrc,dst)

In the following we present the ILP formulation:
Minimize:

Energy = ∑
τk

Etaskk + ∑
τsrc,τdst

Einter commsrc,dst + ∑
τsrc,τdst

Eintra commsrc,dst +Eoh (4.1)

Such that:
Pk,m = Pdnomm ·Ce f fk +Pleakm∀τk ∈ Π,m ∈ M (4.2)

Etaskk =
|P |
∑
p=1

|M |
∑

m=1
Xp,k,m ·WNCk ·Pk,m∀τk ∈ Π (4.3)

Einter commsrc,dst =
|M |
∑

m=1
InterWsrc,dst,m · (Psrc,m +Pbus) · WNCInterWsrc,dst

fm
)+ (4.4)

+
|M |
∑

m=1
InterRsrc,dst,m · (Pdst,m +Pbus) · WNCInterRsrc,dst

fm
)

Eintra commsrc,dst =
|M |
∑

m=1
IntraWsrc,dst,m · (Psrc,m) · WNCIntraWsrc,dst

fm
)+ (4.5)

+
|M |
∑

m=1
IntraRsrc,dst,m · (Pdst,m) · WNCIntraRsrc,dst

fm
)



4.4 Optimal Mapping, Scheduling and Dynamic Voltage Selection 89

|P |
∑
p=1

|M |
∑

m=1
Xp,k,m = 1 ∀τk ∈ Π (4.6)

|M |
∑

m=1
InterRsrc,dst,m =

1
2
·
|P |
∑
p=1

|
|M |
∑

m=1
Xp,src,m −

|M |
∑

m=1
Xp,dst,m|(τsrc,τdst) ∈ E (4.7)

|M |
∑

m=1
InterWsrc,dst,m =

1
2
·
|P |
∑
p=1

|
|M |
∑

m=1
Xp,src,m −

|M |
∑

m=1
Xp,dst,m|(τsrc,τdst) ∈ E (4.8)

InterRsrc,dst,m ≥
P

∑
p=1

Xp,dst,m τsrc,τdst ∈ E ,m ∈ M (4.9)

InterWsrc,dst,m ≥
P

∑
p=1

Xp,src,m τsrc,τdst ∈ E ,m ∈ M (4.10)

|M |
∑

m=1
IntraRsrc,dst,m = Dependencysrc,dst −

|M |
∑

m=1
InterRsrc,dst,m (4.11)

IntraRsrc,dst,m ≥
P

∑
p=1

Xp,dst,m (4.12)

|M |
∑

m=1
IntraWsrc,dst,m = Dependencysrc,dst −

|M |
∑

m=1
InterWsrc,dst,m (4.13)

IntraWsrc,dst,m ≥
P

∑
p=1

Xp,src,m (4.14)

We start the explanation of the ILP model with the constraints. Eq. 4.6 restricts
each tasks’ assignment to one single processor and one single performance mode.
Using this information captured by the Xp,k,m variables, we can calculate in Eq.4.3
the energy consumed by each task τk mapped on processor pp and running at fre-
qency fm. For the clarity of mathematical expressions, the total power consumed
by task τk if executed in mode m, Pk,m, is used. Pk,m is calculated as the sum of the
dynamic power and leakage power, Eq.4.2.

Eq. 4.7, 4.9, 4.8, 4.10, 4.11, 4.12, 4.13, 4.14 set the variables that capture
the communication. For each pair of communicating tasks (τsrc,τdst) mapped on
different processors, the variables InterRsrc,dst,m and InterWsrc,dst,m corresponding
to the frequency of the source (for the write operation) or destination (for the read
operation) task are forced to 1. For the other frequencies of the same task pair, for



90 CH. 4. MAPPING, SCHEDULING AND VOLTAGE SELECTION

tasks that are mapped on the same processor and for tasks that do not communicate,
the variables InterRsrc,dst,m and InterWsrc,dst,m are set to 0 (Eq.4.7,4.9, 4.8, 4.10).

Tasks (τsrc,τdst) that communicate (Dependencysrc,dst = 1) but are mapped on
the same processor (InterWsrc,dst,m = InterRsrc,dst,m = 0) will have IntraWsrc,dst,m =
IntraRsrc,dst,m = 1.

Consequently, when all the variables InterRsrc,dst,m,
InterWsrc,dst,m, IntraRsrc,dst,m, IntraWsrc,dst,m are set, the energy for inter-processor
(Eq.4.4) and intra-processor (Eq. 4.5) communications can be computed.

The energy consumption of a certain mapping is evaluated through the objec-
tive function from Eq.4.1. Eq.4.1 captures the energy consumed by the tasks, inter-
processor and intra-processor communications, as well as the energy consumed
due to the mode switching overhead Eoh. At this point it is interesting to note that
the energy of the tasks and communications depends only on master problem vari-
ables. However, the value of the switching overheads can be computed only during
scheduling. They are constrained by Benders Cuts, after the first iteration.

Several improvements can be introduced in the master problem model. In par-
ticular, the optimization time is improved if the symmetries leading the solver to
explore the same configurations several times are removed. Consequently, a con-
straint imposing that each task ti should be allocated on a processor p j only if
i ≤ j can be added. Moreover, in order to prevent initial mappings with tasks that
are potentially running with low frequencies on the same processor (thus avoiding
communication), the load on each processor is constrained by a safe upper bound
that does not prevent the algorithm from finding the optimal solution.

4.4.2 The Sub-Problem model

The scheduling phase is modeled using Constraint Programming (CP). Each task
τi has associated a variable Starti representing the starting time. The task execution
time texei =

WNCi
fi

was decided during mapping (where both the processor where the
task is mapped and the frequency were calculated). The amount of time required
by each task to read/write from/to the scratchpad is added to the task’s worst-case
execution time. If two communicating tasks τsrc and τdst are mapped on different
processors, two additional activities (one for writing data on the shared memory
and one for reading data from the shared memory) are introduced. We model the
starting time of these activities with variables StartWritesrc,dst and StartReadsrc,dst .
Reading and writing from/to the shared memory are performed at the same fre-
quency as the corresponding task. If τsrc writes and τdst reads data , the writing
activity is performed at the same frequency of τsrc and its duration dWritesrc,dst de-
pends on the frequency and on the amount of data τsrc writes, i.e., WNCWsrc,dst/ fsrc.
Analogously, the reading activity is performed at the same frequency of τdst and



4.4 Optimal Mapping, Scheduling and Dynamic Voltage Selection 91

its duration dReadsrc,dst depends on the frequency and on the amount of data τdst
reads, i.e., WNCRsrc,dst / fdst . Clearly the read and write activities are linked to the
corresponding task:

Startsrc +durationsrc ≤ StartWritesrc,dst ∀(τsrc,τdst)

StartReadsrc,dst +dReadsrc,dst ≤ Startdst ∀(τsrc,τdst)

In the subproblem, we model precedence constraints in the following way: if tasks
τi precedes task τ j and they run on the same processor at the same frequency the
precedence constraint is simply:

Starti +Durationi ≤ Start j

If instead the two tasks run on the same processor using different frequencies, we
should add the time Ti for switching between the two frequencies.

Starti +Durationi +Tohi ≤ Start j

If the two tasks that are mapped on different processors communicate we add the
time for the communication.

Starti +Durationi +dWritei j +dReadi j ≤ Start j

Tasks can be executed on each processor sequentially, one task at a time. Of
course, several tasks can be executed in parallel, each one on a different processor,
according to the given precedence constraints (dependencies in the task graph).
This is modeled in CP using the cumulative operator. This operator acts on each
processor, modeled as a resource, restricting the number of tasks that can be exe-
cuted at any given time on it to 1:

cumulative(TaskListp,DurationListp, [1],1) ∀ processors pp

The parameters of the cumulative operator are the list of tasks TaskListp mapped
on processor pp, the list of their execution times DurationListp, their resource
consumption (which is a list of 1), and the capacity of the processor (1). In other
words, the processor is modeled as a unary resource.

Capturing the bus performance is not easy on hardware platforms similar to
one used in this chapter. The difficulty comes from the various types of traf-
fic existing on the bus. First, the communication messages exchanged between
tasks mapped on different processors are transferred via the bus. Traditionally
[EDPP00, ASE+04b, PPE+06, SIE06], these are modeled as individual activities



92 CH. 4. MAPPING, SCHEDULING AND VOLTAGE SELECTION

that are scheduled on the bus. Second, for each task, code and the data are stored
in a private memory, associated to the processor where the task is mapped. Dur-
ing the execution of the tasks, the corresponding instructions and data are fetched
from the private memory to the processor via the bus. Even if caches are used,
this results in a certain amount of traffic on the bus. However, modeling such indi-
vidual memory accesses would result in a large number of optimization variables.
Furthermore, the size of the memory necessary for storing the schedule for the bus
makes such an approach impossible. We will address these issues in Chapter 6. In
this chapter, however, the bus is captured through an additive model that was pre-
sented in [BGM+06]. An activity is associated to a write or read operation to/from
the shared memory, performed by a pair of two communicating tasks mapped on
different processors. The additive model measures the efficiency of the bus as its
ability to provide the bandwidth required by read or write activities. Assuming that
congestion effects can be neglected, the bus must be able to provide a bandwidth
equal to the sum of the simultaneous communications. In [BGM+06], this model
was demonstrated experimentally to be correct as long as the bus load is below
60%.

The objective function that has to be minimized in the scheduling problem is
the mode switching overhead energy.

4.5 Genetic-Based Optimization Heuristic

This section introduces a genetic-based approach that performs task mapping and
scheduling, using voltage scaling inside the inner energy optimization loop. The
approach is described in detail in [AEP+07b, SAHE04]. The optimization flow,
illustrated in Fig.4.3, is split into three parts:

• Genetic task mapping optimization

• Genetic schedule optimization

• Optimal voltage selection

In the genetic task mapping approach, solution candidates (potential mappings)
are encoded into mapping strings, as shown in Fig. 4.4. Each gene in these strings
describes a candidate mapping of a task to a processor. For instance, task τ4 in
Fig. 4.4 is mapped to CPU0. As typical in all genetic algorithms, ranking, selec-
tion, crossover, mutation and offspring insertion are applied in order to evolve an
initial solution pool [Gol89, BTT98, ETZ00, SAHE04]. The key feature of this
algorithm, is the invocation of the genetic list scheduling for each mapping candi-
date, in order to calculate the fitness function that guides the optimization.



4.5 Genetic-Based Optimization Heuristic 93

Power, Performance, Cost
Evaluation

SYSTEM−LEVEL
SYNTHESIS

Task Mapping
(Partitioning)

In
ne

r 
Lo

op

O
ut

er
 L

oo
p

Voltage Selection
(DVS & ABB)

Task
Scheduling

Application Specification Hardware Architecture

Figure 4.3: Genetic Optimization Flow

τ4

τ3

τ2

τ1

τ0

τ4

τ0

τ1

τ2
τ3

τ4

τ3

τ2

τ1

τ0

0

2

2

1

0 C
L

0

PE0

PE1

PE2

(a) Task Graph (b) Task Mapping String (c) Target Architecture

Figure 4.4: Task mapping string describing the mapping of five tasks to an archi-
tecture

The genetic scheduling algorithm finds for a given mapping, an energy efficient
schedule that respects all the task deadlines. One of the most widely used heuris-
tics approaches is list scheduling (LS). List scheduling algorithms take scheduling
decisions based on task priorities [CG72]. They maintain, for each processor, a
ready-list that contains the tasks that are ready to be scheduled. A task is consid-



94 CH. 4. MAPPING, SCHEDULING AND VOLTAGE SELECTION

Ordered Ready ListStep

τ0 7

τ

τ2

τ

τ1τ

τ

3

4 5 6
θ θ θ654

984

1 3 2

(c) Constructed Schedule(b) List Scheduling(a) Task Graph with Priorities

τ1

7

9 8 4

8 4 2

4 3 2

3 2 1

2 1

1

1

2

3

4

5
t

PE0

P

6

7
τ4

τ0

τ0 τ3 τ2 1τ
5τ 4ττ6

τ τ

ττ τ

τ τ τ

τττ

τ τ

3 2

2 1 6

1 5 6

465

6 4

Figure 4.5: List scheduling

ered to be ready, if all its predecessors (given by the task graph) have finished their
execution. The static schedule is constructed by scheduling the ready task with the
highest priority as soon as the eligible processor becomes available. Thereby, the
assignment of priorities defines the task execution order.

The basic idea behind list scheduling is shown in Fig. 4.5, which outlines the
construction of a schedule for a single processor system. Consider the task graph
with annotated priorities from Fig. 4.5(a). In the initial scheduling step, all tasks
with no incoming edges are placed into a ready list, as shown in Fig. 4.5(b), Step 1.
For this particular example, in the first step task τ0 is added to the ready list. Being
the only task in the ready list, task τ0 is scheduled. After its execution has finished,
the tasks τ1, τ2, and τ3 become eligible for scheduling (due to their data depen-
dency on τ0); hence, they are placed into the ready list in decreasing order of their
priorities (Scheduling Step 2). At this point τ3 represents the ready task with the
highest priority (9), so it is scheduled in Step 2. Having scheduled task τ3, task
τ5 becomes ready and thus it is placed into the ready list, according to its priority.
This scheduling procedure is repeated until no tasks are left in the ready list. Since
each scheduling step schedules one task, seven iterations are necessary. The final
schedule is shown in Fig. 4.5(c).

Clearly, different assignments of priorities result in different schedules. The
task priorities are encoded into a priority string. The genetic algorithm aims to find
an assignment of priorities that leads to a schedule of high quality in terms of tim-
ing behavior and exploitable slack time. Both crossover and mutation are applied
during the iterative execution of the genetic algorithm. The algorithm terminates
after a stop criterion is fulfilled (for example, a bound of the number of consecutive
generations that did not improve significantly the solution).

A fitness function is used for evaluating the quality of a schedule. The fitness
function captures the energy of a certain schedule. After the list scheduling has
constructed a schedule for a given set of priorities, the algorithm proceeds by pass-



4.6 Experimental Results 95

ing this schedule to a voltage selection algorithm that identifies the task voltages
that minimize the energy dissipation. A penalty is applied for schedules that are
not feasible.

As we have seen, the voltage selection is the core of the global energy optimiza-
tion. During the genetic scheduling step, the voltage scaling heuristic presented in
Chapter 3 is used. Once the genetic algorithms are finished, the optimal discrete
voltage scaling algorithm presented in Chapter 3, restricted to select one single
mode for each task, is performed.

4.6 Experimental Results

We conclude this chapter by presenting some experimental results. The hardware
architecture considered during these experiments is described in Section 4.2. The
frequency on each processor can be scaled dynamically, within a set of 4 perfor-
mance modes: m1=( f1 = 200MHz, Vdd = 2.2V ), m2=( f2 = 100MHz, Vdd = 1.6V ),
m3=( f3 = 66MHz, Vdd = 1.4), m4=( f4 = 50MHz, Vdd = 1.3V ). For this experiment
we assume that the power consumed by all tasks executing in a certain mode is
equal. Consequently, the corresponding power consumptions are: P1 = 10.070mW ,
P2 = 1.71mW , P3 = 1.010mW , P4 = 0.76mW . Every frequency switching has an
energy and a time penalty. The energy and time penalties for switching from mode
i to mode j are given in the follwing matrices:

Eohi, j =

⎛
⎜⎜⎝

0 504 504 504
171 0 171 171
153 153 0 153
152 152 152 0

⎞
⎟⎟⎠

tohi, j =

⎛
⎜⎜⎝

0 205 305 400
300 0 105 200
303 104 0 80
404 202 50 0

⎞
⎟⎟⎠

The first experiment is aimed to perform the energy optimization of a GSM
encoder. The software application was partitioned into 6 tasks. Using the MPARM
cycle accurate simulator [BBB+03, LPB04, And06, BGM+06, KBP+06], for each
task the number of clock cycles required for execution on the processors and the
number of clock cycles required for the communications were extracted. Both the
optimal approach and the genetic algorithm have been used for the optimization.
The results obtained by the two methods were identical. Table 4.1 shows these re-
sults. The optimization was performed considering several deadlines for the GSM



96 CH. 4. MAPPING, SCHEDULING AND VOLTAGE SELECTION

Deadline Number # task allocated Task frequency Energy
(ns) of processors on core divider (nJ)
6000 1 1,1,1,1,1,1 3,3,3,3,3,3 5840
5500 2 2,1,1,1,1,1 3,3,3,3,3,3 5910
5000 2 1,1,1,1,1,2 3,3,3,3,3,3 5938
4500 2 1,1,1,1,2,2 3,3,3,3,3,3 5938
4000 2 1,1,1,2,2,2 3,3,3,3,3,3 5938
3500 2 1,1,1,2,2,2 3,3,3,3,3,3 5938
3000 3 1,2,2,3,3,3 3,3,3,3,3,3 6008
2500 3 1,1,2,2,3,3 3,3,3,3,3,3 6039
2000 4 1,2,3,3,4,4 3,3,3,3,3,3 6109
1500 6 1,2,3,4,5,6 3,3,3,3,3,3 6304
1000 6 1,2,3,4,5,6 3,2,2,2,3,2 6807
900 6 1,2,3,4,5,6 3,1,2,2,2,2 9834
750 6 1,2,3,4,5,6 2,1,2,2,2,2 9934
730 6 1,2,3,4,5,6 2,1,1,2,2,2 12102
710 6 1,2,3,4,5,6 2,1,1,1,2,2 14193

Table 4.1: Optimization results for the GSM encoder

encoder, starting from a loose deadline of 6000 ns down to a tight one of 710 ns.
Table 4.1 shows in the second column the number of processors determined by
both algorithms. The third column shows for each of the 6 tasks, the id of the
processor where the task was mapped. The fourth column shows for each task the
frequency divider. The actual frequency can by calculated by dividing the maxi-
mum frequency of 200MHz to the divider. The achieved energy is reported in the
last column. If we examine the table, we notice the relation between the deadline
and the energy consumption. As expected, if the deadline is large, the resulting
energy is small. When the deadline decreases, the energy increases.

Another experiment was performed in order to compare the energies achieved
by the two approaches presented in this chapter. A task graph consisting of 11
tasks was used for this purpose. Several instances of this task graph, with different
deadlines were used. For each deadline, both optimization approaches were used.
The parameters used for the genetic mapping algorithm are the following:
1) The genetic mappings stops after trying 10000 consecutive mappings that did
not result in any energy improvement
2) The mutation probability is 0.29 while the crossover probability is 0.71.
3) The population size is 100.



4.6 Experimental Results 97

Figure 4.6: Optimal vs. Genetic-based Optimization

The parameters used for the genetic scheduling algorithm are the following:
1) The genetic scheduling stops after trying 100 consecutive schedules that did not
result in any energy improvement
2) The mutation probability is 0.10 while the crossover probability is 0.90.
3) The population size is 50.

The results are presented in Fig.4.6. It can be noticed that for loose deadlines
(5ms-8ms), both methods lead to the optimal energy or are very close. When the
deadlines are very tight (less than 2.7ms), the genetic algorithm is unable to find
allocations and schedules that meet the timing constraints. For deadlines between
3.9ms and 3.1ms, the optimal approach provides solutions that are around 7% bet-
ter than the genetic algorithm. A notable exception is for a deadline of 3.7ms when
the genetic algorithm produced a solution that is 25% worse then the optimal one.

In order to further validate the optimization flow in general and voltage se-
lection model in particular, the MPARM virtual simulation platform [BBB+03,
LPB04] was deployed to implement the mappings, schedules and voltage/frequency
assignments calculated using the optimal approach, for 200 problem instances. For
each problem instance the energy predicted by the optimal algorithm and the en-
ergy reported by the simulation platform were compared. Fig.4.7 shows the dis-
tribution of energy deviations. The average difference between measured and pre-
dicted energy values is 2.9%, with a standard deviation of 1.72. This demonstrates
the real-world applicability of such system level energy optimization frameworks.



98 CH. 4. MAPPING, SCHEDULING AND VOLTAGE SELECTION

Figure 4.7: Energy Deviation



Chapter 5

Quasi-Static Voltage Selection

Supply voltage scaling and adaptive body-biasing are important techniques that
help to reduce the energy dissipation of embedded systems. This is achieved by
dynamically adjusting the voltage and performance settings according to the ap-
plication needs. In order to take full advantage of slack that arises from variations
in the execution time, it is important to recalculate the voltage (performance) set-
tings during run-time, i.e., online. However, optimal voltage scaling algorithms
are computationally expensive, and thus, if used online, significantly hamper the
possible energy savings. To overcome the online complexity, we propose a quasi-
static voltage scaling scheme, with a constant online time complexity O(1). This
allows to increase the exploitable slack as well as to avoid the energy dissipated
due to online recalculation of the voltage settings.

5.1 Introduction and Related Work

Offline techniques calculate all voltage settings at compile time (before the actual
execution), i.e., the voltage settings for each task in the system are not changed
at run-time. On the other hand, online techniques recompute the voltage settings
during run-time. Both approaches have their advantages and disadvantages. Of-
fline voltage selection approaches avoid the computational overhead in terms of
time and energy associated with the calculation of the voltage settings. However,
to guarantee the fulfillment of deadline constraints, worst-case execution times
(WCET) have to be considered during the voltage calculation. In reality, neverthe-
less, the actual execution time of the tasks, for most of their activations, is shorter
than their WCET, with variations of up to 10 times [RE97]. Thus, an offline op-



100 CH. 5. QUASI-STATIC VOLTAGE SELECTION

timization based on the worst case is too pessimistic and hampers the achievable
energy savings. In order to take advantage of the dynamic slack that arises from
variations in the execution times, it is useful to dynamically recalculate the voltage
settings during application run-time, i.e., online.

Dynamic approaches, however, suffer from the significant overhead in terms of
execution time and power consumption caused by the online voltage calculation.
As we will show, this overhead is intolerably large even if low complexity (O(n))
online heuristics are used instead of higher complexity optimal algorithms. Un-
fortunately, researchers have neglected this overhead when reporting high quality
results obtained with dynamic approaches [YDS95, IHS98, AMMMA01, ZM04].

[IHS98] developed an online preemptive scheduling algorithm for sporadic and
periodic tasks. The authors propose a linear complexity voltage scaling heuristic
which uniformly distributes the available slack. An acceptance test is performed
online, whenever a new sporadic task arrives. If the task can be executed without
deadline violations, a new set of voltages for the ready tasks is computed.

In [AMMMA01], a power-aware hard real-time scheduling algorithm that con-
siders the possibility of early completion of tasks is proposed. The proposed so-
lution consists of three parts: (1) an off-line part where optimal voltages are com-
puted based on the WCET, (2) an online part where slack from earlier finished tasks
is redistributed to the remaining tasks, and (3) an online speculative speed adjust-
ment to anticipate early completions of future executions. Assuming that tasks can
possibly finish before their worst case execution time, an aggressive scaling policy
is proposed. Tasks are run at a lower speed than the one computed assuming the
worst case, as long as deadlines can still be met by speeding up the next tasks in
case the effective execution time was higher than expected. As the authors do not
assume any knowledge of the expected execution time, they experiment several
levels of aggressiveness.

[ZM04, ZM05] introduced a feedback EDF scheduling algorithm with dynamic
voltage scaling for hard real-time systems with dynamic workloads. Each task is
divided in two parts, representing: (a) the expected execution time, and (b) the
difference between the worst case and the expected execution time. A PID feed-
back controller selects the voltage for the first portion and guarantees hard deadline
satisfaction for the overall task. The second part is always executed with the high-
est speed, while for the first part dynamic voltage scaling is used. Online, each
time a task finishes, the feedback controller adapts the expected execution time for
the future instances of that task. A linear complexity voltage scaling heuristic is
employed for the computation of the new voltages. On a system with dynamic
workloads, their approach yields higher energy savings then an off-line dynamic
voltage scaling schedule.



5.1 Introduction and Related Work 101

The techniques presented in [Gru01, ZLL+05, LS04, LZS+06] use a stochas-
tic approach to minimize the average-case energy consumption in hard real-time
systems. The execution pattern is given as a probability distribution, reflecting
the chance that a task execution can finish after a certain number of clock cycles.
[Gru01, LS04, LZS+06] propose solutions that can be applied to single task sys-
tems. [ZLL+05] extends the problem formulation to multiple tasks, but assumes
that continuous voltages are available on the processors.

Despite their potential to achieve energy reductions, all above mentioned online
approaches greatly neglect the computational overhead required for the voltage
scaling. We will come back at this important aspect in section 5.2.1.

In [YC03] an approach is outlined in which the online scheduler is executed at
each activation of the application. The decision taken by the scheduler is based on
a set of precalculated supply voltage settings. The approach assumes that at each
activation it is known in advance which subgraphs of the whole application graph
will be executed. For each such subgraph worst case execution times are assumed
and, thus, no dynamic slack can be exploited.

Noticeable exceptions from this broad off-line/online classification are the intra-
task voltage selection approaches presented in [SKL01, SKC04, SKD05, SKL06].
The basic idea of these approaches is to perform an off-line execution path anal-
ysis, and to calculate for each of the possible paths the voltage settings in ad-
vance. The resulting voltage settings are stored within the application program.
During run-time the voltage settings along the activated path are selected. The
main advantage of these approaches is the fact that online overheads associated
with the voltage calculation are avoided and the execution time variation among
different execution paths can be exploited. Despite their energy efficiency these
approaches are most suitable for single task systems, since the number of execu-
tion paths p = zn in multi-task applications grows exponentially with the number
of tasks n and depends also on the number of execution paths in a single task
z. Therefore, the off-line optimization times required for the voltage calculation
can become intractable for realistic systems with an increased number of tasks
and execution paths. It is also important to note that the approaches described in
[SKL01, SKC04, SKD05, SKL06] are restricted to take advantage of slack that
arises from different execution times along different execution paths, while assum-
ing a worst-case execution time for each atomic instruction in order to guarantee
the satisfaction of deadline constraints. In reality, however, execution time vari-
ations are also caused by pipeline stalls, cache hit/miss rate, and different cycles
required for the same instruction — all of which are input data dependent.

In this chapter we propose a quasi-static voltage scaling technique for energy
minimization of multi-task real-time systems. This technique is able to exploit
the dynamic slack and, at the same time, keeps the online overhead (required to



102 CH. 5. QUASI-STATIC VOLTAGE SELECTION

τ1 τ3τ2 τ4 τ5

  ...

...

{
  do {
    ...
    ...
  }
...

if (!o) ...
...
...

case q {
  i++;

  new int
    ...

  }

LUT LUT LUT LUT LUT
Vdd

Vbs

f
timer

τ2

τ1

τ4 τ5

τ3

τ3τ1 τ2 τ5τ4

ts Vdd

Bus

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

A
pplication

tables
Look−

up 

CPU (VS enabled) Mem QS−LUT

quasi−static voltage
scaling of one task

(d) Look−up table for

(c) System architecture(b) EDF−ordered tasks 

model (task graph)
(a) Initial application

Volt. Scaling

Task Exec.

ONLINE

Online scheduler

dl=3ms dl=6ms dl=9ms

dl=3ms dl=6ms dl=9ms

time

...

f
50
55
60

0.00
0.01
0.02

1.20

1.31
1.25

... ...

0.08

0.10
0.09

1.72
1.81
1.95

120
130
150

CALCULATED
OFFLINE

Figure 5.1: System architecture

readjust the voltage settings at run-time) extremely low. The obtained performance
is superior to any of the previously proposed dynamic approaches. Henceforth, we
will refer to the proposed voltage scaling technique as quasi-static voltage scaling
(QSVS).

The chapter is organized as follows: Preliminaries and motivations are given in
Section 5.2, as well as the key ideas behind the presented work. An exact problem
formulation for quasi-static voltage scaling is given in Section 5.3. Our algorithms
to solve this problem are described in Sections 5.4, 5.5, 5.6. Extensive experimen-
tal results, including a real-life example, are presented in Section 5.9.

5.2 Application and Architecture Model

In this work, we consider applications that are modeled as task graphs, i.e., several
tasks with possible data dependencies among them, as in Fig. 5.1(a). Each task is
characterized by several parameters (see also section 5.3), such as a deadline, the
effectively switched capacitance, and the number of clock cycles required in the
best-case (BNC), expected-case (ENC), and worst-case (WNC). Once activated,
tasks are running without being preempted until their completion. The tasks are
executed on an embedded architecture that consists of a voltage-scalable processor
(scalable in terms of supply and body-bias voltage). The power and delay model of
the processor is described in section 3.3. The processor is connected to a memory
that stores the application and a set of look-up tables (LUT), one for each task,
required for QSVS. This architectural setup is shown in Fig. 5.1(c). During exe-
cution, the scheduler has to adjust the processor’s performance to the appropriate
level via voltage scaling, i.e., the scheduler writes the settings for the operational
frequency f , the supply voltage Vdd , and the body-bias voltage Vbs into special pro-
cessor registers before the task execution starts. An appropriate performance level



5.2 Application and Architecture Model 103

allows the tasks to meet their deadlines while maximizing the energy savings. In
order to exploit slack that arises from variations in the execution time of tasks, it
is unavoidable to dynamically re-calculate the performance levels. Nevertheless,
calculating appropriate voltage levels (the means by which performance levels are
calculated) is a computationally expensive task, i.e., it requires precious CPU time,
which, if avoided, would allow to lower the CPU performance and, consequently,
the energy consumption.

The approach presented in this chapter aims to reduce this online overhead
by performing the necessary voltage selection computations offline (at compile
time) and storing a limited amount of information as look-up tables (LUTs) within
memory. This information is then used during application run-time (i.e., online) to
calculate the voltage and performance settings extremely fast (constant time O(1)),
see Fig. 5.1(d).

5.2.1 Motivation

This section motivates the proposed quasi-static voltage scaling technique and out-
lines its basic idea.

Online Overhead Evaluation

As we have mentioned earlier, to fully take advantage of variations in the execu-
tion time of tasks, with the aim to reduce the energy dissipation, it is unavoidable to
recompute the voltage settings online according to the actual task execution times.
This is illustrated in Fig. 5.2, where we consider an application consisting of n = 4
tasks. The voltage level pairs (Vdd ,Vbs) used for each task are also included in the
figure. Only after task τ1 has terminated, we know its actual finishing time and,
accordingly, the amount of dynamic slack that can be distributed to the remain-
ing tasks (τ2,τ3,τ4). Ideally, in order to optimally distribute the slack among these
tasks (τ2,τ3, and τ4), it is necessary to run a voltage scaling algorithm (in Fig. 5.2
indicated as VS1) before starting the execution of task τ2. A straightforward imple-
mentation of an ideal online voltage scaling algorithm is to perform a “complete”
recalculation of the voltage settings each time a task finishes, using for example
the approaches described in [SAH01, YLJ03]. However, such an implementation
would be only feasible if the computational overhead associated with the voltage
scaling algorithm is very low, which is not the case in practice. The computational
complexity of such optimal voltage scaling algorithms for monoprocessor systems
is O(m ·n) [SAH01, YLJ03] (with m specifying the accuracy-a usual value of 100
and n being the number of tasks). That is, a substantial amount of CPU cycles are
spent calculating the voltage/frequency settings each time a task finishes—during



104 CH. 5. QUASI-STATIC VOLTAGE SELECTION

τ 2
τ 1

τ 3
τ 4

θ
t

(1.7,−0.01)
(1.68,−0.01)

(1.72,0.0) (1.72,0.0)

P

forall tasks
Volt_scale

.
.
.

.
.
.

.
.
.

set_voltage

forall tasks
Volt_scale

.
.
.

.
.
.

.
.
.

set_voltage

forall tasks
Volt_scale

.
.
.

.
.
.

.
.
.

set_voltage

VS
1

VS
2

VS
3

O(m(n−1)) O(m(n−2)) O(m(n−3))

0 1 32 4 5 6 7

Ideal Online Voltage Scaling

Figure 5.2: Ideal online voltage scaling approach

these cycles the CPU uses precious energy and reduces the amount of exploitable
slack.

To get insight into the computational requirements of voltage scaling algo-
rithms and how this overhead compares to the amount of computations performed
by actual applications, we have simulated and profiled several applications and
voltage scaling techniques, using two cycle accurate simulators: StrongARM (SA-
1100) [QM03] and PowerPC(MPC750)[Gro, PMT04]. We have also performed
measurements on actual implementations using an AMD platform (AMD Athlon
2400XP). Tab. 5.1 shows these results for two applications that can be commonly
found in hand-held devices: a GSM voice codec and an MPEG video encoder.
Results are shown for AMD, SA-1100 and MPC750 and are given in terms of best-

Bench- AMD Athlon SA1100 MPC750
mark BNC WNC Var. BNC WNC Var. BNC WNC Var.
type (k) (k) (%) (k) (k) (%) (k) (k) (%)

GSM 140 155 10 367 394 7 159 181 13
MPEG 731 1,700 43 4,458 8,043 45 3,869 6,439 40

Table 5.1: Simulation results of different applications

case (BNC) and worst-case number (WNC) of thousands of clock cycles needed
for the execution of one period of the considered applications (20 ms for the GSM
codec and 40 ms for the MPEG encoder). 1 For instance, on the SA-1100 pro-
cessor one iteration of the MPEG encoder requires in the best-case 4.458 kcycles
and in the worst-case 8.043 kcycles, that is a variation of 45%. Similarly, Tab. 5.2

1Note that the numbers for BNC and WNC are lower and upper bounds observed during the profil-
ing. They have not been analytically derived.



5.2 Application and Architecture Model 105

Voltage scaling AMD SA-1100 MPC750
algorithm NC (k) NC (k) NC (k)

OptimalVS(Vdd+Vbs, 20 tasks) [YLJ03] 8,410 1,232,552 136,950
OptimalVS(Vdd, 20 tasks) [YLJ03] 210 32,320 3,513
MTS Heuristic(Vdd, 20 tasks) [Gru02] 8 84 12
MTS Heuristic(Vdd+Vbs, 20 tasks) 40 623 73
Greedy Heuristic(Vdd) [AMMMA01] 0.9 10 1.0
Greedy Heuristic(Vdd+Vbs) 4.9 34 3.8
Quasi-Static(Vdd+Vbs) (proposed) 0.9 1.0 1.0

Table 5.2: Simulation results: Voltage scaling algorithms

presents the simulation outcomes for different voltage scaling algorithms. As an
example, performing one single time the optimal online voltage scaling using the
algorithm from [YLJ03] for 20 remaining tasks (just like VS1 is performed for
the three remaining tasks τ2, τ3, and τ4 in Fig. 5.2) requires 8,410 kcycles on the
AMD processor, 136,950 kcycles on the MPC750 processor, while on SA-1100 it
requires even 1,232,552 kcycles. Using the same algorithm for Vdd-only scaling
(no Vbs scaling), needs 210 kcycles on the AMD processor, 32,320 kcycles on the
SA-1100 and 3,513 kcycles on the MPC750. The difference in complexity between
supply voltage scaling and combined supply and body bias scaling comes from the
fact that in the case of Vdd-only, for a given frequency there exists one correspond-
ing supply voltage, as opposed to a potentially infinite number of (Vdd ,Vbs) pairs
in the other case. Given a certain frequency, an optimization is needed to compute
the (Vdd ,Vbs) pair that minimizes the energy. Comparing the results in Tables 5.1
and 5.2 indicates that voltage scaling often surpasses the complexity of the appli-
cations itself. For instance, performing a “simple” Vdd-only scaling requires more
CPU time (on AMD 210k cycles) than decoding a single voice frame using the
GSM codec (on AMD 155k cycles). Clearly, such overheads seriously affect the
possible energy savings, or even outdo the energy consumed by the application.

Several suboptimal heuristics with lower complexities have been proposed for
online computation of the supply voltage. Gruian [Gru02] has proposed a linear
time heuristic, while the approaches given in [AMMMA01, ZM04] use a greedy
heuristic of constant time complexity. We report their performance in terms of the
required number of cycles in Tab. 5.2, including also their additional adaptation
for combined supply and body bias scaling. While these heuristics have a smaller
online overhead than the optimal algorithms, their cost is still high, except for the
greedy algorithm for supply voltage scaling [AMMMA01, ZM04]. However, even
the cost of the greedy increases up to 5.4 times when it is used for supply and body
bias scaling. The overhead of our proposed algorithm is given in the last line of
Tab. 5.2.



106 CH. 5. QUASI-STATIC VOLTAGE SELECTION

Basic Idea: Quasi-Static Voltage Scaling

To overcome the voltage selection overhead problem, we propose a quasi-static
voltage scaling technique. This approach is divided into two phases. In the first
phase, which is performed before the actual execution (i.e., offline), voltage set-
tings for all tasks are pre-computed based on possible task start times. The result-
ing voltage/frequency settings are stored in look-up tables (LUTs) that are specific
to each task. It is important to note that this phase performs the time intensive
optimization of the voltage settings.

The second phase is performed online and it is outlined in Fig. 5.3. Each time
new voltage settings for a task need to be calculated, the online scheme looks up
the voltage/frequency settings from the LUT based on the actual task start time. If
there is no exact entry in the LUT that corresponds to the actual start time, then the
voltage settings are estimated using a linear interpolation between the two entries
that surround the actual start time. For instance, task τ3 has an actual start time of
3.58ms. As indicated in Fig. 5.3, this start time is surrounded by the LUT entries
3.55ms and 3.60ms. In accordance, the frequency and voltage setting for task τ3
are interpolated based on these entries. The main advantage of the online quasi-
static voltage selection algorithm is its constant time complexity O(1). As shown
in the last line of Tab. 5.2, the LUT look-up and voltage interpolation requires only
900 CPU cycles each time new voltage settings have to be calculated. Please note
that the complexity of the online quasi-static voltage selection is independent of
the number of remaining tasks.

5.3 Problem Formulation

Consider a set of NT tasks, Π = {τi} such that the execution order is fixed ac-
cording to a scheduling policy (e.g. EDF [ZHC02]). According to this order, task
τi has to be executed after τi−1 and before τi+1. The processor can vary its sup-
ply voltage Vdd and body-bias voltage Vbs and consequently its frequency f within
certain continuous ranges (for the continuous optimization) or within a set of dis-
crete modes mz = {Vddz ,Vbsz , fz} (for the discrete optimization). The dynamic and
leakage power dissipation as well as the operational frequency (cycle time) de-
pend on the selected voltage pair (mode). Tasks are executed cycle by cycle and
each cycle can be potentially executed at different voltage settings, i.e., a different
energy/performance trade-off. Each task τi is characterized by a six-tuple,

τi =< BNCi,ENCi,WNCi,Ce f fi,dli >



5.3 Problem Formulation 107

τ 1 τ 2 τ 3 τ 4

ts Vdd ts Vdd ts Vdd

VS VS VS

θ

(1.56,−0.1) (1.46,−0.2)

0 1 32 4 5 6 7

(1.6,−0.03)
(1.62,−0.02)

Interpol.

O(1)

Interpol.

O(1)

20
22
24
26

Interpol.

O(1)

1.75
1.80

1.70
1.60 1.48

1.54
1.58
1.64

21
19
16

21

f f f

1.44
1.48
1.53
1.57

16
15

18
20

Stored offline

LU
T

LU
T

LU
T

t

1.50
1.52
1.54
1.56

3.50
3.55

5.55
5.60

3.60
3.65

5.65
5.70

P

τ 1

ts

10
0
0

1.50
1.52
1.54
1.56

m1 m3m2
20 0 0

10 0
10 10
0 20

ts

10
0
0

1.50
1.52
1.54
1.56

m1 m3m2
20 0 0

10 0
10 10
0 20

Interpol.

ts

10
0
0

1.50
1.52
1.54
1.56

m1 m3m2
20 0 0

10 0
10 10
0 20

Interpol.

τ 1 τ 2
τ 2

τ 4τ 3 τ 4

τ 3
VS VS VS

θ
0 1 32 4 5 6 7

O(1)
Stored offline

t

P

Interpol.

LU
T

LU
T

LU
T

O(1)O(1)

Quasi−Static (Continuous) Voltage Scaling

(a) Optimization based on continouos voltage scaling

Quasi−Static (Discrete) Voltage Scaling

(b) Optimization based on discrete voltage scaling

Figure 5.3: Quasi-static voltage scaling based on pre-stored look-up tables

where BNCi, ENCi, and WNCi denote the best-case, the expected-case, and the
worst-case number of clock cycles, respectively, that task τi requires for its execu-
tion. BNC (WNC) is defined as the lowest (highest) number of cycles task τi needs
for its execution, while ENC is the arithmetic mean value of the probability density
function p(WNC) of the task execution cycles WNC, i.e., ENC = ∑WNC

j=1 j · p j( j).
Further, Ce f fi and dli represent the effectively charged capacitance and the dead-
line. The aim is to reduce the energy consumption by exploiting dynamic slack as
well as static slack. Dynamic slack results from tasks that require less execution



108 CH. 5. QUASI-STATIC VOLTAGE SELECTION

cycles than in their worst case. Static slack is the result of idleness due to system
over-performance, observable even when tasks execute with the worst-case number
of cycles.

Our goal is to store a look-up table LUTi for each task τi, such that the energy
consumption during runtime is minimized. The size of the memory available for
storing the look-up tables (and, implicitly the total number NL of table entries) is
given as a constraint.

5.4 Offline Algorithm: Overall Approach

Quasi-static voltage scaling aims to reduce the online overhead required to com-
pute voltage settings by splitting the voltage scaling process into two phases. That
is, the voltage settings are prepared offline, and the stored voltage settings are used
online to adjust the voltage/frequency in accordance to the actual task execution
times.

The pseudo-code corresponding to the calculations performed offline is given
in Fig. 5.4. The algorithm requires the following input information. The scheduled
task set Π, defined in section 5.3. For the tasks τi ∈ Π, the expected (ENCi), the
worst-case (WNCi) and the best-case (BNCi) number of cycles, the effectively
switched capacitance (Ceffi) and the deadline Di. Furthermore, the total number
of look-up table entries NL is given. The algorithm returns the quasi-static scaling
table LUTi, for each task τi ∈ Π. This table includes ni (∑n

i=1 ni = NL) possible start
times tsi, j , j = 1..ni for each task τi, and the corresponding optimal settings for the
supply voltage Vdd and the operational frequency f.

Upon initialization, the algorithm computes the earliest and latest possible start
times as well as the latest finishing time for each task (lines 01–09). The earliest
start time ESTi is based on the situation in which all tasks would execute with their
best-case number of clock cycles at the highest voltage settings, i.e., the shortest
possible execution (lines 01–03). The latest start time LSTi is calculated as the
latest start time of task τi that allows to satisfy the deadlines for all the tasks τ j,
j ≥ i, executed with the worst-case number of clock cycles at the highest volt-
ages (lines 04–06). Similarly, we compute the latest finishing time of each task
(lines 07–09).

The algorithm proceeds by initializing the set of remaining tasks Πr with the set
of all tasks Π (line 10). In the following (lines 11–29), the voltage and frequency
settings for the start time intervals of each task are calculated. More detailed,
in line 12 and 13 the size of the interval [ESTi, LSTi] of possible start times is
computed and the interval counter j is initialized. The number of entry points ni
that are stored for each task (i.e., the number of possible start times considered)



5.4 Offline Algorithm: Overall Approach 109

Algorithm: QUASI STATIC VS OFF-LINE

Input: - execution order of tasks τ ∈ Π
- for all tasks τi ∈ Π:

BNCi,ENCi,WNCi,Ce f fi,dli
- NL

Output: - Look up tables LUTi

01: for i = 1 to NT {
02: ESTi ← calc earliest start time
03: }//end for
04: for i = NT downto 1 {
05: LSTi ← calc latest start time
06: }//end for
07: for i = NT downto 1 {
08: LFTi ← calc latest finishing time
09: }//end for
10: Πr ← Π
11: for all τi ∈ Π { //ordered i=1..NT
12: Ii ← LISTi − EISTi
13: j ← 0
14: ni ← comp interpolation points(τi,LSTi,ESTi)
15: for (ts ←ESTi; ts ≤LSTi; ts ← ts + Ii/n) {
16: tsi ← ts
17: #if CONT VS

18: (Vddi,Vbsi,fi) ← cont volt scaling(Πr,tsi) //ENC based

19: LUTi[j] ← store QS lookup(tsi,Vddi,f)
20: #endif
21: #if DISC VS

22: (tendi,hi) ← disc volt scaling(Πr,tsi) //ENC based

23: LUTi[j] ← store QS lookup(tsi, tendi,h)
24: compute compat mode pairs();
25: #endif
26: j ← j + 1
27: }//end for

28: Πr ← Πr − τi
29: }//end for all

30: for all τi ∈ Π return LUTi

Figure 5.4: Pseudocode: Quasi-Static Offline Algorithm



110 CH. 5. QUASI-STATIC VOLTAGE SELECTION

is calculated in line 14. This will be further discussed in Section 5.7. For all ni
possible start times ts in the start time interval of task τi (line 15), the task start
time tsi is set to the possible start time (line 16) and the corresponding optimal
voltage and frequency settings of τi are computed and stored in the LUT (lines 15-
27). For this computation, we use the algorithms presented in Chapter 3, modified
to incorporate the optimization for the expected case. Instead of optimizing the
energy consumption for the worst-case number of clock cycles, we calculate the
voltage levels such that the energy consumption is optimal in the case the tasks
execute their expected-case (which, in reality, happens with a higher probability).
However, since our approach targets hard real-time systems, we have to guarantee
the satisfaction of all deadlines even if tasks execute their worst-case number of
clock cycles. In accordance with the problem formulation from section 5.3, the
quasi-static algorithm performs the energy optimization and calculates the LUT
using continuous (lines 17–20) or discrete voltage scaling (lines 21–25). We will
explain both approaches in the following sections, together with their particular
online algorithms. The results of the (continuous or discrete) voltage scaling for
the current task τi, given the start time tsi , are stored in the LUT. The for-loop
(line 15–27) is repeated for all ni possible start times of task τi. The algorithm
returns the quasi-static scaling table LUTi for all tasks τi ∈ Π.

5.5 Voltage Scaling with Continuous Voltage Levels

5.5.1 Offline Algorithm

In this section, we will present the continuous voltage scaling algorithm used in
Fig. 5.4, line 18. The problem can be formulated as a convex nonlinear optimiza-
tion as follows: Minimize

|Πr |
∑
k=i

(
ENCk ·Ce f fk ·V 2

ddk︸ ︷︷ ︸
Edynk

+Lg(K3 ·Vddk · eK4·Vddk · eK5·Vbsk + IJu · |Vbsk |) · tk︸ ︷︷ ︸
Eleakk

)
(5.1)

subject to:
si ≥ tsi (5.2)

tk =

⎧⎨
⎩

WNCk · (K6·Ld ·Vddk )
((1+K1)·Vddk +K2·Vbsk−Vth1 )α if k = i

ENCk · (K6·Ld ·Vddk )
((1+K1)·Vddk +K2·Vbsk−Vth1 )α ∀τk ∈ Πr k �= i

(5.3)



5.5 Voltage Scaling with Continuous Voltage Levels 111

sk + tk ≤ sk+1 ∀ τk,k = 1..(|Πr|−1) (5.4)
sk + tk ≤ dlk ∀ τk ∈ Πr that have a deadline (5.5)
si + ti ≤ LFTi τi is the first task in Πr (5.6)

sk ≥ 0 ∀ τk ∈ Πr (5.7)

Vddmin ≤Vddk ≤Vddmax and Vbsmin ≤Vddk ≤Vbsmax ∀ τk ∈ Πr (5.8)

The variables that need to be optimized in this formulation are the task execution
times tk, the task start times sk as well as the voltages Vddk and Vbsk . The start time
of the current task has to match the start time assumed for the currently calculated
LUT entry, Eq. 5.2. The whole formulation can be explained as follows. The total
energy consumption, which is the combination of dynamic and leakage energy, has
to be minimized. As we aim the energy optimization in the most likely case, the
expected number of clock cycles ENCk is used in the objective. The minimization
has to comply to the following relations and constraints. The task execution time
has to be equivalent to the number of clock cycles of the task multiplied by the
circuit delay for a particular Vddk and Vbsk setting, as expressed by Eq. 5.3. In order
to guarantee that the current task τi ends before the deadline, its execution time ti is
calculated using the worst-case number of cycles WNCi. Please remember from the
computation of the latest finishing time (LFT), that if task τi finishes its execution
before LFTi, then the rest of the tasks are guaranteed to meet their deadlines even
in the worst case. This condition is enforced by Eq. 5.6.

As opposed to the current task τi, for the remaining τk ∈ Πr,k �= i, the expected
number of clock cycles ENCk is used when calculating their execution time in
Eq. 5.3. This is important for a distribution of the slack that minimizes the energy
consumption in the expected case. Please note that this is possible because after
performing the voltage selection algorithm, only the results for the current task are
stored in the LUT. The settings calculated for the rest of the tasks are discarded.

The rest of the nonlinear formulation is similar to the one presented in Chap-
ter 3, section 3.6.1 for solving the continuous voltage selection without overheads.
Eq. 5.4 expresses the task execution order, while deadlines are enforced in Eq. 5.5.

5.5.2 Online Algorithm

Having prepared, for all tasks of the system, a set of possible voltage and frequency
settings depending on the task start time, we outline next how this information is
used online to compute the voltage and frequency settings for the effective (i.e.,
actual) start time of a task. Fig. 5.5 gives the pseudocode of the online algorithm.
This algorithm is called each time, after a task finishes its execution, in order to
calculate the voltage settings for the next task τn. The input consists of the task



112 CH. 5. QUASI-STATIC VOLTAGE SELECTION

Algorithm: QUASI STATIC VS ONLINE CONTINUOUS

Input: - start time tsn of next task τn
- Quasi-Static Scaling Table LUTn
- number of start time interval steps LUT SIZEn
- latest finishing time LFTn of task τn

Output: - frequency and voltage settings for task τn

01: (x,y) ← calc st interval(LUTn,tsn)
02: fn ← inter freq(LUTn,x,y,tsn)
03: Vddn ← inter Vdd(LUTn,x,y,tsn)
04: if tsn +WNCn/ fn > LFTn {
05: fn ← fy
06: Vddn ← Vddy
07: }
08: Vbsn ← calc Vbs(fn,Vddn)
09: return (fn,Vddn,Vbsn)

Figure 5.5: Pseudocode: Continuous Online Algorithm

start time tsn , the quasi-static scaling table LUTn, and the number of interval steps
LUT SIZEn. As output, the algorithm returns the frequency fn and voltage settings
Vddn and Vbsn for the next task, τn. In the first step, the algorithm calculates the
two entries x and y from the quasi-static scaling table LUTn that contain the start
times which surround the actual time tsn (line 01). According to the identified en-
tries, the frequency setting fn for the execution of task τn is linearly interpolated
using the two frequency settings from the quasi-static scaling table LUTn[x] and
LUTn[y] (line 02). Similarly, in step 03 the supply voltage Vddn is linearly inter-
polated from the two surrounding voltage entries in LUTn.

As will be shown in Appendix D, task frequency, considered as a function of
the start time, is piecewise convex. This means that any frequency, calculated by
linear interpolating two frequencies from the look-up table that are situated on a
convex region, is safe. However, if the frequencies from LUTn[x] and LUTn[y] are
not on a convex region, no guarantees regarding the resulting real-time behavior
can be made. It is not possible to calculate the start times that bound the convex
regions of each task frequency. The online algorithm handles this issue in line
04. If, assuming the task executes the worst-case number of clock cycles, uses



5.6 Voltage Scaling Algorithm with Discrete Voltage Levels 113

the interpolated frequency and exceeds its latest finishing time, the frequency and
supply voltage are set to the ones from LUTn[y] (line 05–06). This guarantees
the correct real-time execution, since the frequency from LUTn[y] was calculated
assuming a start time higher than the actual one.

As mentioned in Section 5.4, we do not directly interpolate the setting for the
body-bias voltage Vbsn, due to the nonlinear relation between frequency, supply
voltage, and body-bias voltage. That is, interpolating Vdd and Vbs at the same time,
can result in an operational frequency that does not match the actually needed
frequency—resulting in possible deadline violations. Therefore, we calculate the
body-bias voltage directly from the interpolated frequency and supply voltage val-
ues, using Eq. 3.3 (line 08). The algorithm returns the settings for the frequency,
supply and body-bias voltage (line 09). It is worthwhile to mention that all steps
that are necessary to perform the online calculation are computed in constant time,
i.e., the time complexity of the quasi-static online algorithm is O(1).

The quality of this algorithm depends directly on the number of intermediate
start times used. This aspect will be discussed in section 5.7. It is interesting to
note that even though it cannot be formally demonstrated, the number of convex
regions is reduced and, thus, in most cases the frequency and supply voltage are
calculated using the linear interpolation. More details are given in Appendix D.

In section 5.5, we have presented the offline and online phases of the quasi-
static algorithm, under the assumption that the processor is able to scale its fre-
quency and voltages in continuous ranges. We outline in the next section the cor-
responding discrete algorithms.

5.6 Voltage Scaling Algorithm with Discrete Voltage

Levels

We consider that processors can run in different modes m ∈ M . Each mode m
is characterized by a voltage pair (Vddm ,Vbsm) that determines the operational fre-
quency fm, the normalized dynamic power Pdnomm , and the leakage power dissipa-
tion Pleakm . The frequency and the leakage power are given by Eqs. 3.3 and 3.2,
respectively. The normalized dynamic power is given by Pdnomm = fm ·V 2

ddm
. Ac-

cordingly, the dynamic power of a task τk operating in mode m is computed as
Ce f fk ·Pdnomm . Similar to the previous section, we discuss first the offline calcula-
tion of the LUTs, followed by the outline of the online algorithm.



114 CH. 5. QUASI-STATIC VOLTAGE SELECTION

5.6.1 Offline Algorithm

We present the voltage scaling algorithm used in Fig. 5.4, line 22. The problem is
formulated using integer linear programming as follows:

Minimize
|Πr |
∑
k=1

∑
m∈M

(
Ce f fk ·Pdnomm · tk,m +Pleakm · tk,m

)
(5.9)

Subject to:
si ≥ tsi (5.10)

ck,m = tk,m · fm ∀τk ∈ Πr,m ∈ M (5.11)

∑
m∈M

ck,m =
{

WNCk if k = i
ENCk if k �= i (5.12)

sk + ∑
m∈M

tk,m ≤ dlk ∀ τk ∈ Πr that have a deadline (5.13)

sk + ∑
m∈M

tk,m ≤ sk+1 ∀ τk,k = 1..(|Πr|−1) (5.14)

si + ∑
m∈M

ti,m ≤ LFTi τi is the current task (5.15)

sk ≥ 0 , tk,m ≥ 0 and ck,m is integer ∀ τk ∈ Πr (5.16)

The task execution time tk,m and the number of clock cycles ck,m spent within a
mode are the variables in the MILP formulation. The number of clock cycles has
to be an integer and hence ck,m is restricted to the integer domain (Eq.5.16). The
total energy consumption to be minimized, expressed by the objective in Eq. 5.9, is
given by two sums. The inner sum indicates the energy dissipated by an individual
task τk, depending on the time tk,m spent in each mode m. While the outer sum adds
up the energy of all tasks. Similar to the continuous algorithm from section 5.5.1,
the expected number of clock cycles is used for each task in the objective function.

The start time of the current task has to match the start time assumed for the
currently calculated LUT entry, Eq. 5.10. The relation between execution time and
number of clock cycles is expressed in Eq. 5.11. For similar reasons as in section
5.5.1, the worst-case number of clock cycles WNCi is used for the current task τi.
For the remaining tasks, the execution time is calculated based on the expected
number of clock cycles ENCk. In order to guarantee that the deadlines are met in
the worst case, Eq. 5.15 forces task τi to complete in the worst case before its latest
finishing time, LFTi.



5.6 Voltage Scaling Algorithm with Discrete Voltage Levels 115

Similar to the continuous formulation from section 5.5.1, Eq. 5.13 and Eq. 5.14
are needed for distributing the slack according to the expected case.

As shown in Chapter 3, the discrete voltage scaling problem is NP hard. Thus,
performing the exact calculation inside an optimization loop as in Fig. 5.4 is not
feasible in practice. If the restriction of the number the clock cycles to the integer
domain is relaxed, the problem can be solved efficiently in polynomial time using
linear programming. The difference in energy between the optimal solution and
the relaxed problem is below 1%. This is due to the fact that the number of clock
cycles is large and thus the energy differences caused by rounding a clock cycle for
each task are very small.

Using this linear programming formulation, we compute offline for each task
τi, the number of clock cycles to be executed in each mode and the resulting end
time, given several possible start times.

At this point it is interesting to make the following observations.
For each task, if the variables ck,i are not restricted to the integer domain, af-

ter performing the optimal voltage selection computation, the resulting number of
clock cycles assigned to a task is different of zero for at most two of the modes.
The demonstration is given in Appendix E. This property will be used by the online
algorithm outlined in the next section.

Moreover, for each task, a table of so called compatible modes can be derived
offline. Given a mode mh, there exists, independently of the available execution
time for that task, one single mode ml with fl ≤ fh such that the energy obtained
using the pair (mh, ml) is lower than the energy achievable using any other mode
m j ( j �= l, f j < fh) paired with mh.

Let us denote with ek,i the energy consumed per clock cycle by task τk running
in mode mi. If the modes mh and ml are compatible, with fl ≤ fh, we have shown
in Appendix E that the following holds:

ek,l · ( 1
f j
− 1

fh
)− ek, j · ( 1

fl
− 1

fh
) < ek,h(

1
f j
− 1

fl
),∀ j = 1..|M | (5.17)

It is interesting to note that Eq.5.17 and consequently the pair of compatible modes
depend only on the task power profile and the frequencies that are available on the
processor. To conclude the description of the discrete offline algorithm, in addition
to the look-up table calculation, the table compatible modes is also computed of-
fline (Fig. 5.4, line 24), for each task. The computation is based on Eq. 5.17. The
pseudocode for this algorithm is given in Appendix E.



116 CH. 5. QUASI-STATIC VOLTAGE SELECTION

tets

1
2
3

h l

1
2

4 3

1

1.56
1.72

1.70
1.71

1.50
1.52
1.54

(b)

1
2
3
3

h

1.72

LUT Compatible
mode pairs

ts

1.56

1.52
1.54

m2

20 0
0

0 10
10

0 0

1.50
m3m1

0
10
10

20

LUT
(a)

Figure 5.6: Look-up tables with discrete modes

5.6.2 Online Algorithm

We present in this section the algorithm that is used online to select the discrete
modes and their associated number of clock cycles for the next task τn, based on
the actual start time and precomputed values from the look-up table LUTn.

In section 5.5.2, for the continuous voltages case, every LUT entry contains
the frequency calculated by the voltage scaling algorithm. At runtime, a linear
interpolation of the two consecutive LUT entries with start times surrounding the
actual start time of the next task, is used to calculate the new frequency. As opposed
to the continuous calculation, in the discrete case, a task can be executed using
several frequencies. This makes the interpolation difficult.

Let us assume, for example, a LUT like the one illustrated in Fig.5.3(a), and a
start time of 1.53 for the next task. The look-up table stores for several possible
start times, the number of clock cycles associated to each execution mode. Follow-
ing the same approach as in the continuous case, based on the actual start time, the
number of clock cycles for each performance mode should be interpolated using
the entries with start times at 1.52 and 1.54. However, such a linear interpolation
cannot guarantee the correct hard real-time execution. In order to guarantee the
correct timing, among the two surrounding entries, the one with a higher start time
has to be used. For our example, if the actual start time is 1.53, the LUT entry with
start time 1.54 should be used. The drawback of this approach, as will be shown by
the experimental results in Section 5.9, is the fact that a slack of 1.54−1.53 = 0.01
time units cannot be exploited by the next task. We present in the following an al-
gorithm that does not have this drawback, and at the same time, needs a smaller
memory for storing the look-up tables.

Let us consider that the LUT stores the possible start times and their corre-
sponding end times, as well as the mode with the highest frequency, as illustrated
in Fig 5.6(b). Moreover, for each task, the table of compatible modes is also calcu-
lated offline. The online algorithm is outlined in Fig. 5.7. The input consists of the



5.6 Voltage Scaling Algorithm with Discrete Voltage Levels 117

Algorithm: QUASI STATIC VS ONLINE DISC

Input: - start time tsi of current task τi
- Quasi-Static Scaling Table LUTi
- number of start time interval steps n

Output: - active modes l and h the corresponding
number of clock cycles cl and ch for τi

01: (x,y) ← calc st interval(LUTn,tsn)
02: tendi ← maximum(tendx , tendy)
03: min=∞
04: texe = tendi − tsti
05: for j = hy downto hx {
06: if WNCi

f j
≥ texe break;

07: c=compatible mode[j];
08: (ncc, nc j)=compute number of cycles(c,j);
09: e=compute task energy(ncc,nc j,c, j);
10: if (e<min) {
11: min=e; l=c; h=j; ncl = ncc; nch = nc j;
12: }
13: }
14: return (l, h, ncl, nch);

Figure 5.7: Pseudocode: Discrete Online Algorithm

task actual start time tsi , the quasi-static scaling table LUTi, the table with the com-
patible modes and the number of interval steps in. As output, the algorithm returns
the number of clock cycles to be executed in each mode. In line 01, similar to the
continuous online algorithm presented in section 5.5.2, we must find the LUT en-
tries x and y surrounding the actual start time. In the next step, using the end time
values from the lines x and y, together with the actual start time, we must calculate
the end time of the task (line 02). In the continuous online algorithm from section
5.5.2, the two consecutive entries x and y are interpolated, and, mathematically, it
can be demonstrated that the interpolation is safe from the real-time perspective.
However, in case of the discrete online algorithm presented in this section, the in-
terpolation of the end times is not safe. The reason is that, as opposed to section
5.5.2, the functions expressing the task execution time and energy are no longer



118 CH. 5. QUASI-STATIC VOLTAGE SELECTION

continuous. Thus, the algorithm selects as the end time for the next task the max-
imum between the end times from the LUT entries x and y. In this way, the hard
real-time behavior is guaranteed.

At this point, given the actual start and the end time, we must determine the
two active modes and the number of clock cycles to be executed in each. This
is done in lines 05–13. From the LUT, the upper and the lower bound hy and hx
of the higher execution mode are extracted. Using the table of compatible modes
calculated offline, for each possible pair having the higher mode in the interval
[hx,hy], the number of cycles in each mode and the resulting energy consumption
are calculated (line 07-09). The pair that provides the lowest energy is selected
(lines 10-12). The algorithm finishes either when all the modes in the interval
[hx,hy] have been inspected, or, when, during the for loop, a mode mi that cannot
satisfy the timing requirements is encountered (line 06).

The complexity of the online algorithm increases linearly with the number of
available performance modes |M |. It is important to note that real processors have
only a reduced set of modes. Furthermore, due to the fact that we use consecutive
entries from the look-up table, the difference hy−hx will be even smaller (typically
0, 1), leading to a low online overhead.

5.6.3 Consideration of the Mode Transition Overheads

As shown in Chapter 3, it is important to carefully consider the overheads resulted
due to the transition between different execution modes. We have presented in
Chapter 3 optimal algorithms as well as a heuristic that address this issue, as-
suming an offline optimization for the worst-case. The consideration of the mode
switching overheads is particularly interesting in the context of the expected case
optimization presented in this chapter. Furthermore, since the actual modes that
are used by the tasks are only known at runtime, the online algorithm has to be
aware of the switching overheads. We have shown in section 5.6.1 that at most two
modes are used during the execution of a task. The overhead aware optimization
has to decide, in which order to use these modes. Intuitively, starting a task in a
mode with a lower frequency can potentially lead to a better energy consumption
than starting with a higher frequency. This is the key difference between an opti-
mization that is aware of early completion times and a worst-case optimization. Of
course, it is not always better to start with the lower mode. We will deal with this
issue in the following.

Let us consider the example shown in Fig. 5.8. Task τ1 is running in mode m1.
The voltage scaling algorithm has assigned x clock cycles of τ2 to mode m3 and y
clock cycles to mode m2. τ2 executes the expected case ENC2 cycles. The over-
head implied by a transition between mode i and j is εi, j. The energy consumed per



5.6 Voltage Scaling Algorithm with Discrete Voltage Levels 119

τ1 τ2 τ2τ1

intra

t (ms)

intra

t (ms)

P P interinter

m2m1 m3 m1 m2 m3

0 2
0

0 2

2

O O O O

(b) after reordering(a) before reordering

Figure 5.8: Mode Transition Overheads

clock cycle in mode i by task τ2 is denoted as ei. If we examine the schedules pre-
sented in Fig. 5.8(a) and (b), we notice that in the first case, the energy overhead is
ε1,3 +ε3,2 versus ε1,2 +ε2,3 for the second schedule. We denote the energy resulted
from the schedule in Fig. 5.8(a) and (b) by Ea and Eb, respectively. Depending on
the relation between ENC2, x and y we can distinguish four possible scenarios:

1) x ≥ ENC2, y ≥ ENC2
In this case, it is expected that only one mode will be used at runtime, since in

both execution modes m2 and m3 we have a number of clock cycles higher than the
expected one.

Ea = ε1,3 +ENC2 · e3 (5.18)
Eb = ε12 +ENC2 · e2 (5.19)

In this case, it is more energy efficient to begin the execution of τ2 in mode m3

(Ea ≤ Eb), if ENC2 ≥ ε1,3−ε1,2
e2−e3

.

2) x ≤ ENC2, y ≤ ENC2
As opposed to the previous case when only one mode is used online, in this case

it is expected that two modes will be used at runtime. The energy consumption in
each alternative is:

Ea = ε1,3 + e3 ·ENC2 (5.20)
Eb = ε1,2 + e2 ·ENC2 (5.21)

Thus, it is more energy efficient to begin the execution of τ2 in mode m3 if ax +
y+ENC2 ≥ ε1,3+ε3,2−ε1,2−ε2,3

e2−e3
.



120 CH. 5. QUASI-STATIC VOLTAGE SELECTION

3) x ≥ ENC2, y ≤ ENC2

Ea = ε1,3 +ENC2 · e3 (5.22)
Eb = ε12 + y · e2 + ε2,3 +(ENC2 − y) · e3 (5.23)

It is more energy efficient to begin the execution of τ2 in mode m3 if y≥ ε1,3−ε1,2−ε2,3
e2−e3

.

4) x ≤ ENC2, y ≥ ENC2 Similar to the previous case, if x ≥ ε1,3−ε1,2+ε2,3
e2−e3

, it is
better to start τ2 in mode m3.

The four possible scenarios identified before are included at the end of the
online algorithm in Fig. 5.7.

5.7 Calculation of the Look-Up Table Sizes

In this section we address the problem of how many entries to assign to each LUT
under a given memory constraint, such that the resulting entries yield high energy
savings. As we have mentioned before, the number of entries in the LUT of each
task has an influence on the solution quality, i.e., the energy consumption. This is
due to the fact that the frequency and voltage approximations in the online algo-
rithm become more accurate as the number of points increases.

A simple approach to distribute the memory among the LUTs is to allocate
the same number of entries for each LUT. However, due to the fact that different
tasks have different start time interval sizes and nominal energy consumptions,
the memory should be distributed using a more effective scheme (i.e. reserving
more memory for critical tasks). In the following we will introduce a heuristic
approach to solve the LUT size problem. The two main parameters that determine
the criticality (in the sense that it should be allocated more entries in the LUT) of
a task τi are the size of the interval of possible start times (LSTi −ESTi) and the
nominal expected energy consumption (Ei). The expected energy consumption of
a task Ei is the energy consumed by that task when executing the expected number
of clock cycles (ENCi) at the nominal voltages. Consequently, in order to allocate
the ni look-up table entries for each tasks, we use the following formula:

ni = NL · Ei · (LSTi −ESTi)
∑NT

i=1 Ei · (LSTi −ESTi)
(5.24)



5.7 Calculation of the Look-Up Table Sizes 121

τ1 τ3τ2 τ4 τ5

  ...

...

{
  do {
    ...
    ...
  }
...

if (!o) ...
...
...

case q {
  i++;

  new int
    ...

  }

LUT LUT LUT LUT LUT
Vdd

Vbs

f timer

Local Bus

τ1 τ3τ2 τ4 τ5 τ6 τ8τ7 τ9 τ10

LUT LUT LUT LUT LUT
Vdd

Vbs

f timer

τ6 τ8τ7 τ9

  ...

...

{
  do {
    ...
    ...
  }
...

if (!o)

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

T
asks

tables
Look−up

CPU (VS enabled) Mem

ONLINE
VS

Exec.

scheduler

S
ys

te
m

 B
us

Mem

Local Bus

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

T
asks

tables
Look−up

CPU (VS enabled) Mem

ONLINE
VS

Exec.

scheduler ...
...
...

case q {
  i++;

  new int
    ...

  }

τ10

Finished

Figure 5.9: Multiprocessor system architecture



122 CH. 5. QUASI-STATIC VOLTAGE SELECTION

5.8 Quasi-Static Voltage Scaling for Multiprocessor

Systems

In this section we address the online voltage scaling problem for multiprocessor
systems. We consider that the mapping of the tasks on the processors and the
schedule are given. Similar to the single processor problem, the aim is to reduce the
energy consumption by exploiting dynamic slack resulted from tasks that require
less execution cycles than in their worst-case. For efficiency reasons, the same
quasi-static approach, based on storing a look-up table LUTi for each task τi, is
used.

The hardware architecture is depicted in Fig. 5.9, assuming, for example, a sys-
tem with two processors. Please note that each processor has a dedicated memory
that stores the instructions and data for the tasks mapped on it, and, their look-up
tables. The dedicated memories are connected to the corresponding processor via a
local bus. The shared memory, connected to the system bus, is for synchronization
and it records, for each task, wheather or not it has completed the execution. When
a task ends, it marks the corresponding entry in the shared memory. This informa-
tion is used by the scheduler, invoked when a task finishes, on the processor where
the finished task is mapped. The scheduler has to decide when to start and which
performance modes to assign to the next task on that processor. The next task,
determined by an offline schedule, can start only when its predecessors, from all
the other processors, have finished. The performance modes are calculated using
the look-up tables.

The quasi-static algorithms presented in section 5.5 and 5.6 were designed for
systems with a single processor. Nevertheless, they can also be used in the case of
multiprocessor systems, with a few modifications:

1) Continuous approach

In the offline algorithm from Section 5.5.1, Eq. 5.4 that captures the precedence
constraints between tasks, has to be replaced by:

sk + tk ≤ sl ∀(k, l) ∈ E (5.25)

Please remember from Chapter 3 that E is the set of all edges in the extended task
graph (precedence constrains and scheduling dependencies).

2) Discrete approach

In the offline algorithm from Section 5.6.1, Eq. 5.14 that captures the prece-
dence constraints, has to be replaced by:

sk + ∑
m∈M

tk,m ≤ sl ∀(k, l) ∈ E (5.26)



5.9 Experimental Results 123

Both online algorithms described in Sections 5.5.2 and 5.6.2 can be used with-
out modifications.

At this point, it is interesting to note that the correct real-time behavior is guar-
anteed even in the case of a multiprocessor system. The key is the fact that all
the tasks, no matter when they are started, will complete before or at their latest
finishing time.

5.9 Experimental Results

We have conducted several experiments using numerous generated benchmarks as
well as a real-life application, in order to demonstrate the applicability of the pro-
posed approach. The processor parameters have been adopted from [MFMB02].

The first set of experiments was conducted in order to investigate the quality
of the results provided by different online voltage selection techniques in the case
when their actual run-time overhead is ignored. In Fig. 5.10(a) we show the results
obtained with the following five different approaches:

1) the ideal online voltage selection approach (the scheduler that calculates the
optimal voltage selection with no overhead).

2) the quasi-static voltage selection technique proposed in this chapter in Sec-
tion 5.5.

3) the greedy heuristic proposed in [AMMMA01].
4) the task splitting heuristic proposed in [ZM04].
5) the ideal online voltage scaling algorithm for WNC proposed in [YDS95].
Originally, approaches given in [AMMMA01, ZM04, YDS95] perform DVS

only. However, for comparison fairness, we have extended these algorithms to-
wards combined supply and body-bias scaling. The results of all five techniques
are given as the percentage deviation from the results produced by a hypothetical
voltage scaling algorithm that would know in advance the exact number of clock
cycles executed by each task. Of course such an approach is practically impos-
sible. Nevertheless, we use this theoretical lower limit as baseline for the com-
parison. During the experiments, we varied the ratio of actual number of clock
cycles (ANC) and worst case number of clock cycles (WNC) from 0.1 to 1 with a
step width of 0.1. For each step, 1000 randomly generated task graphs were eval-
uated, resulting in a total of 10000 evaluations for each plot. As mentioned earlier,
for this first experiment we ignored the computational overheads of all the inves-
tigated approaches, i.e., we assumed that the voltage scaling requires zero time.
Furthermore, the actual number of clock cycles (ANC) are set based on a normal
distribution using the expected number of cycles (ENC) as the mean value. Ob-
serving Fig. 5.10(a) leads to the following interesting conclusions. Firstly, if the



124 CH. 5. QUASI-STATIC VOLTAGE SELECTION

(a) Scaling for the expected−case execution time

Greedy
Task−splitting

Ideal on−line for ENC

Ideal on−line for WNC

Quasi−static }proposed

(assuming zero overhead)

(b) Influence of the online overhead on

Quasi−static

Greedy

Task−splitting

Applic. 1
Applic. 2

different online VS approaches

 0

 10

 20

 30

 40

 50

 60

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1
ANC/WNC

D
if

fe
re

nc
e 

to
 th

eo
re

tic
al

 li
m

it 
(%

)
D

if
fe

re
nc

e 
to

 th
eo

re
tic

al
 li

m
it 

(%
)

ANC/WNC

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

Figure 5.10: Experimental results: online voltage scaling

actual number of cycles (ANC) corresponds to the worst-case number (WNC), all
voltage selection techniques approach the theoretical limit. In other words, if the
application has been scaled for the WNC and all task execute with WNC, then all
online techniques perform equally well. This, however, changes if the ANC differs
from the WNC, which is always the case in practice. For instance, in the case that



5.9 Experimental Results 125

Quasi−static

Ideal on−line for ENC (oh Vdd)

(oh Vdd+Vbs)
Ideal on−line for ENC

Influence of the online overhead on
an ideal linear time heuristic

D
if

fe
re

nc
e 

to
 th

eo
re

tic
al

 li
m

it 
(%

)

 0

 10

 20

 30

 40

 50

 60

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

Figure 5.11: Experimental results: online voltage scaling

the ratio between ANC and WNC is 0.1, we can observe that ideal online voltage
selection is 25% off the theoretical limit. On the other hand, the technique de-
scribed in [YDS95] is 60% worse than the theoretical limit. The approaches based
on the methods proposed in [AMMMA01, ZM04] yield results that are 42% and
45% below the theoretical optimum. Another interesting observation is the fact that
the ideal online scaling and our proposed quasi-static technique produce results of
the same high quality. Of course, the quality of the quasi-static voltage selection
depends on the number of entries that are stored in the look-up tables (LUTs). Due
to the importance of this influence, we have devoted a supplementary experiment
to demonstrate how the number of entries affects the voltage selection quality. In
the experiment illustrated in Fig. 5.10(a) and (b) the total number of entries was
set to 4000, which was sufficient to achieve results that differed with less then
0.5% from the ideal online scaling for task graphs with up to 100 nodes. In sum-
mary, Fig. 5.10(a) demonstrates the high quality of the voltage settings produced
by the quasi-static approach, which are very close of those produced by the ideal
algorithm and substantially better than the values produced by any other proposed
approach.

In order to evaluate the global quality of the different voltage selection ap-
proaches (taking into consideration the online overheads), we conducted two sets
of experiments (Fig. 5.10(b) and Fig. 5.10(c)). In Fig. 5.10(b) we have compared
our quasi-static algorithm with the approaches proposed in [AMMMA01, ZM04].
The influence of the overheads is tightly linked with the size of the applications.



126 CH. 5. QUASI-STATIC VOLTAGE SELECTION

Therefore, we use two sets of applications (Applic. 1 and Applic. 2) of differ-
ent sizes. Applic. 1 has the size comparable to that of the MPEG encoder and
Applic. 2 has a size similar to the GSM codec. As we can observe, the proposed
quasi-static voltage scaling achieves considerably higher savings than the other two
approaches. Although all three approaches illustrated in Fig. 5.10(b) have constant
online complexity (O(1)), the overhead of the quasi-static approach is considerably
lower. At the same time, as shown in Fig. 5.10(a), the quality of settings produced
by QSVS is much higher.

In Fig. 5.11 we have compared our quasi-static approach with a hypothetical
”best possible” dynamic voltage scaling algorithm. Such a hypothetical algorithm
would produce the optimal voltage settings with a linear overhead similar to that of
the heuristic proposed in [Gru02] (see Tab. 2). Please note that such an algorithm
has not been proposed since all known optimal solutions incur a higher complexity
than the one in [Gru02]. We evaluated 10000 randomly generated task graphs. In
this particular experiment we set the size of the task graphs similar to the MPEG
encoder. We considered two cases: the hypothetical online algorithm is executed
with the overhead from [Gru02] for Vdd-only and with the overhead that would
result if the algorithm is rewritten for the combined (Vdd , Vbs) scaling. Please note
that in both of the above cases we consider that the hypothetical algorithm performs
Vdd as well as Vbs scaling. As we can see, the quasi-static algorithm is superior by
up to 10% even to the hypothetical algorithm with the lower Vdd-only overhead,
while in the case which is still optimistic but closer to reality of the higher (Vdd , Vbs)
overhead the superiority of the quasi-static approach is up to 30%. Overall these
experiments demonstrate that the quasi-static solution is superior to any proposed
and foreseeable dynamic voltage scaling approach.

The next set of experiments was conducted in order to demonstrate the influ-
ence of the memory size used for the look-up tables on the possible energy savings
with the quasi-static voltage scaling. For this experiment we have used three sets of
tasks graphs with 20, 50, and 100 tasks, respectively. Fig. 5.12 shows the percent-
age deviation of energy savings with respect to an ideal online voltage selection
as a function of the memory size. For example, in order to obtain a deviation be-
low 0.5%, a memory of 40kB is needed for systems consisting of 100 tasks. For
the same quality, 20 and 8kB are needed for 50 and 20 tasks, respectively. It is
interesting to observe that with a small penalty in the energy savings, the required
memory decreases almost by half. For instance, for 100 tasks, the quasi-static al-
gorithm achieves 2% deviation relative to the ideal algorithm with a memory of
only 24kB. It is important to note, that in all the performed experiments we have
taken into consideration the energy overhead due to the memories. This overheads
have been calculated based on the energy values reported in [HAM+03, MMP03]
in the case of SRAM memories.



5.9 Experimental Results 127

Memory Size (kB)

100 tasks

50 tasks

20 tasks

D
ev

ia
tio

n 
fr

om
 id

ea
l (

%
)

 0

 5

 10

 15

 20

 25

 30

 35

 0  32 24 16 8  40

Figure 5.12: Experimental results: influence of LUT sizes

In the experiments presented until now, we have used the quasi-static algorithm
based on continuous voltage selection. Another set of experiments was performed
in order to evaluate the approach based on discrete voltages, presented in section
5.6. We have used taskgraphs with 50 tasks and a processor with 4 discrete modes.
The 4 voltage pairs ((Vdd ,Vbs)) are: (1.8V,0V), (1.4V,-0.3V), (1.0V, -0.6V), (0.6V,
-1.0V). The processor parameters have been adopted from [MFMB02]. The re-
sults are shown in Fig. 5.13. During this set of experiments, we have compared
the energy savings achievable by two discrete quasi-static approaches. In the first
approach, the LUT stores for each possible start time, the number of clock cycles
associated to each mode. Online, the first LUT entry that has the start time higher
than the actual one is selected. This approach, corresponding to the first alternative
proposed in Section 5.6.2, is denoted in Fig. 5.13 with LUT Y. The second ap-
proach uses the online algorithm presented in Fig. 5.7, and is denoted in Fig. 5.13
with LUT XY. During the experiments, we varied the ratio of actual number of
clock cycles (ANC) to the worst-case number of clock cycles (WNC) from 0.1 to
1, with a step width of 0.1. For each step, 1000 randomly generated task graphs
were evaluated. As indicated in the figure, we present the deviation from the the-
oretical limit for the two approaches, assuming two different look-up table sizes:
8kB and 24 kB. Clearly, the savings achieved by both approaches depend on the
size of the LUTs. We notice in Fig. 5.7 that the size of LUT has a much bigger in-
fluence in case of LUT X than in case of LUT XY. This is no surprise, since when
LUT X is used a certain amount of slack proportional with the distance between
the LUT entries is not exploited. For a LUT size of 8kB, LUT XY produces energy
savings which can be 40% better than those produced with LUT Y.



128 CH. 5. QUASI-STATIC VOLTAGE SELECTION

ANC/WNC

D
if

fe
re

nc
e 

to
 th

e 
th

eo
re

tic
al

 li
m

it 
(%

)

 0

10

20

30

40

50

60

70

80

90

100

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

LUT_SIZE=8KB

LUT_SIZE=24KB

LUT_XY

LUT_Y

Figure 5.13: Experimental results: discrete voltage scaling

The efficiency of the multiprocessor quasi-static algorithm is investigated dur-
ing the next set of experiments. We assumed an architecture composed of three
processors, 50 tasks and a total LUT size of 24kB. The results are summarized
in Fig. 5.13 and show the deviation from the theoretical limit of the discrete ap-
proach, considering several ratios of actual (ANC) to worst-case number of clock
cycles (WNC). We can see that the trend does not change, compared to the single
processor case. For example, for a ratio of 0.5 (the tasks execute half the worst-
case), the quasi-static is 22% away from the ideal. At the same ratio, for the single
processor case, the quasi-static approach was at 15% from the ideal algorithm. As
opposed to a single processor system, in the multiprocessor case, there are tasks
that are executed in parallel, potentially resulting in certain amount of slack that
cannot be used by the quasi-static algorithm.

In addition to the above given benchmark results, we have conducted exper-
iments on a real-life MPEG encoder. The MPEG encoder consists of 25 tasks

Approach E(μJ) Reduc. (%)
Nominal 1.63 –
Static VS 1.39 15
Greedy [AMMMA01] 0.55 67
Task Splitting [ZM04] 0.52 69
Quasi-static (cont.) 0.36 78
Quasi-static (disc.) 0.32 0.80

Table 5.3: Optimization results for the MPEG algorithm

and is considered to run on a MPC750 processor. Tab. 5.3 shows the resulting



5.9 Experimental Results 129

ANC/WNC

D
if

fe
re

nc
e 

to
 th

e 
th

eo
re

tic
al

 li
m

it 
(%

)

 0

10

20

30

40

50

60

70

80

90

100

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

Figure 5.14: Experimental results: voltage scaling on multiprocessor systems

energy consumption obtained with different scaling approaches. The first line
gives the energy consumption of the MPEG encoder running at the nominal volt-
ages. Line two shows the result obtained with an optimal static voltage scaling
approach. The energy improvement in this case is approximately 15%. Lines 3-
4 show the improvements produced using the greedy online techniques proposed
in [AMMMA01, ZM04] which achieve reductions of 67% and 69%, respectively.
The next two rows present the results obtained by the continuous and the discrete
quasi-static algorithms. The continuous algorithm improves over the nominal con-
sumption by 78%, while the discrete one by 80%. The results confirm the high
quality of the solutions produced by the quasi-static scaling technique.



130 CH. 5. QUASI-STATIC VOLTAGE SELECTION



Part III

Predictability of

Multiprocessor

Implementations





Chapter 6

Predictable Implementation of

Real-Time Applications on

Multiprocessor

Systems-on-Chip

Worst-case execution time (WCET) analysis and, in general, the predictability of
real-time applications implemented on multiprocessor systems has been addressed
only in very restrictive and particular contexts. One important aspect that makes
the analysis difficult is the estimation of the system’s communication behavior.
The traffic on the bus does not solely originate from data transfers due to data
dependencies between tasks, but is also affected by memory transfers as result of
cache misses. As opposed to the analysis performed for a single processor system,
where the cache miss penalty is constant, in a multiprocessor system each cache
miss has a variable penalty, depending on the bus contention. This affects the tasks’
WCET which, however, is needed in order to perform system scheduling. At the
same time, the WCET depends on the system schedule due to the bus interference.
In this context, we propose, an approach to worst-case execution time analysis and
system scheduling for real-time applications implemented on multiprocessor SoC
architectures.



134
CH. 6. PREDICTABLE IMPLEMENTATION OF REAL-TIME

APPLICATIONS ON MULTIPROCESSOR SYSTEMS-ON-CHIP

6.1 Introduction and Related Work

Embedded applications, running on highly parallel architectures are becoming more
and more sophisticated and, at the same time, will be used very often in applica-
tions for which predictability is very important. Classically, these are safety critical
applications such as automotive, medical or avionics systems. However, recently,
more and more applications in the multimedia and telecommunications area have
to provide guaranteed quality of service and, thus, require a high degree of worst-
case predictability [GDR05]. Such applications impose strict constraints not only
in terms of their logical functionality but also with concern to timing. The objective
of this chapter is to address, at the system-level, the specific issue of predictability
for embedded systems implemented on current and future multiprocessor archi-
tectures. Providing predictability, along the dimension of time, should be based
on scheduling analysis which, itself, assumes as an input the worst case execution
times (WCETs) of individual tasks [Kop97, PEPP06]. While WCET analysis has
been an investigation topic for already a long time, the basic driving force of this
research has been, and still is, to improve the tightness of the analysis and to incor-
porate more and more features of modern processor architectures. However, one of
the basic assumptions of this research is that WCETs are determined for each task
in isolation and then, in a separate step, task scheduling analysis takes the global
view of the system [TW04]. This approach is valid as long as the applications are
implemented either on single processor systems or on multiprocessor architectures
in which every processor has a dedicated, private access to an exclusively private
memory. Such an architecture was assumed in Chapters 3 and 5.

The main problems that researchers have tried to solve are (1) the identification
of the possible execution sequences inside a task and (2) the characterization of the
time needed to execute each individual action [PB00]. With advanced processor
architectures, effects due to caches, pipelines, and branch prediction have to be
considered in order to determine the execution time of individual actions. There
have been attempts to model both problems as a single ILP formulation [LMW96].
Other approaches combine abstract interpretation for cache and pipeline analysis
with ILP formulations for path analysis [TFW00], or even integrate simulation
into the WCET analysis flow [LS99, WSE02]. There have been attempts to build
modular WCET estimation frameworks where the particular subproblems are han-
dled separately [EES+03], while other approaches advocate a more integrated view
[HLTW03]. More recently, preemption related cache effects have also been taken
into consideration [RM05, SSE05].

The basic assumption in all this research is that, for WCET analysis, tasks can
be considered in isolation from each other and no effects produced by dependencies
or resource sharing have to be taken into consideration (with the very particular



6.2 System and Application Model 135

exception of some research results regarding cache effects due to task preemption
on monoprocessors, [SSE05]). This makes all the available results inapplicable to
modern multiprocessor systems in which, for example, due to the shared access to
sophisticated memory architectures, the individual WCETs of tasks are depending
on the global system schedule. This is pointed out as one major unsolved issue in
[TW04] where the current state of the art and future trends in timing predictability
are reviewed. The only solution for the above mentioned shortcomings is to take
out WCET analysis from its isolation and place it into the context of system level
analysis and optimization. In this chapter we present an approach in this direction.

A framework for system level task mapping and scheduling for a similar type
of platforms has been presented in Chapter 4. In order to avoid the problems re-
lated to the bus contention, a so called additive bus model has been used. This
assumes that task execution times will be stretched only marginally as an effect of
bus contention for memory accesses. Consequently, they simply neglect the effect
of bus contention on task execution times. The experiments performed by the au-
thors in [BGM+06] show that such a model can be applied with relatively good
approximations if the bus load is kept below 60%. There are two severe problems
with such an approach:

(1) In order for the additive model to be applicable, the bus utilization has to be
kept low.

(2) Even in the case of such a low bus utilization, no guarantees of any kind
regarding worst-case behavior can be provided.

The remainder of the chapter is organized as follows. Preliminaries regarding
the system and architecture model are given in Section 6.2. The proposed bus
access policies are presented in Section 6.3. Section 6.4 outlines the problem with
a motivational example and is followed in Section 6.5 by the description of our
proposed solution. Experimental results are given in Section 6.6.

6.2 System and Application Model

6.2.1 Hardware Architecture

In this chapter we consider multiprocessor system-on-chip architectures with a
shared communication infrastructure that connects processing elements to the mem-
ories, similar to the architecture used in Chapter 4. The processors are equipped
with instruction and data caches. Every processor is connected via the bus to a
private memory. All accesses from a certain processor to its private memory are
cached. A shared memory is used for inter-processor communication. The ac-



136
CH. 6. PREDICTABLE IMPLEMENTATION OF REAL-TIME

APPLICATIONS ON MULTIPROCESSOR SYSTEMS-ON-CHIP

τ1

τ2

2rτ
1wτ

2wτ

3rτ

τ3
dl=7ms

(c) Extended TG

communication
Explicit

communication
ExplicitTask execution &

Implicit communication

TR W

WCET

CPU1 CPU2 CPU1 CPU2 CPU1 CPU2CPU2 CPU1 CPU2 CPU1

t1t0 t2 t3 t4 t5 t6 t7 t8 t9 t10

(d) Bus schedule

Bus slots: each slot allocated to a certain processor

BUS

MEM0

C
ache

C
ache

CPU1

CPU2

(private)

MEM1

(shared)

(private)

MEM2

(b) Task and communication model(a) Target architecture

Figure 6.1: System and task models

cesses to the shared memory are not cached. This is a typical, generic, setting for
new generation multiprocessors on chip, [KBP+06]. The shared communication
infrastructure is used both for private memory accesses by the individual proces-
sors (if the processors are cached, these accesses are performed only in the case of
cache misses) and for interprocessor communication (via the shared memory). An
example architecture is shown in Fig. 6.1(a).

6.2.2 Application Model

The functionality of the software applications is captured by task graphs, G(Π,Γ).
Nodes τ ∈ Π in these directed acyclic graphs represent computational tasks, while
edges γ ∈ Γ indicate data dependencies between these tasks (explicit communica-
tions). The computational tasks are annotated with deadlines dli that have to be
met at run-time. Before the execution of a data dependent task can begin, the input
data must be available. Tasks mapped to the same processor are communicating
through the cached private memory. These communications are handled similarly
to the memory accesses during task execution. The communication between tasks
mapped to different processors is done via the shared memory. Consequently, a
message exchanged via the shared memory assumes two explicit communications:
one for writing into the shared memory (by the sending task) and the other for read-
ing from the memory (by the receiving task). Explicit communication is modeled
in the task graph as two communication tasks, executed by the sending and the re-



6.3 Bus Access Policy 137

...

0 t1 t2 t3 t4

CPU2 CPU2CPU1CPU1 CPU2CPU1

t5 t6

Segment 1 Segment 2

ov
er

 a
 p

er
io

d

... ... ...

t6 2, 1 8

seg_size

owner size

1

3

seg_start

t0

owners

1, 2 12

seg_start seg_size

owner size

1

3

CPU1

CPU2

owners

CPU1

CPU2

t7 t8 t9 t10

CPU1 CPU1CPU2CPU2

(b) BSA_2

t0

t1

t2

t3 CPU2

t1 t20 t4t3

CPU2CPU1 CPU1 CPU2

... ...

ov
er

 a
 p

er
io

d
slot_start owner

CPU1

CPU2

CPU1

...

(a) BSA_1

0 t1 t2 t3

CPU2CPU2CPU1 CPU1

t5t4

...CPU2 CPU1

t6

Segment 1 Segment 2

ov
er

 a
 p

er
io

d

t0

seg_start owners

1, 2 2

slot_size

t4 2, 1 4
... ... ...

(c) BSA_3

0 t1 t2

CPU1 CPU2

The segment

ov
er

 a
 p

er
io

d owners

...
1, 2

slot_size

2
...

...

(c) BSA_4

Figure 6.2: Bus Schedule Table (system with two CPUs)

ceiving processor, respectively as, for example, τ1w and τ2r in Fig. 6.1(c). During
the execution of a task, all the instructions and data are stored in the corresponding
private memory, so there will not be any shared memory accesses. The reads and
writes to and from the private memories are cached. Whenever a cache miss occurs,
the data has to be fetched from the memory and a cache line replaced. This results
in memory accesses via the bus during the execution of the tasks. We will refer
to these as implicit communication. This task model is illustrated in Fig. 6.1(b).
Previous approaches that are proposing system level scheduling and optimization
techniques for real-time applications only consider the explicit communication, ig-
noring the bus traffic due to the implicit communication [SIE06]. We will show
that this leads to incorrect results in the context of multiprocessor systems.

6.3 Bus Access Policy

In order to obtain a predictable system, which also assumes a predictable bus ac-
cess, we consider a TDMA-based bus sharing policy. Such a policy can be used
efficiently with the contemporary SoC buses, especially if QoS guarantees are re-
quired, [SLKK02, PDBR04, GDR05].

We introduce in the following the concept of bus schedule. The bus schedule
contains slots of a certain size, each with a start time, that are allocated to a proces-



138
CH. 6. PREDICTABLE IMPLEMENTATION OF REAL-TIME

APPLICATIONS ON MULTIPROCESSOR SYSTEMS-ON-CHIP

sor, as shown in Fig. 6.1(d). The bus schedule is stored as a table in a memory that
is directly connected to the bus arbiter. It is defined over one application period,
after which it is periodically repeated. An access from the arbiter to its local mem-
ory does not generate traffic on the system bus. The bus schedule is given as input
to the WCET analysis algorithm. At runtime, the bus arbiter is enforcing the bus
schedule, such that when a processor sends a bus request during a slot that belongs
to another processor, the arbiter will keep it waiting until the start of the next slot
that was assigned to it.

The bus schedule has a strong influence on the worst-case execution time. Ide-
ally, from the point of view of task execution times, we would like to have an irreg-
ular bus schedule, in which slot sequences and individual slot sizes are customized
according to the needs of currently active tasks.Such a schedule table is illustrated
in Fig. 6.2(a) for a system with two CPUs. This bus scheduling approach, denoted
as BSA 1, would offer the best task WCETs at the expense of a very complex bus
slot optimization algorithm and of a very large schedule table.

Alternatively, in order to reduce the controller complexity, the bus schedule is
divided in segments. Each segment is an interval in which the bus schedule follows
a regular pattern, in the form of TDMA rounds that are repeated throughout the
segment. A round is composed of bus slots with a certain size, each slot allocated
to a different processor. In Fig. 6.2(b) we illustrate a schedule consisting of two
bus segments with a size of 9 and 8 time units, respectively. In the first segment,
the TDMA round is repeated three times. The first slot in the round is assigned
to CPU1 and has a size of 1, the second slot, with size 2, belongs to CPU2. The
second segment consists of two rounds. The first slot (size 1) belongs to CPU2, the
second one (size 3) to CPU1. This bus scheduling approach is denoted BSA 2.

The approach presented in Fig. 6.2(c) and denoted BSA 3 further reduces the
memory needs for the bus controller. As opposed to BSA 2, in this case, all slots
inside a segment have the same size.

In the final approach, BSA 4, all the slots in the bus have the same size and
repeated according to a fix sequence.

6.4 Motivational Example

Let us assume a multiprocessor system, consisting of two processors CPU1 and
CPU2, connected via a bus. Task τ1 runs on CPU1 and τ2 on CPU2. The imposed
deadline is 63 time units. When τ2 finishes, it updates the shared memory during
the explicit communication E1. We have illustrated this situation in Fig. 6.3(a).
During the execution of the tasks τ1 and τ2, some of the memory accesses result
in cache misses and consequently the corresponding caches must be refilled. The



6.4 Motivational Example 139

time interval spent due to these accesses is indicated in Fig. 6.3 as M1,M3,M5 for
τ1 and M2, M4 for τ2. The memory accesses are executed by the implicit bus
transfers I1,I2,I3,I4 and I5. If we analyze the tasks using classical WCET analysis,
we conclude that τ1 will finish at time 57 and τ2 at 24. For this example, we have
assumed that the cache miss penalty is 6 time units. CPU2 is controlling the shared
memory update carried out by the explicit message E1 via the bus after the end of
task τ2.

A closer look at the execution pattern of the tasks reveals that the cache misses
may overlap in time. For example, the cache miss I1 and I2 are both happening at
time 0. Similar conflicts can occur between implicit and explicit communications
(for example I5 and E1). Since the bus cannot be accessed concurrently, a bus
arbiter will allow the processors to refill the cache in a certain order. An example of
a possible outcome is depicted in Fig. 6.3(b). The bus arbiter allows first the cache
miss I1, so after 6 time units needed to handle the miss, task τ1 can continue its
execution. After serving I1, the arbiter grants the bus to CPU2 in order to serve the
miss I2. Once the bus is granted, it takes 6 time units to refill the cache. However,
CPU2 was waiting 6 time units to get access to the bus. Thus, handling the cache
miss I2 took 12 time units, instead of 6. Another miss I3 occurs on CPU1 at time 9.
The bus is busy transferring I2 until time 12. So CPU1 will be waiting 3 time units
until it is granted the bus. Consequently, in order to refill the cache as a result of
the miss I3, task τ1 is delayed 9 time units instead of 6, until time 18. At time 17,
the task τ2 has a cache miss I4 and CPU2 waits 1 time unit until time 18 when it
is granted the bus. Compared with the execution time from Fig. 6.3(a), where an
ideal, constant, cache miss penalty is assumed, task τ2 finishes at time 31, instead
of time 24. Upon its end, τ2 starts immediately sending the explicit communication
message E1, since the bus is free at that time. In the meantime, τ1 is executing on
CPU1 and has a cache miss, I5 at time 36. The bus is granted to CPU1 only at
time 43, after E1 was sent, so τ1 can continue to execute at time 49 and finishes
its execution at time 67 causing a deadline violation. The example in Fig. 6.3(b)
shows that using worst-case execution time analysis algorithms that consider tasks
in isolation and ignore system level conflicts leads to incorrect results.

In Fig. 6.3(b) we have assumed that the bus is arbitrated using a simple First
Come First Served (FCFS) policy. In order to achieve worst-case predictability,
however, we use a TDMA bus scheduling approach, as outlined in Section 6.2.

Let us assume the bus schedule in Fig. 6.3(c). According to this schedule,
processor CPU1 is granted the bus at time 0 for 15 time units and at time 32 for 7
time units. Thus, the bus is available to task τ1 for each of its cache misses (M1,
M3, M5) at times 0, 9 and 33. Since these are the arrival times of the cache misses,
the execution of τ1 is not delayed and finishes at time 57, before its deadline. Task
τ2 is granted the bus at times 15 and 26 and finishes at time 39, resulting in a longer



140
CH. 6. PREDICTABLE IMPLEMENTATION OF REAL-TIME

APPLICATIONS ON MULTIPROCESSOR SYSTEMS-ON-CHIP

C
PU

1

CPU 1 CPU 2

C
PU

2

I1
I2 I4

3I I5

1E

1E

C
PU

1

(a) Schedule with bus conflicts

0 57

0 6 17 24 3611

0 6 9 17 24 33 39

6 9 15 33 39

B
U

S

dl=63

C
PU

1

1E

CPU1 CPU2 CPU1 CPU2

1E

I1 I3 I2 I4 I5

I4I3I2I1 I5

violation !
deadline

1E

C
PU

1

1E

C
PU

1

I4 I1

1E

I2 1E I3 5I

C
PU

1

C
PU

2

C
PU

1

C
PU

1

C
PU

2

C
PU

1

C
PU

2

C
PU

1

C
PU

2

1E

C
PU

1

CPU 1
CPU 2

C
PU

1

C
PU

1

C
PU

2

C
PU

2

C
PU

1

C
PU

2

C
PU

1

C
PU

2

C
PU

1

C
PU

2

C
PU

1

C
PU

2

1E

(f) Bus access with BSA3(e) Bus access with BSA3

CPU1 CPU 2

CPU 2CPU 1

1E

1E

C
PU

2

60 9 15 58

0 23

0 34

28 34

B
U

S

dl=63

17

dl=63

C
PU

2

0 512621

6 90 15 33 39 57

39

0 39 51

B
U

S

32

dl=63

6 9 15 21 26 32

(c) Bus access with BSA1

(b) Schedule without bus conflicts

C
PU

2

0 6 12 18 24 31 43 49

0 12 17 24 31 43

0 6 9 18 49 67

B
U

S

dl=63

C
PU

2

0

B
U

S

23 26 60 66

CPU2 CPU1 CPU2 CPU1

24171160

60 11 17 2324

36

36

42

42 60 66

84

(d) Bus access with BSA1

C
PU

2

0

B
U

S

dl=63

636 12 24 3018

0

36181260

31

36 48

42 60

60

602412 17 48

C
PU

2

60 33 58

0

B
U

S

dl=63

159

15 32

26210

C
PU

2

0

B
U

S

666 12 24 3018

0

0

36 48

60

60

25

42 54

42

189

12 15

11 54

24 48

dl=63

(g) Bus access with BSA2 (h) Bus access with BSA4

Segment 1 Segment 2 Segment 1

58

58

Segment 2

Segment 1

32

39

39 51

5139

33 40

41

46

Segment 2

M1 M3

M2 M4

M1 M3

M2 M4

M5

M1 M3

M2 M4

M5

M1 M3

M2

M5

M4

M2

M3M1 M5

M4

M1

M2 M4

M5M3

M1 M3

M2 M4

M1

M2 M4

M3 M5M5

M5

36

Figure 6.3: Schedule with various bus access policies

execution time than in the ideal case (time 24). The explicit communication E1 is
started at time 39 and completes at time 51.



6.4 Motivational Example 141

While the bus schedule in Fig. 6.3(c) is optimized according to the require-
ments from task τ1, the one in Fig. 6.3(d) eliminates all bus access delays for task
τ2. According to this bus schedule, while τ2 will finish earlier than in Fig. 6.3(c),
task τ1 will finish at time 84 and, thus, miss its deadline.

A fine grained bus schedule, such as in Fig. 6.3(c) and (d), potentially can
provide good worst-case execution times at the expense of a complex bus arbiter
that requires a very large memory for storing the schedule. We will show with
the next example that a simpler bus schedule, where the allocated slots follow a
certain pattern, leads to a very good compromise between arbiter complexity and
task delays. For example, in Fig. 6.3(e), the bus access is organized according to
the BSA 3 approach. We divide the period into two segments. The slots from
the first segment are assigned a size of 6 time units, while the slots in the second
segment have 12 units. For this particular example, the order is kept the same in
both segments, starting with CPU1. Following this bus schedule τ1 finishes latest
at time 60, τ2 at 31 and E1 at 60. A different BSA 3-based schedule, with the slot
size of 17 in the first segment and 12 in the second one is illustrated in Fig. 6.3(f).
Please note, that different BSA3-based bus schedules may lead to different worst-
case execution times. In Fig. 6.3(e), τ1 finishes at time 60 and τ2 at 31, while in
Fig. 6.3(f) τ1 finishes at 58 and τ2 at 41. It is crucial to choose, during the system
scheduling a BSA 3 bus schedule that favors the tasks on the critical path.

Fig. 6.3(g) illustrates the BSA2 approach. The bus schedule consists of two
segments. The first one starts at time 0 and ends at 32. The slot sizes are 15 time
units for CPU1 and 17 for CPU2. The second segment, starting at time 32 and
finishing at 51 has a slot of 7 units allocated to CPU1 and another slot of 12 units
for CPU2. If we compare the worst-case execution times obtained using BSA2
in Fig. 6.3(g), to the ones obtained using BSA3 in 6.3(e) and (f), we notice that
BSA2 performs better, since it allows for a better customization of the bus schedule
according to needs of the particular tasks.

The least flexible bus access policy, BSA4, is illustrated in Fig. 6.3(h). Here,
the same slot size and order is kept unchanged over the whole period. This alter-
native, potentially produces lower quality results, but it requires a controller with a
very small memory.

The examples presented in this section demonstrate two issues:
1) Ignoring bus conflicts due to implicit communication can lead to gross

subestimations of WCETs and, implicitly, to incorrect schedules.
2) The organization of the bus schedule has a great impact on the WCET of

tasks. A good bus schedule does not necessarily minimize the WCET of a certain
task, but has to be fixed considering also the global system deadlines.



142
CH. 6. PREDICTABLE IMPLEMENTATION OF REAL-TIME

APPLICATIONS ON MULTIPROCESSOR SYSTEMS-ON-CHIP

θ=0

N
ew

 ta
sk

 to
 s

ch
ed

ul
e

op
tim

iz
at

io
n

B
us

 s
ch

ed
ul

e 

Determine WCET of the
Ψtasks from set

Schedule new task at
time t>=
Ψ

θ
 is the set of all tasks

that are active at time t

Select bus schedule B
for the time interval

starting at  t

finishesa tasks from set Ψ
is the earliest timeθ

Figure 6.4: Overall Approach

6.5 Analysis, Scheduling and Optimization Flow

We consider as input the application task graph capturing the dependencies be-
tween the tasks and the target hardware platform. Each task has associated the
corresponding code and potentially a deadline that has to be met at runtime. As a
first stage, mapping of the tasks to processors is performed. Traditionally, after the
mapping is done, the WCET of the tasks can be determined and is considered to
be constant and known. However, as mentioned before, the basic problem is that
memory access times are, in principle, unpredictable in the context of the poten-
tial bus conflicts between the processors that run in parallel. These conflicts (and
implicitly the WCETs), however, depend on the global system schedule. System
scheduling, on the other side, traditionally assumes that WCETs of the tasks are
fixed and given as input. This cyclic dependency is not just a technical detail or in-
convenience, but a fundamental issue with large implications and which invalidates
one of the basic assumptions that support current state of the art. In order to solve
this issue, we propose a strategy that is based on the following basic decisions:

1) We consider a TDMA-based bus access policy as outlined in Section 6.2.
The actual bus access schedule is determined at design time and will be enforced
during the execution of the application.



6.5 Analysis, Scheduling and Optimization Flow 143

1
τ

2
τ

3
τ C

PU
2

C
PU

1

3
τ2

τ

1
τ

C
PU

2

B 1

1
τ

2
τ

3
τ

B 2 B 3

(b) Scheduling with traditional(a) Task graph
the proposed approachWCET analysis

0

0

10

4 12

B
U

S

0

0 6

60

C
PU

1

13

13 17

17

(c) List scheduling with

Figure 6.5: System level scheduling with WCET analysis

2) The bus access schedule is taken into consideration at the WCET estimation.
WCET estimation, as well as the determination of the bus access schedule are
integrated with the system level scheduling process (Fig. 6.4).

We will present our overall strategy using a simple example. It consists of three
tasks mapped on two processors, as in Fig. 6.5.

The system level static cyclic scheduling process is based on a list scheduling
technique [CG72]. List scheduling heuristics are based on priority lists from which
tasks are extracted in order to be scheduled at certain moments. A task is placed
in the ready list if all its predecessors have been already scheduled. All ready
tasks from the list are investigated, and that task τi is selected for placement in the
schedule which has the highest priority. We use the modified partial critical path
priority function presented in [EDPP00]. The process continues until the ready list
is empty.

Let us assume that, using traditional WCET estimation (considering a given
constant time for main memory access, ignoring bus conflicts), the task execution
times are 10, 4, and 8 for τ1, τ2, and τ3, respectively. Classical list scheduling
would generate the schedule in Fig. 6.5(b), and conclude that a deadline of 12 can
be satisfied.

In our approach, the list scheduler will choose tasks τ1 and τ2 to be scheduled
on the two processors at time 0. However, the WCET of the two tasks is not yet
known, so their worst case termination time cannot be determined. In order to
calculate the WCET of the tasks, a bus configuration has to be decided on. This
configuration should, preferably, be fixed so that it is favorable from the point of
view of WCETs of the currently running tasks (τ1 and τ2, in our case). Given a
certain bus configuration, our WCET-analysis will determine the WCET for τ1 and
τ2. Inside an optimization loop, several alternative bus configurations are consid-
ered. The goal is to reduce the WCET of τ1 and τ2, with an additional weight on
reducing the WCET of that task that is assumed to be on the critical path (in our
case τ2).



144
CH. 6. PREDICTABLE IMPLEMENTATION OF REAL-TIME

APPLICATIONS ON MULTIPROCESSOR SYSTEMS-ON-CHIP

Let us assume that B1 is the selected bus configuration and the WCETs are 12
for τ1 and 6 for τ2. At this moment the following is already decided: τ1 and τ2
are scheduled at time 0, τ2 is finishing, in the worst case, at time 6, and the bus
configuration B1 is used in the time interval between 0 and 6. Since τ2 is finishing
at time 6, in the worst case, the list scheduler will schedule task τ3 at time 6. Now,
τ3 and τ1 are scheduled in parallel. Given a certain bus configuration B, our WCET
analysis tool will determine the WCETs for τ1 and τ3. For this, it will be considered
that τ3 is executing under the configuration B, and τ1 under configuration B1 for
the time interval 0 to 6, and B for the rest. Again, an optimization is performed in
order to find an efficient bus configuration for the time interval beyond 6. Let us
assume that the bus configuration B2 has been selected and the WCETs are 9 for
τ3 and 13 for τ1. The final schedule is illustrated in figure 6.5.

The overall approach is illustrated in Fig. 6.4. At each iteration, the set ψ of
tasks that are active at the current time t, is considered. In an inner optimization
loop a bus configuration B is fixed. For each candidate configuration the WCET
of the tasks in the set ψ is determined. During the WCET estimation process, the
bus configurations determined during the previous iterations are considered for the
time intervals before t, and the new configuration alternative B for the time interval
after t. Once a bus configuration B is decided on, θ is the earliest time a task in the
set ψ terminates. The configuration B is fixed for the time interval (t, θ], and the
process continues from time θ, with the next iteration.

In the above discussion, we have not addressed the explicit communication of
messages on the bus, to and from the shared memory. As shown in Section 6.2, a
message exchanged via the shared memory assumes two explicit communications:
one for writing into the shared memory (by the sending task) and the other for
reading from the memory (by the receiving task). Explicit communication is mod-
eled in the task graph as two communication tasks, executed by the sending and
the receiving processor, respectively (Fig. 6.1 in section 6.2). A straightforward
way to handle these communications would be to schedule each as one compact
transfer over the bus. This, however, would be extremely harmful for the overall
performance, since it would block, for a relatively long time interval, all memory
access for cache misses from active processes. Therefore, the communication tasks
are considered, during scheduling, similar to the ordinary tasks, but with the partic-
ular feature that they are continuously requesting for bus access (they behave like a
hypothetical task that continuously generates successive cache misses such that the
total amount of memory requests is equal to the worst case message length). Such
a task is considered together with the other currently active tasks in the set Ψ. Our
algorithm will generate a bus configuration and will schedule the communications
such that it efficiently accommodates both the explicit message communication as
well as the memory accesses issued by the active tasks.



6.5 Analysis, Scheduling and Optimization Flow 145

1τ
2τ

C
PU

1

1CPU 1CPU 1CPU2CPU 2CPU

0 36

B
U

S

0

18 27 45

6

54

CPU1 CPU1 CPU2

9

2CPU CPU2

60

62 70 78 86

76 8113 24

(b) Shorter computations, same number of misses

34 42 47 64

C
PU

1

1CPU 1CPU 1CPU2CPU 2CPU

C
PU

1

1CPU 1CPU 1CPU2CPU 2CPU

1τ 2τ1τ

C
PU

1

1τ

1CPU 1CPU 1CPU2CPU 2CPU

2τ

2τ

0 36

B
U

S

0

18 27 45

6

54

CPU1 CPU1 CPU2

9

2CPU CPU2

60

62 70 78 86

(c) Same computations, fewer misses

42

0 36

B
U

S
0

18 27 45

6

54

CPU1 CPU1 CPU2

9

2CPU CPU2

60

62 70 78 86

16 24 29 42 50 64

(d) Shorter computations, fewer misses

34 47

0 36

B
U

S

0

18 27 45

39 456 20 26 50

54

CPU1 CPU1 CPU2

9

2CPU CPU2

60

62

(a) Worst−case execution

70 78 86

68 76 81

68 8176

M1 M2 M4 M5M3

M1 M1 M3 M4 M5M3 M4

M1 M2 M3 M4 M5

M5

Figure 6.6: Tasks executing less than their worst-case

It is important to mention that the approach proposed in this chapter guaran-
tees that the worst-case bounds derived by our analysis are correct even when the
tasks execute less than their worst-case. The assumption is that, at runtime, tasks
are scheduled nonpreemptive and the offline determined order is enforced. We
will illustrate the demonstration with the example from Fig. 6.6. Let us assume a
system composed of two processors, CPU1 and CPU2, interconnected via a bus.
For simplicity, in Fig. 6.6, only the tasks τ1 and τ2 mapped on CPU1 are shown.
Fig. 6.6(a) shows the execution of the two tasks, assuming the worst-case, derived
using the illustrated bus schedule. 3 cache misses (M1, M2 and M3) are predicted
in the worst-case for τ1, while for τ2 there are 2 predicted misses (M4 and M5). It
is important to note that an earlier bus request issued by a processor does not affect
any task mapped on another processor, due to the fact that the bus slots are assigned
exclusively to processors. In general, tasks can execute less than their worst-case
in the following cases:

1) If instruction sequences finish in shorter time than predicted by the worst-
case analysis. An example is given in Fig. 6.6(b), for the two tasks with the worst-
case illustrated in Fig. 6.6(a). The worst-case number of cache misses occurs for
both tasks. However, the sequence of instructions after M1 finishes earlier than
predicted and M2 occurs at time 13, instead of 20. As the bus is granted to CPU2
until time 18, M2 is served starting at time 18, in the same slot predicted by the



146
CH. 6. PREDICTABLE IMPLEMENTATION OF REAL-TIME

APPLICATIONS ON MULTIPROCESSOR SYSTEMS-ON-CHIP

worst-case analysis, but 2 time units earlier. Similarly, M3 is served earlier than
predicted. As a result, τ1 finishes ahead of its estimated worst-case, at time 47
instead of 50. Thus τ2 may start at time 47. Due to the bus schedule, M4 is served
at time 60, identical to the worst-case estimation. Similarly, M5 occurs earlier, but
is served at time 76. To conclude, if instruction sequences finish in shorter time,
tasks may end at earlier times, but never later then estimated by the worst-case
analysis. This is due to the fact that any cache miss is served latest at the time
predicted by the analysis.

2) If a memory access results in a hit, although predicted as a miss during the
worst-case analysis. An example is given in Fig. 6.6(c). During the execution of
τ1, M2 is a hit, and thus M3 occurs at time 34. It is served by the slot predicted
by the worst-case analysis. Similarly, M4 occurs earlier but is served at the time
predicted in the worst-case. To conclude, even if some of the memory accesses
considered as misses by the analysis result in hits at runtime, the remaining misses
are served in the worst-case at the predicted.

3) Fig. 6.6(d) illustrates a combination of the previous two cases, with shorter
instruction sequences and fewer cache misses than estimated. Even in this case,
cache misses that occur earlier than predicted in the worst-case will, possibly, be
served by an earlier bus slot than predicted, but never by a later one than considered
during the WCET analysis.

In the following section we will address the WCET estimation algorithm.

6.5.1 WCET Analysis

We will present the algorithm used for the computation of the worst-case execu-
tion time of a task, given a start time and a bus schedule 1. Our approach builds
on techniques developed for ”traditional” WCET analysis. Consequently, it can be
adapted on top of any WCET analysis approach that handles prediction of cache
misses. Our technique is also orthogonal to the issue of cache associativity sup-
ported by this cache miss prediction technique. The current implementation is built
on top of the approach described in [WSE02, SE06] that supports set associative
and direct mapping.

In a first step, the control flow graph (CFG) is extracted from the code of the
task. The nodes in the CFG represent basic blocks (consecutive lines of code with-
out branches) or control nodes (capturing conditional instructions or loops). The
edges capture the program flow. In Fig. 6.7(a) and (b), we have depicted an ex-
ample task containing a for loop and the corresponding CFG, extracted from this

1In the classical approach WCET analysis returns the worst-case time interval between the start and
the finishing of a task. In our case, what we determine is the worst-case finishing time of the task.



6.5 Analysis, Scheduling and Optimization Flow 147

1: void sort() {

2:   int i, temp;

4:       i < 100 ;

5:       i++) {
6:         temp=a[i];

9:}

3:   for (i = 0;

7:         a[temp]=0;

(a) Task code

id: 4

id: 11

miss lno 3 (i)
miss lno 3 (d)
lno 3
miss lno 4 (i)
lno 4

miss lno 6 (d)
miss lno 6 (i)

lno 6
miss lno 7 (i)
miss lno 7 (d)
lno 7
miss lno 5 (i)
lno 5, 4

id: 2

Task start time

id: 17

id: 104

miss lno 6 (d)
lno 6
miss lno 7 (d)
lno 7, 5, 4

lno:3,4
id: 12

lno:3,4

lno:6,7,5,4
id: 16

lno:6,7,5,4
id: 13

lno:6,7,5,4
id: 113

Task end time

(b) Task CFG

CPU1 CPU2CPU1 CPU2 CPU1 CPU2 CPU2CPU1 ...

24 320 8 16 42 52

segment 1 segment 2 segment n

bus period

(c) Bus schedule

8:     }

Figure 6.7: Example task WCET calculation

task. For the nodes associated to basic blocks we have depicted the code line num-
bers. For example, node 12 (id:12) captures the execution of lines 3 (i = 0) and 4
(i < 100). A possible execution path, with the for loop iteration executed twice, is
given by the node sequence 2, 12, 4 and 13, 104, 113, 104, 16, 11. Please note that
the for loop was automatically unrolled once when the CFG was extracted from the
code (nodes 13 and 113 correspond to the same basic block representing an itera-
tion of the for loop). This is useful when performing the instruction cache analysis.
Intuitively, when executing a loop, at the first iteration all the instruction accesses
result in cache misses. However, during the next iterations there is a chance to find
the instructions in the cache.



148
CH. 6. PREDICTABLE IMPLEMENTATION OF REAL-TIME

APPLICATIONS ON MULTIPROCESSOR SYSTEMS-ON-CHIP

We have depicted in Fig. 6.7(b) the resulting misses obtained after performing
instruction (marked with an ”i”) and data (marked with an ”d”) cache analysis. For
example, let us examine the nodes 13 and 113 from the CFG. In node 13, we obtain
instruction cache misses for the lines 6, 7 and 5, while in the node 113 there is no
instruction cache miss. In order to study at a larger scale the interaction between
the basic blocks, data flow analysis is used. This propagates between consecutive
nodes from the CFG the addresses that are always in the cache, no matter which
execution path is taken. For example, the address of the instruction from line 4 is
propagated from the node 12 to the nodes 13, 16 and 113.

Let us consider now the data accesses. While the instruction addresses are
always known, this is not the case with the data [SE06, RM05]. This, for example,
is the case with an array that is accessed using an index variable whose value is data
dependent, as in Fig.6.7(a), on line 7. Using data dependency analysis performed
on the abstract syntax tree extracted from the code of the task, all the data accesses
are classified as predictable or unpredictable [SE06]. For example, in Fig.6.7(a)
the only unpredictable data memory access is in line 7. The rest of the accesses
are predictable. All the unpredictable memory accesses are classified as cache
misses. Furthermore, they have a hidden impact on the state of the data cache.
A miss resulted from an unpredictable access replaces an unknown cache line.
One of the following predictable memory accesses that would be considered as hit
otherwise, might result in a miss due to the unknown line replacement. Similar to
the instruction cache, dataflow analysis is used for propagating the addresses that
will be in the cache, no matter which program path is executed.

Until this point, we have performed the same steps as the traditional WCET
analysis that ignores resource conflicts. In the classical case, the analysis would
continue with the calculation of the execution time of each basic block. This is
done using local basic block simulations. The number of clock cycles that are spent
by the processor doing effective computations, ignoring the time spent to access the
cache (hit time) or the memory (miss penalty) is obtained in this way. Knowing
the number of hits and misses for each basic block and the hit and miss penalties,
the worst case execution time of each CFG node is easily computed. Taking into
account the dependencies between the CFG nodes and their execution times, an ILP
formulation can be used for the task WCET computation, [SE06, RM05, LMW96].

In a realistic multiprocessor setting, however, due to the variation of the miss
penalties as a result of potential bus conflicts, such a simple approach does not
work. The main difference is the following: in traditional WCET analysis it is suf-
ficient for each CFG node to have the total number of misses. In our case, however,
this is not sufficient in order to take into consideration potential conflicts. What is
needed is, for each node, the exact sequence of misses and the worst-case duration
of computation sequences between the misses. For example, in the case of node 13



6.5 Analysis, Scheduling and Optimization Flow 149

in Fig. 6.7(b), we have three instruction sequences separated by cache misses: (1)
line 6, (2) line 7 and (3) lines 5 and 4. Once we have annotated the CFG with all
the above information, we are prepared to solve the actual problem: determine the
worst-case execution time corresponding to the longest path through the CFG. In
order to solve this problem, we have to determine the worst-case execution time of
a node in the CFG. In the classical WCET analysis, a node’s WCET is the result
of a trivial summation. In our case, however, the WCET of a node depends on the
bus schedule and also on the node’s worst-case start time.

Let us assume that the bus schedule in Fig. 6.7(c) is constructed. The system is
composed of two processors and the task we are investigating is mapped on CPU1.
There are two bus segments, the first one starting at time 0 and the second starting
at time 32. The slot order during both segments is the same: CPU1 and then CPU2.
The processors have slots of equal size during a segment.

The start time of the task that is currently analyzed is decided during the system
level scheduling (see section 6.5) and let us suppose that it is 0. Once the bus is
granted to a processor, let us assume that 6 time units are needed to handle a cache
miss. For simplicity, we assume that the hit time is 0 and every instruction is
executed in 1 time unit.

Using the above values and the bus schedule in Fig. 6.7(c), the node 12 will start
its execution at time 0 and finish at time 39. The instruction miss (marked with ”i”
in Fig. 6.7(b)) from line 3 arrives at time 0, and, according to the bus schedule,
it gets the bus immediately. At time 6, when the instruction miss is solved, the
execution of node 12 cannot continue because of the data miss from line 2 (marked
with ”d”). This miss has to wait until time 16 when the bus is again allocated
to CPU1 and, from time 16 to time 22 the cache is updated. Line 3 is executed
starting from time 22 until 23, when the miss generated by the line 4 requests the
bus. The bus is granted to CPU1 at time 32, so line 4 starts to be executed at time
38 and is finished, in the worst case, at time 39.

In the following we will illustrate the algorithm that performs the WCET com-
putation for a certain task. The algorithm must find the longest path in the control
flow graph. For example, there are four possible execution paths (sequences of
nodes) for the task in Fig. 6.7(a) that are captured by the CFG in Fig. 6.7(b):

(1): 2, 17, 11,
(2): 2, 12, ,4, 16, 11,
(3): 2, 12, 4, 13, 104, 16, 11
(4): 2, 12, 4, 13, 104, 113, 104, ..., 104, 16, 11.
The execution time of a particular node in the CFG can be computed only after

the execution times of all its predecessors are known. For example, the execution
time of node 16 can be computed only after the execution time for the nodes 4 and
104 is fixed. At this point it is interesting to note that the node 104 is the entry in



150
CH. 6. PREDICTABLE IMPLEMENTATION OF REAL-TIME

APPLICATIONS ON MULTIPROCESSOR SYSTEMS-ON-CHIP

a CFG loop (104, 113, 104). Due to the fact that the cache miss penalties depend
on the bus schedule, the execution times of the loop nodes will be different at each
loop iteration. Thus, loop nodes in the CFG must be visited a number of times,
given by the loop bound (extracted automatically or annotated in the code). In the
example from Fig. 6.7(b), the node 113 is visited 99 times (the loop is executed
100 times, but it was unrolled once). Each time a loop node is visited, its start
time is updated and a new end time is calculated using the bus schedule, in the
manner illustrated above for node 12. Consequently, during the computation of the
execution time of the node 16, the start time is the maximum between the end time
of the node 4 and node 104, obtained after 99 iterations. The worst-case execution
time of the task will be the end time of the node 11.

The worst-case complexity of the WCET analysis is exponential (this is also
the case for the classical WCET analysis). However, in practice, the approach is
very efficient, as experimental results presented in Section 6.6 show.

6.5.2 Bus Schedule Optimization

The bus schedule is a key parameter that influences the worst-case execution time
of the tasks. As shown in Section 6.5 the bus schedule is determined during the
system scheduling process. Referring to Fig. 6.4, successive portions of the bus
schedule are fixed during the internal optimization loop. The aim is to find a sched-
ule for each portion, such that globally the worst-case execution time is minimized.
In order to find an efficient bus schedule for each portion, information produced by
the WCET analysis is used in the optimization process. In particular, this infor-
mation captures the distribution of the cache misses along the detected worst case
paths, for each currently active task (for each task in set Ψ). We have deployed
several bus access optimization algorithms, specific to the proposed bus schedule
alternative (BSA 1, BSA 2, BSA 3, BSA 4).

In the case of BSA 1, each portion of the bus schedule (fixed during the internal
optimization loop in Fig.6.4) is determined without any restriction. For BSA 2 and
BSA 3, each portion of the bus schedule corresponds to a new bus segment, as
defined in section 6.3. In case of BSA 2, the optimization has to find, for each
segment, the size of the slots allocated for each processor, as well as their order.
The search space for BSA 3 is reduced to finding for each bus segment, a unique
slot size and an order in which the processors will access the bus.

In the case of BSA 4, the slot sequence and size is unique for the whole sched-
ule. Therefore, the scheme in Fig. 6.4 is changed: a bus configuration alternative
is determined before system scheduling and the list scheduling loop is included
inside the bus optimization loop.



6.6 Experimental Results 151

The bus access optimization process is based on a simulated annealing strategy
[OvG89, Ree93] and determines the order and size of slots according to the restric-
tions imposed by the selected bus scheduling approach. The cost function used by
the simulated annealing algorithm in order to select a schedule for each segment of
the bus is:

∑
τi∈Ψ

current wceti − ideal wceti
ideal wceti

· time le f t(CPU [τi]) (6.1)

Two types of parameters are used in the cost function. The first category includes
the parameters ideal wceti and time le f t(CPU [τi]) that capture the global impor-
tance of this task relative to the other tasks in the system. They are independent
of the actual bus schedule used. ideal wceti is the worst-case execution time of
the task τi, assuming that no conflicts occur on the bus. time le f t(CPU [τi]) cap-
tures the total worst-case number of clock cycles remaining to be executed on the
processor where task τi is mapped, assuming that the bus can be accessed without
conflicts. At each list scheduling iteration, after a task is scheduled, the corre-
sponding time le f t variable is updated. Thus, the cost function is guided to select
bus optimization that favor the tasks from the critical path.

The second category of parameters in the cost function consists of current wceti.
This parameter depends on the actual bus schedule considered. current wceti cap-
tures the worst-case execution time of the task τi, obtained with the current candi-
date bus schedule. In order to treat the tasks fairly, independent of their size, the
deviation of the execution time obtained with the current bus schedule relative to
the ideal no conflicts case is normalized against the ideal execution time.

The simulated annealing strategy shortly outlined here serves as a proof of
concept for the experiments presented in the next section. An improved algorithm
that addresses the same problem is presented in [RAEP07].

6.6 Experimental Results

The complete flow illustrated in Fig. 6.4 has been implemented and used as a
platform for the experiments presented in this section. They were run on a dual
core Pentium4 processor at 2.8 GHz.

First, we have performed experiments using a set of synthetic benchmarks con-
sisting of random task graphs with the number of tasks varying between 50 and
200. The tasks are mapped on architectures consisting of 2 to 20 processors. The
tasks are corresponding to CFGs extracted from various C programs (e.g. sorting,
searching, matrix multiplications, DSP algorithms). For the WCET analysis, it was



152
CH. 6. PREDICTABLE IMPLEMENTATION OF REAL-TIME

APPLICATIONS ON MULTIPROCESSOR SYSTEMS-ON-CHIP

BSA_4
BSA_3
BSA_2
BSA_1

Number of CPUs

N
or

na
liz

ed
 S

ch
ed

ul
e 

L
en

gt
h

(b)

BSA_4
BSA_3
BSA_2
BSA_1

Number of CPUs

N
or

na
liz

ed
 S

ch
ed

ul
e 

L
en

gt
h

(a)

 1

 1.5

 2

 2.5

 3

 3.5

 4

 2  4  6  8  10  12  14  16  18  20

 1

 1.5

 2

 2.5

 3

 3.5

 4

 2  4  6  8  10  12  14  16  18  20

Figure 6.8: The four bus access policies

assumed that ARM7 processors are used. We have assumed that 12 clock cycles
are required for a memory access due to a cache miss.

We have explored the efficiency of the proposed approach in the context of the
four bus scheduling approaches introduced in Section 6.3. The results are presented



6.6 Experimental Results 153

in Fig. 6.8. We have run experiments for configurations consisting of 2, 4, 6, ...
20 processors. For each configuration, 50 randomly generated task graphs were
used. For each task graph, the worst-case schedule length has been determined in 5
cases: the four bus scheduling policies BSA 1 to BSA 4, and a hypothetical ideal
situation in which memory accesses are never delayed. This ideal schedule length
(which in practice, is unachievable, even by a theoretically optimal bus schedule)
is considered as the baseline for the diagrams presented in Fig. 6.8. The diagram
corresponding to each bus scheduling alternative indicates how many times larger
the obtained bus schedule is relative to the ideal length. The diagrams correspond
to the average obtained for the 50 graphs considered for each configuration.

A first conclusion is that BSA 1 produces the shortest delays. This is not un-
expected, since it is based on highly customized bus schedules. It can be noticed,
however, that the approaches BSA 2 and BSA 3 are producing results that are close
to those produced by BSA 1, but with a much lower cost in controller complex-
ity. It is not surprising that BSA 4, which restricts very much the freedom for bus
optimization, produces very low quality results.

The actual bus load is growing with the number of processors and, implicitly,
that of simultaneously active tasks. Therefore, the delays at low bus load (smaller
number of processors) are close to the ideal ones. The deviation from the ideal
schedule length is growing with the increased bus load due to the inherent delays
in bus access. This phenomenon is confirmed also by the comparison between
the diagrams in Fig. 6.8(a) and (b). The diagrams in Fig. 6.8(b) were obtained
considering a bus load that is 1.5 times higher (bus speed 1.5 times smaller) than in
Fig. 6.8(a). It can be observed that the deviation of schedule delays from the ideal
one is growing faster in Fig. 6.8(b).

The execution times for the whole flow, in the case of the largest examples
(consisting of 200 tasks on 20 processors) are as follows: 125 min. for BSA 1, 117
min. for BSA 2, 47 min. for BSA 3, and 8 min. for BSA 1.

The amount of memory accesses relative to the computations has a strong in-
fluence on the worst case execution time. We have performed another set of exper-
iments in order to asses this issue. The results are presented in Fig. 6.9. We have
run experiments for configurations consisting of 2, 4, 6, ... 10 processors. For each
configuration, 50 randomly generated task graphs were used. For each task graph,
we have varied the ratio of clock cycles spent during computations and memory
accesses. We have used eight different ratios: 5.0, 4.0, 3.0, 2.6, 2.2, 1.8, 1.4, 1.0.
A ratio of 3.0 means that the number of clock cycles spent by the processors per-
forming computations (assuming that all the memory accesses are cache hits) is
three time higher than the number of cache misses multiplied with the cache miss
penalty (assuming that each cache miss is handled in constant time, as if there are
no conflicts on the bus). So, for example, if a task spends on the worst case CFG



154
CH. 6. PREDICTABLE IMPLEMENTATION OF REAL-TIME

APPLICATIONS ON MULTIPROCESSOR SYSTEMS-ON-CHIP

4.0 3.0 2.6

1.2 1.01.82.2

5.0

 1

 1.5

 2

 2.5

 3

 3.5

2 4 6 8 10

Number of CPUs

N
or

m
al

iz
ed

 S
ch

ed
ul

e 
L

en
gt

h

Figure 6.9: BSA3 with different amount of memory accesses

path 300000 clock cycles for computation and 100000 cycles for memory accesses
due to cache misses (excluding the waiting time for bus access), the ratio will be
3.0. During this set of experiments we have assumed that the bus is scheduled ac-
cording to the BSA 3 policy. Similar to the previous experiments from Fig. 6.8,
the ideal schedule length is considered as the baseline for the diagrams presented
in Fig. 6.9. Each bar indicates how many times larger the calculated worst case
execution is relative to the ideal length. For example, on an a architecture with six
processors and a ratio of 5.0, the worst case execution time is 1.28 times higher
than the ideal one. Using the same architecture but with a smaller ratio (this means
that the application is more memory intensive), the deviation increases: for a ratio
of 3.0, the worst case execution time is 1.41 times the ideal one, while if the ratio
is 1.0 the worst case execution time is 1.92 times higher than the ideal one.

In order to validate the real-world applicability of this approach we have ana-
lyzed a smart phone application. It consists of a GSM codec (encoder and decoder)
[DB] and an MP3 decoder [Hag], that were mapped on 4 ARM7 processors (the
GSM encoder and decoder are mapped each one on a processor, while the MP3
decoder is mapped on two processors). The software applications have been parti-
tioned into 64 tasks. The size of one task is between 1304 and 70 lines of C code
in case of the GSM codec and between 2035 and 200 lines in case of the MP3
decoder. We have assumed a 4-way set associative instruction cache with a size of
4KB and a direct mapped data cache of the same size. The results of the analysis
are presented in table 6.1, where the deviation of the schedule length from the ideal
one is presented for each bus scheduling approach.



6.6 Experimental Results 155

BSA 1 BSA 2 BSA 3 BSA 4
1.17 1.33 1.31 1.62

Table 6.1: Results for the smart phone



156
CH. 6. PREDICTABLE IMPLEMENTATION OF REAL-TIME

APPLICATIONS ON MULTIPROCESSOR SYSTEMS-ON-CHIP



Part IV

Conclusions and Future Work





Chapter 7

Conclusions

7.1 Offline Energy Minimization by Voltage Selec-

tion

Energy reduction techniques, such as supply voltage selection and adaptive body-
biasing can be effectively exploited at the system-level. In Chapter 3, we have in-
vestigated different alternatives of the combined supply voltage selection, adaptive
body-biasing and processor shutdown problems at the system-level. These include
the consideration of transition overheads as well as the discretization of the sup-
ply and threshold voltage levels. We have shown that nonlinear programming and
mixed integer linear programming formulations can be used to solve these prob-
lems. Further, the NP-hardness of the discrete voltage selection case was shown,
and a heuristic to efficiently solve the problem has been proposed. Similarly, if the
shutdown of processors is considered, the problem becomes NP complete, even in
the continuous case. Therefore, we have proposed an efficient heuristic to solve
this problem. The voltage selection technique achieves additional efficiency by
simultaneously scaling the voltages of processors and communication. We have
investigated two alternatives, considering both buses with repeaters and fat wires.
Several generated benchmark examples as well as two real-life applications were
used to show the applicability of the introduced approaches.



160 CH. 7. CONCLUSIONS

7.2 Quasi-Static Energy Minimization by Voltage Se-

lection

In Chapter 5, we have presented a novel quasi-static voltage scaling technique
for time-constraint applications that addresses in an efficient manner the problem
of exploiting the dynamic slack. The method avoids an unnecessarily high run-
time overhead by precomputing possible voltage scaling scenarios and storing the
outcome in look-up tables. The avoided overheads can be turned into additional
energy savings. Furthermore, we have addressed both dynamic and leakage power
through supply and body-bias voltage scaling. We have shown that the proposed
approach is superior to both static and dynamic approaches proposed so far in liter-
ature. Experiments conducted on numerous automatically generated examples and
real-life benchmarks demostrate the quality of the proposed technique.

7.3 Predictable Implementation of Real-Time Appli-

cations on Multiprocessor Systems-on-Chip

In Chapter 6, we have presented an approach for the implementation of predictable
real-time applications on multiprocessor SoCs. The proposed algorithms take into
consideration potential conflicts between parallel tasks that try to access concur-
rently the memory. The approach comprizes worst-case execution time estima-
tion and bus access optimization in the global context of system level scheduling.
Experiments carried out on synthetic benchmarks and a real-life application have
shown the efficiency of the approach.



Chapter 8

Future Work

8.1 Energy Minimization

We have presented an offline and an online approach for dynamic and leakage en-
ergy minimization. Throughout Chapters 3-5, we assumed that the leakage power
of the tasks depends only on their voltages. In reality, leakage depends strongly on
the temperature [SSS+04, HLS04]. We are currently investigating the impact of the
temperature on the results achieved by the voltage selection algorithms proposed in
this thesis. The questions to be answered are: (1) what are the differences between
the voltages calculated for each task if the temperature conditions change, and, (2)
how to design a voltage selection algorithm that is able to capture the temperature
variations.

8.2 Predictability

In Chapter 6, we have presented an approach for worst-case execution time analysis
and system scheduling for real-time applications implemented on multiprocessor
systems on chip. At the core of this approach is the TDMA organization of the bus,
captured by the bus schedule. Several alternatives, trading off the complexity of
the bus arbiter against the achievable worst-case execution times were discussed.
Nevertheless, this work is only starting to show its potential. Further improvements
related to the optimization of the bus access (new policies and better algorithms for
the optimization of the bus schedule given a certain policy) are subject of future
investigations. A first attempt in this direction is presented in [RAEP07].



162 CH. 8. FUTURE WORK

An interesting aspect that is currently under investigation is the coexistence
between real-time and non real-time applications on the same system. In this re-
gard, we are extending the MPARM cycle accurate simulator [BBB+03, LPB04]
with models of the strict bus arbiters proposed in Chapter 6. We plan to perform
simulations of different mixes of real-time and non real-time applications. A more
complex bus arbiter, that is capable of improving the average case execution time
of non-real time applications and, in the same time enforces the worst-case guar-
antees of the real-time tasks is under study.

The voltage selection algorithms presented in the thesis have been designed
without the consideration of the interactions between the processors and memory.
In this regard, it is interesting to develop new voltage selection algorithms that
work on hardware platforms similar to the one from Chapter 6. Moreover, since the
memories contribute significantly to the power consumed by a system, algorithms
that address the energy optimization globally (processors, bus, memories) at the
system level are needed.



Appendix A

The complete discrete voltage

selection with overheads MILP

formulation

This appendix outlines in more detail the MILP formulation for the discrete voltage
selection problem, i.e., it provides additional information that has been withhold
from Section 3.7.3 due to clarity reasons. The complete formulation is given by:
Minimize

|T |
∑
k=1

∑
s∈M

∑
m∈M

(
Ce f fk ·Pdnomm · tk,s,m +Pleakm · tk,s,m

)
︸ ︷︷ ︸

Task energy dissipation

+
|T |
∑
k=1

∑
s∈M

∑
i∈M

∑
j∈M

(
bk,s,i, j ·EPi, j

)
︸ ︷︷ ︸

Transition energy overhead

(A.1)

subject to
δk = ∑

s∈M ∗
∑

i∈M
∑

j∈M
bk,s,i, j ·DPi, j (A.2)

δk,l = ∑
i∈M

∑
j∈M

bk,m,i, j ·DPi, j where (k, l) ∈ E• (A.3)



164
APPENDIX A. THE COMPLETE DISCRETE VOLTAGE SELECTION

WITH OVERHEADS MILP FORMULATION

Dk + ∑
s∈M

∑
m∈M

tk,s,m +δk ≤ dlk (A.4)

Dk + ∑
s∈M

∑
m∈M

tk,s,m +δk +δpl,l ≤ Dl ∀(k, l) ∈ E ,(pl, l) ∈ E• (A.5)

ck,s,i = tk,s,i · fi k in 1, ..., |T |, s ∈ M , i ∈ M , c ∈ N (A.6)

∑
s∈M

∑
i∈M

ck,s,i = WNCk k in 1, ...,n (A.7)

Up to this point the model corresponds to the formulation given in Section 3.7.3.
The additional constraints that complete the formulation are:

∑
m∈M

ck,s,m ≥ 1 ∀τk, s ∈ M (A.8)

ak,s,m ·WNCk ≥ ck,s,m k ∈ 1, ..., |T |, s ∈ M , m ∈ M (A.9)

∑
m∈M

ak,s,m = 1 k ∈ 1, ..., |T |, s ∈ M (A.10)

{
ak,s,i = ∑m

j=1 bk,s,i, j k ∈ 1, ..., |T |, s in 1, ..., |M |−1, i ∈ M
ak,s+1, j = ∑m

i=1 bk,s,i, j k ∈ 1, ..., |T |, s in 2, ..., |M |, j ∈ M (A.11)

∀(k, l) ∈ E
{

ak,s,i = ∑m
j=1 bk,m,i, j s ∈ M , i ∈ M

al,1, j = ∑m
i=1 bk,m,i, j j ∈ M (A.12)

∀(k, l) ∈ E

ck,s,m ∈ N, ak,s,m, bk,s,i, j ∈ {0,1} k = 1..|T |, s ∈ M , i ∈ M , j ∈ M (A.13)

In Section 3.7.3, we have briefly introduced the MILP model with the transition
overheads. We detail now how we capture the mode variations in our MILP for-
mulation. Please remember that in order to compute the corresponding delay and
energy penalties, the concepts of subtasks and execution modes have been intro-
duced in Section 3.7.3. Eq. (A.8) states that for each subtask τs

k of a task τk, at least
one mode m is active (at least one clock cycle is executed by a subtask). This can
be observed, for example, in Fig. 3.4(c).

Further, we introduced two sets of auxiliary variables: ak,s,m and bk,m,i, j. The
binary variables ak,s,m indicate, for a given task τk, the active mode m for each sub-



165

task τs
k. ak,s,m is 1 when ck,s,m ≥ 1 and 0 when ck,s,m = 0. For instance, Fig. 3.4(d)

gives the binary variables ak,s,m for the solution vector in Fig. 3.4(c). The other
binary variables, bk,s,i, j, are the instrument directly used to compute the penalties,
both in terms of energy and delay. For all tasks τk, a mode change from subtask
τs

k with mode i to subtask τs+1
k with mode j (s in 1, ..., |M | − 1) is expressed by

bk,s,i, j = 1. Otherwise, i.e., in the case of no mode change, bk,s,i, j = 0. The bi-
nary variables bk,s,i, j are used in Equations (A.1), (A.2) and (A.3), the equations
in which the energy and delay overheads are computed. Please note that Equa-
tions (A.8) to (A.13) are solely introduced to pinpoint where mode changes are
situated.



166
APPENDIX A. THE COMPLETE DISCRETE VOLTAGE SELECTION

WITH OVERHEADS MILP FORMULATION



Appendix B

The DDVS Problem is strongly

NP-Hard

In this appendix we will prove that the discrete supply voltage scaling problem, in
general, i.e., even Vdd scaling only and Vbs scaling only, is NP-hard.

Theorem 3 The discrete supply and body-bias voltage scaling problem (DDVS) is
NP-hard.

In order to prove this theorem, we start with showing that the discrete supply
voltage scaling problem (DDVddSnoOH) is NP-hard, even without the considera-
tion of body-bias scaling and transition overheads.

Theorem 4 The discrete supply voltage scaling problem (DDVddSnoOH) without
transition overheads in terms of delay and energy overheads is NP-hard.

The formulation for the DDVddSnoOH problem is give as: Consider a set of
tasks with precedence constraints T = {τi} which have been mapped and sched-
uled on a set of variable voltage processors. For each task τi its deadline dli, its
number of clock cycles to be executed WNCi and the switched capacitance Ce f fi
are given. Each processor can vary its supply voltage Vdd within a set of discrete
voltages mz = {(Vddz ,)}. The power dissipation (dynamic) and the cycle time (pro-
cessor speed) depend on the selected voltage (mode of operation). Tasks are exe-
cuted cycle by cycle, and each cycle can potentially execute at a different voltage,
i.e., at a different speed. Our goal is to find voltage assignments for each task such
that the individual task deadlines are met and the dynamic energy consumption is



168 APPENDIX B. THE DDVS PROBLEM IS STRONGLY NP-HARD

minimal. No transition overheads, in terms of energy or time is required when
changing the voltage settings of the processors.

We prove the NP-hardness of the DDVddnoOH problem, by reducing the dis-
crete time-cost trade-off problem (DTCT) to DDVddnoOH. Thus, solving
the DDVddnoOH is as hard as solving the DTCT problem.

Theorem 5 The discrete time-cost trade-off problem (DTCT) is NP-hard.

The proof for theorem 5 is given in [DDGW97].
The formulation for the discrete time-cost trade-off problem is the following:

Given a set of N tasks T = {τi}, i = 1..N with precedence constraints. Each task
has to execute within a given deadline, dli. Tasks can be executed with several
speeds, from a given set S = {si}, i = 1..M. The choice of a certain speed has a
corresponding cost C = ci. A higher cost corresponds to a faster execution time.
The task execution is not preemptive and its speed cannot be changed during execu-
tion. The goal is to find the speed assignment for each task such that the individual
task deadlines are met and the total cost is minimal.

In the following we present an algorithm for reducing DTCT to a particular
instance of the DDVddSnoOH problem. The input sets of tasks with precedence
constraints are identical in the two problems. In the DDVddSnoOH problem there
is a one-to-one relation between the supply voltage and the processor speed. For
simplification we denote this as s = f (Vdd) (s is the speed corresponding to a par-
ticular choice of a supply voltage Vdd). We can express then the set of speeds from
DTCT as S = {si} = { f (Vddi)}. The dynamic energy consumption for a task τi
executing WNCi clock cycles with Vddi is Ce f fi ·WNCi ·V 2

ddi
. We choose the set of

costs for DTCT as C = {ci} = {Ce f fi ·WNCi · f (Vddi)}. We assume a particular
instance of DDVddSnoOH such that WNCi = 1, for all the tasks τi ∈ T . This im-
plies that such tasks can only execute with one voltage, as a single clock cycle is
not preemptable. It is easy to see that this transformation can be done in polyno-
mial (linear) time. As DTCT problem is NP-hard, we conclude that DDVddSnoOH
problem is also NP-hard. QED.



Appendix C

Shutdown Problem

Complexity

C.1 The Knapsack Problem

The continuous multiple choice knapsack (CMCK1) is a well known NP complete
problem, [GJ79].

Given a set of n items U , partitioned into m disjoint subsets, Um. The size of the
knapsack is B. Each item has a size si and a value vi. Select from each subset Uj
one item and assign to it a weight r j ∈ [0,1], such that the total size of the selected
items is less than B and the total value is maximized.

m

∑
j=1

r j · s j ≤ B (C.1)

m

∑
j=1

r j · v j ≥ K (C.2)

It can be easily proven that the following instance (CMCK2) is a generalization
of CMCK1 and thus another NP complete problem. Given a set of n items U ,
partitioned into m disjoint subsets, Um. There are p knapsacks, with size Bp each. A
relationship mapping each subset to several of the p knapsacks is also given (when
selecting one item, it is placed in several knapsacks). Each item has a size si and a
value vi. Select from each subset Uj one item and assign to it a weight r j ∈ [0,1],
such that the size of each knapsack is not exceeded and the total value (considering



170 APPENDIX C. SHUTDOWN PROBLEM COMPLEXITY

each item that was placed in several knapsack only once) is maximized.

∑
j∈Knp

r j · s j ≤ Bp (C.3)

m

∑
j=1

r j · v j ≥ K (C.4)

C.2 The Shutdown Problem

Given a set of n tasks running on m processors. The task mapping on the proces-
sors and the execution order is known (precedence constraints on tasks mapped on
different processors and scheduling order on each processor). Tasks have a cer-
tain fixed length and a deadline. Due to dependencies between tasks on different
processors, there is a certain amount of idleness (time intervals when no task in
running). The start time of each task is variable. When the processor is idle, it
consumes energy but does not perform any useful computation. In order to save
energy, during such an idle interval one processor could be shut down. A shutdown
operation comes with a fixed time and energy penalty.

The goal is to compute, for each possible idle time, whether to shutdown a
processor and for how long or to let it idle.

We will prove that deciding whether or not to shutdown in these conditions is
in fact an NP complete problem.

In the following we formally state the problem. Each task τi has the execution
time wceti and it consumes the energy Ei. At the end of each τi, the processor can
remain idle for tidlei , or it can be shut down start for to f fi with the time penalty tsoh.
Let us consider that each task τi has two versions, corresponding to the possible
actions following its end: idle or shutdown. The size of these two versions are
wceti + tidlei · ri and wceti + tsoh + to f fi · ri, where ri ∈ [0,1]. tidlei and to f fi are the
maximum available time for idling or shutdown for task τi. It is important to note
that the amount of time to be spent idling or off, after each task, is different, due to
the dependencies between tasks. The associated energy consumptions for the two
alternatives are: Ei +Pidle · tidlei · ri and Ei +Esoh +Po f f · to f fi · ri. Pidle is the power
consumption when the processor is idle. Po f f is the power consumption when the
processor is shutdown (Po f f << Pidle). Due to the precedence constraints there are
several paths in the task graph. The deadlines dlπ have to be met on all these paths,
π.

∑
τi∈π

(wceti + tidlei · ri or wceti + tsoh + to f fi · ri) ≤ dlπ (C.5)



C.2 The Shutdown Problem 171

The total idle time has to be filled either by idle periods or by shutdowns.

m

∑
i=1

(tidlei · ri or tsoh + to f fi · ri) ≤ dlπ = Tidle (C.6)

The objective is to minimize the amount of power consumed, ie. to maximize the
shutdown intervals.

∑
τi∈π

(Ei +Pidle · tidlei · ri or Ei +Esoh +Po f f · to f fi · ri) (C.7)

We can reformulate slightly the problem by starting from the observation that
for each task, the execution time and the energy consumption are constants that are
only important when expressing the deadlines on the dependency paths of the task
graph. Moreover, for each version of one task, wceti and Ei are common. Eq. C.5
can be rewritten as:

∑
τi∈π

(tidlei · ri or tsoh + to f fi · ri) ≤ dlπ − ∑
τi∈π

wnci (C.8)

Let us consider that the two possibilities of execution after each task finishes
are items of a subset. Consequently, there is such a subset for each task. The sizes
of the items are: s1

i = tidlei and s2
i = tsoh + to f fi . Their values are v1

i = Pidle ∗ tidlei

and respectively v2
i = Esoh + Po f f · to f fi . We have to select from each subset one

item and assign a weight ri ∈ [0,1] such that:

∑
τi∈π

(tidlei · ri or tsoh + to f fi · ri) ≤ Bπ for each task graph path π (C.9)

m

∑
i=1

(tidlei · ri or tsoh + to f fi · ri) ≤ dlπ = Tidle (C.10)

The objective is to minimize the value:

∑
τi∈π

(Pidle · tidlei · ri or Esoh +Po f f · to f fi · ri) (C.11)

Clearly, CMCK2 is equivalent to this, and, thus, the shutdown problem is NP
complete as well.



172 APPENDIX C. SHUTDOWN PROBLEM COMPLEXITY



Appendix D

Continuous Online

Interpolation

In this section we will show that the continuous frequencies calculated online in
Section 5.5 will not lead to deadline misses in case when the tasks execute the
worst-case number or clock cycles. Please note that we consider single processor
systems. Throughout the proof, we will examine the frequency of a task, as a
function of its start time, calculated in several iterations by the algorithm presented
in Section 5.5.1.

If there is only one task in the system, then it will be the only one scaled from
the start time to the deadline. If the start time st is a variable, (in the interval earliest
start time to latest start time),

f (st) =
NC

dl − st

It can be easily shown that f (st) is a convex function.
Let us consider now the case when there are several tasks in the system, among

which τi, the task under examination. There are several possibilities:
1) If τi consumes less energy then some of the other tasks. Let us focus on what

happens when voltage scaling is performed using the algorithm from Section 5.5.1,
for different start times, beginning from the latest start time LSTi. The outcome is
illustrated in Fig. D.1, for start times in the interval [t2,LFT ]. Since the energy
in the system is dominated by other tasks, τi is not scaled, even tough the amount
of slack increases when the start time decreases. Thus, the frequency remains
constant.



174 APPENDIX D. CONTINUOUS ONLINE INTERPOLATION

2) If the start time is decreased beyond t2, the energy of τi is comparable with
the energy of the other tasks. Thus, starting with t2 for smaller start times, τi is
scaled. Given a small slack increase (infinitesimal) δ, the voltage scaling algorithm
calculates which of the tasks benefit the most from extending their execution time
with δ, and, δ is divided between those tasks.

Lets assume that we have 3 arbitrary possible start times for the first task, s1, s2
and s3 with s1 < s2 < s3, s1 ≥ t1. To each start time it corresponds an end time e1,
e2, e3, e1 ≤ e2 ≤ e3. If the start time is s3, then we have the tightest schedule and
the frequency will be f3 = 1

e3−s3
. If the start time is s2 = s3 − δ, there are n tasks

that have the same energy, so they will be scaled simultaneously. The end time of
τi is e2 = e3 − δ− δ

n . The corresponding frequency is f2 = 1
e2−s2

= 1
e3−s3− δ

n
. At

start time s1 = s2−δ = s3−2 ·δ, there will be m tasks with the same energy profile
that are scaled simultaneously. The end time of one such task is e1 = e2 −δ+ δ

m =
e3 − 2 · δ + δ

n + δ
m . The corresponding frequency is f1 = 1

e3−s3+ δ
n + δ

m
. f1, f2, f3 are

discrete values on a convex curve if

f2 − f1 ≤ f3 − f2

. It can be shown that this relation holds as long as m ≥ n.
3) If the start time is decreased beyond t1, potentially, one of the tasks that was

scaled in the previous iterations, cannot be further scaled, because it reached the
lowest possible frequency. Thus the convexity condition m ≥ n does not hold. The
extra slack gained this way is divided among the remaining tasks that are scaled
more aggressively. This can potentially lead to a discontinuity of the frequency
function, marking the intersection between two convex regions.

This demonstrates that frequency, considered as a function of the task start
time, is piecewise convex. Let us examine now the online algorithm described in
Section 5.5.2. Consider that ta, tb, tx, ty, tz are consecutive entries in LUTi. If,
for example, the actual start time tsi is in the interval [ta, tb], then the frequency
calculated by linearly interpolating fa and fb is larger then any other frequency
corresponding to a start time from this interval. Similarly, if the actual start time is
between tx and ty, the frequency can safely be interpolated.



175

t
2

f
x

f
y

t
z

t
y

t
x

t
1

t
b

t
a

f

LSTEST time

interpolation
not safe

convex regions

interpolation safe

Figure D.1: Continuous interpolation



176 APPENDIX D. CONTINUOUS ONLINE INTERPOLATION



Appendix E

Quasi-Static Discrete Voltage

Selection

In this section, we will prove the two theorems used during the discrete online
voltage selection algorithm.

Theorem 6 Given a task τk, its worst case number of clock cycles WNCk and an
available execution time texek . The task is executed on a voltage scalable processor
having |M | modes. Assuming that the number of cycles to be assigned to each
mode is not restricted to the integer domain, the energy is minimized when the task
is using at most two execution modes.�

We will give the proof of the theorem in the following. Let us denote with ci, i =
1..m the number of clock cycles executed in each of the m discrete modes. In mode
i, the task is running with frequency fi and the energy spent per clock cycle is ei.
The problem that must be solved online is the following linear optimization:
Minimize

Ek =
m

∑
i=1

ei · ci (E.1)

Such that:
m

∑
i=1

ci = WNCk and
m

∑
i=1

ci

fi
≤ texek (E.2)

Based on the simplex algorithm, it can be mathematically proven that at most
two of the ci, i = 1..m variables have non zero values. This is due to the fact that
the linear formulation has two constrains and thus the solution vector will have two
basic variables [Thi88]. Please note, that this is true only when the variables are



178 APPENDIX E. QUASI-STATIC DISCRETE VOLTAGE SELECTION

not restricted to be integers. If we add this restriction, then, potentially, a lower
energy value can be obtained using more then two modes.

Theorem 7 Given a task τk executing in the worst-case WNCk clock cycles on a
voltage scalable processor that has |M | modes. The frequency in mode mi is fi
and the corresponding energy consumed per clock cycle is ei, i = 1..m. The mode
mh with the highest frequency that is used by the τk is considered to be known.
The number of cycles to be allocated for each mode is not restricted to the integer
domain. The lower mode ml that together with mh achieves the minimal energy
consumption has the following property:

el · ( 1
f j
− 1

fh
)− e j · ( 1

fl
− 1

fh
) < eh(

1
f j
− 1

fl
),∀ j ∈ M (E.3)

The proof of this theorem is equivalent to showing that the energy consumed
in modes (mh,ml) is lower than the energy consumed with any other mode pair
(mh,m j):

el · xl + eh · xh < e j · y j + eh · yh,∀ j (E.4)

under the assumptions that the total execution times and the number of clock cy-
cles in the two alternative executions (alternative 1: modes ml and mh are used;
alternative 2: modes m j and mh are used) are identical. Let us note with xl and xh
the numbers of clock cycles executed in the first alternative, and, with y j and yh the
numbers of clock cycles executed in the second alternative.

xl + xh = y j + yh (= WNCk) (E.5)
xl

fl
+

xh

fh
=

y j

f j
+

yh

fh
(= texek ) (E.6)

(E.7)

The demonstration is based on rewriting the equations as:

xh − yh = y j − xl (E.8)
xl

fl
− y j

f j
=

yh − xh

fh
(= texek ) (E.9)

(E.10)



179

Let us consider this as a system of two equations with two unknowns (xl and y j).
After solving the system, we get the following equations for xl and y j:

xl = (xh − yh) ·
1
f j
− 1

fh
1
fl
− 1

f j

(E.11)

y j = (xh − yh) ·
1
fl
− 1

fh
1
fl
− 1

f j

(E.12)

The relation E.4 that needs to be demonstrated can be rewritten as:

eh · (xh − yh) < e j · y j − el · xl ,∀ j (E.13)

If we replace xl and y j with their equivalent from Eq. E.11, we need to demonstrate
that:

eh · (xh − yh) < e j · (xh − yh) ·
1
fl
− 1

fh
1
fl
− 1

f j

− el · (xh − yh) ·
1
f j
− 1

fh
1
fl
− 1

f j

,∀ j (E.14)

An examination of this equation reveals its similarity to Eq. E.3. In order them to
be equivalent, ( 1

fl
− 1

f j
)/(xh − yh) ≥ 0. Let us examine two possibilities:

1) fl > f j, and, consequently, 1
fl
− 1

f j
< 0

In this case, xh > yh. This is so, because, given a task, the voltage selection al-
gorithm assigns the maximum number of clock cycles possible, given the available
execution time, to the mode with the lowest frequency. Thus, if fl > f j, more time
can be spent in ml (if the task is executed using (ml ,mh)), then in m j (if the task is
executed using (ml ,mh)). Consequently, less clock cycles are executed in mh if the
modes (ml ,mh) are used the alternative execution in modes (m j,mh).

So, if fl > f j, then 1
fl
− 1

f j
< 0 and xh < yh.

2) fl < f j
Similar to the previous case, if fl < f j then 1

fl
− 1

f j
> 0 and xh > yh, which

finally proofs the theorem.
This theorem shows that for a given execution mode h, there can be only one

corresponding mode l (l < h), that minimizes the energy, no matter how large is the
available slack. The theorem also provides the means of calculating the pair, given
the mode with the higher frequency, mh. This calculation is performed offline, for
each task τk and its result is the table compatible modesk.

The algorithm used for the computation of the compatible mode pairs is given
in Fig. E.1.



180 APPENDIX E. QUASI-STATIC DISCRETE VOLTAGE SELECTION

Algorithm: QUASI STATIC VS COMPAT DISC MODES

Input: - task τk
Output: - compatible mode pairs (h, compat mode[h])

01: for h = |M | downto 1 {
02: for i = h downto 2 {
03: l=i
04: not pair=0
05: for j = l-1 to 1
06: if ek,l · ( 1

f j
− 1

fh
)− ek, j · ( 1

fl
− 1

fh
) > ek,h( 1

f j
− 1

fl
) {

07: not pair=1;break;
08: }
09: }
10: if (not pair==0) compat mode[h]=l; break;
11: }
12:}
13: return compat modes[]

Figure E.1: Pseudocode: Calculation of the Compatible Mode Pairs



Bibliography

[ACD74] T. Adam, K. Chandy, and J. Dickson. A Comparison of List
Scheduling for Parallel Processing Systems. J. Communications
of the ACM, 17(12):685–690, December 1974.

[AEP+07a] A. Andrei, P. Eles, Z. Peng, M. Schmitz, and B. M. Al-Hashimi.
Energy Optimization of Multiprocessor Systems on Chip by Volt-
age Selection. IEEE Transactions on Very Large Scale Integration
Systems, 15(3):262–275, March 2007.

[AEP+07b] A. Andrei, P. Eles, Z. Peng, M. Schmitz, and B. M. Al-Hashimi.
Voltage selection for time-constrained multiprocessor systems on
chip. In J. Henkel and S.Parameswaran, editors, Designing Em-
bedded Processors: A Low Power Perspective, pages 259–282.
Springer, 2007.

[AERP07] A. Andrei, P. Eles, J. Rosen, and Z. Peng. Predictable Implemen-
tation of Real-Time Applications on Multiprocessor Systems-on-
Chip. In submitted, 2007.

[AMMMA01] H. Aydin, R. Melhem, D. Mosse, and P. Mejia-Alvarez. Dy-
namic and Aggressive Scheduling Techniques for Power-Aware
Real-Time Systems. In Proc. RTSS’01, pages 95–105, 2001.

[AMR+06] Amit Agarwal, Saibal Mukhopadhyay, Arijit Raychowdhury,
Kaushik Roy, and Chris H. Kim. Leakage power analysis and re-
duction for nanoscale circuits. IEEE Micro, 26(2):68–80, 2006.

[And06] A. Andrei. System Design of Embedded Systems Running on an
MPSoC Platform. Technical report, Linkoping University, De-
partment of Computer and Information Science, Sweden, January
2006.



182 BIBLIOGRAPHY

[ASE+04a] A. Andrei, M. Schmitz, P. Eles, Z. Peng, and B. Al-Hashimi.
Overhead-Conscious Voltage Selection for Dynamic and Leakage
Power Reduction of Time-Constraint Systems. In Design, Automa-
tion and Test in Europe Conference, pages 518–523, Feb 2004.

[ASE+04b] A. Andrei, M. Schmitz, P. Eles, Z. Peng, and B. Al Hashimi. Si-
multaneous Communication and Processor Voltage Scaling for Dy-
namic and Leakage Energy Reduction in Time-Constrained Sys-
tems. In IEEE/ACM International Conference on Computer-Aided
Design, pages 362–369, Nov 2004.

[ASE+05a] A. Andrei, M. Schmitz, P. Eles, Z. Peng, and B. Al-Hashimi.
Overhead-Conscious Voltage Selection for Dynamic and Leakage
Power Reduction of Time-Constraint Systems. IEE Proceedings
Computers & Digital Techniques, special issue with the best con-
tributions from the DATE 2004, 152(01):28–38, January 2005.

[ASE+05b] A. Andrei, M. Schmitz, P. Eles, Z. Peng, and B. Al Hashimi. Quasi-
Static Voltage Scaling for Energy Minimization with Time Con-
straints. In Design, Automation and Test in Europe Conference,
pages 514–519, Nov 2005.

[ASEP04] A. Andrei, M. Schmitz, P. Eles, and Z. Peng. Simultaneous Com-
munication and Processor Voltage Scaling for Dynamic and Leak-
age Energy Reduction in Time-Constrained Systems. In Power-
Aware Real Time Computing Workshop, Sep 2004.

[BBB+03] Luca Benini, Davide Bertozzi, Davide Bruni, Nicola Drago, Franco
Fummi, and Massimo Poncino. Systemc cosimulation and emula-
tion of multiprocessor soc designs. Computer, 36(4):53–59, 2003.

[BD00] Luca Benini and Giovanni De Micheli. System-Level Power Op-
timizatin: Techniques and Tools. ACM Transactions on Design
Automation of Electronic Systems, 5(2):115–192, April 2000.

[BGM+06] D. Bertozzi, A. Guerri, M. Milano, F. Poletti, and M. Ruggiero.
Communication-aware allocation and scheduling framework for
stream-oriented multi-processor systems-on-chip. In Design, Au-
tomation and Test in Europe Conference, pages 3–8, 2006.

[BJM97] Peter Bjørn-Jørgensen and Jan Madsen. Critical Path Driven
Cosynthesis for Heterogeneous Target Architectures. In Proc. In-
ternational Workshop on Hardware/Software Codesign, pages 15 –
19, 1997.



BIBLIOGRAPHY 183

[BM02] K. Banerjee and A. Mehrotra. A Power-Optimal Repeater Inser-
tion Methodology for Global Interconnects in Nanometer Designs.
IEEE Transactions on Electron Devices, 49(11):2001–2006, No
2002.

[BMM+98] L. Benini, G. De Micheli, E. Macii, D. Sciuto, and C. Silvano.
Address bus encoding techniques for system-level power optimiza-
tion. In Design, Automation and Test in Europe Conference, pages
861–867, 1998.

[Bor99] S. Borkar. Design Challenges of Technology Scaling. IEEE Micro,
pages 23–29, July 1999.

[BTT98] Tobias Blickle, Jurgen Teich, and Lothar Thiele. System-level syn-
thesis using evolutionary algorithms. Design Automation for Em-
bedded Systems, 3(1):23–58, January 1998.

[CB95] A. P. Chandrakasan and R. W. Brodersen. Low Power Digital
CMOS Design. Kluwer Academic Publisher, 1995.

[CG72] E.G. Coffman and R.L. Graham. Optimal Scheduling for two pro-
cessor systems. Acta Inform., 1:200–213, 1972.

[CS02] P. Caputa and C. Svensson. Low-Power, Low-Latency Global In-
terconnects. In Proc. IEEE ASIC/SOC’02, pages 394–398, 2002.

[CTH05] Yu Ching Chang, King Ho Tam, and Lei He. Power-optimal re-
peater insertion considering vdd and vth as design freedoms. In
International Symposium on Low Power Electronics and Design,
pages 137–142, 2005.

[DB] Jutta Degener and Carsten Bormann. GSM 06.10 lossy
speech compression. Source code available at http://kbs.cs.tu-
berlin.de/∼jutta/toast.html.

[DDGW97] P. De, E. Dunne, J. Ghosh, and C. Wells. Complexity of the Dis-
crete Time-Cost Tradeoff problem for Project Networks. Opera-
tions Research, 45(2):302–306, March 1997.

[DJ98] Robert P. Dick and Niraj K. Jha. MOGAC: A Multiobjective
Genetic Algorithm for Hardware-Software Co-Synthesis of Dis-
tributed Embedded Systems. IEEE Transactions on Computer-
Aided Design, 17(10):920–935, Oct 1998.



184 BIBLIOGRAPHY

[DJ99] R. Dick and N. K. Jha. MOCSYN: Multiobjective core-based
single-chip system synthesis. In Design, Automation and Test in
Europe Conference, pages 263–270, March 1999.

[DVI+02] D. Duarte, N. Vijaykrishnan, M. Irwin, H. Kim, and G. McFar-
land. Impact of Scaling on The Effectiveness of Dynamic Power
Reduction. In Proc. ICCD, Sept. 2002.

[EDPP00] Petru Eles, Alexa Doboli, Paul Pop, and Zebo Peng. Scheduling
with Bus Access Optimization for Distributed Embedded Systems.
IEEE Transactions on VLSI Systems, 8(5):472–491, Oct 2000.

[EES+03] J. Engblom, A. Ermedahl, M. Sjodin, J. Gustafsson, and H. Hans-
son. Worst-case execution-time analysis for embedded real-time
systems. International Journal on Software Tools for Technology
Transfe r, 4(4):437–455, 2003.

[ETZ00] Michael Eisenring, Lothar Thiele, and Eckart Zitzler. Conflicting
criteria in embedded system design. IEEE Design and Test of Com-
puters, 17(2):51–59, 2000.

[FA05] F.Poletti and A.Poggiali. Flexible Hardware/Software Support for
Message Passing on a Distributed Shared Memory Architecture.
In Design Automation and Test in Europe, pages 736–741, March
2005.

[FSS99] W. Fornaciari, D. Sciuto, and C. Silvano. Power Estimation for
Architectural Exploration of HW/SW Communication on System-
Level Buses. In Proc. 7th Int. Workshop Hardware/Software Co-
Design (CODES’99), pages 152–156, May 1999.

[GDR05] K. Goossens, J. Dielissen, and A. Radulescu. AEthereal Network
on Chip: Concepts, Architectures, and Implementations. IEEE De-
sign & Test of Computers, 2/3:115–127, 2005.

[GJ79] M. R. Garey and D. S. Johnson. Computers and Intractability:
A Guide to the theory of NP-Completeness. W.H. Freeman and
Company, 1979.

[GK01] F. Gruian and K. Kuchcinski. LEneS: Task Scheduling for Low-
Energy Systems Using Variable Supply Voltage Processors. In
Proc. ASP-DAC’01, pages 449–455, Jan 2001.



BIBLIOGRAPHY 185

[GK03] F. Gruian and K. Kuchcinski. Uncertainty-Based Scheduling:
Energy-Efficient Ordering for Tasks with Variable Execution Time.
In International Symposium on Low Power Electronics and Design,
pages 465–468, August 2003.

[Glo89] Fred Glover. Tabu search—part I. ORSA Journal on Computing,
1(3):190–206, Summer 1989.

[Glo90] Fred Glover. Tabu search– part II. ORSA Journal on Computing,
2(1):4–32, 1990.

[Gol89] David E. Goldberg. Genetic Algorithms in Search, Optimization &
Machine Learning. Addison-Wesley, 1989.

[Gro] Alchemy Research Group. Microlib. Available at
http://www.microlib.org.

[Gru01] F. Gruian. Hard Real-Time Scheduling for Low-Energy Using
Stoachastic Data and DVS Processors. In International Sympo-
sium on Low Power Electronics and Design, pages 46–51, August
2001.

[Gru02] F. Gruian. Energy-Centric Scheduling for Real-Time Systems. In
Phd Thesis, 2002.

[Hag] Johan Hagman. mpeg3play-0.9.6. Source code avail-
able at http://home.swipnet.se/∼w-10694/tars/mpeg3play-0.9.6-
x86.tar.gz.

[HAM+03] S. Hsu, A. Alvandpour, S. Mathew, S.-L. Lu, R. K. Krishnamurthy,
and S. Borkar. A 4.5-ghz 130-nm 32-kb l0 cache with a leakage-
tolerant self reverse-bias bitline scheme. Journal of Solid State
Circuits, 38(5):755–761, May 2003.

[HASM+03] S. Hsu, A. Alvandpour, S. Lu S. Mathew, R. K. Krishnamurthy,
and S. Borkar. A 4.5GHz 130nm 32kB L0 Cache With a Leakage-
Tolerant Self Reverse-Bias Bitline Scheme. IEEE Journal of Solid-
State Circuits, 38(5):755–761, May 2003.

[HLS04] Lei He, Weiping Liao, and Mircea R. Stan. System level leak-
age reduction considering the interdependence of temperature and
leakage. In Design Automation Conference, pages 12–17, New
York, NY, USA, 2004. ACM Press.



186 BIBLIOGRAPHY

[HLTW03] R. Heckmann, M. Langenbach, S. Thesing, and R. Wilhelm. The
influence of processor architecture on the design and the r esults of
WCET tools. Proceedings of the IEEE, 91(7):1038–1054, 2003.

[HM03] J. Hu and R. Marculescu. Energy-aware mapping for tile-based
NoC architectures under performance constraints. In Proc. ASP-
DAC’03, pages 233 – 239, 2003.

[HO03] J. N. Hooker and G. Ottosson. Logic-based benders decomposition.
Mathematical Programming, pages 33–60, 2003.

[HP02] C-T. Hsieh and M. Pedram. Architectural Energy Optimization by
Bus Splitting. IEEE Transactions on CAD, 21(4):408–414, April
2002.

[HQPS98] Inki Hong, Gang Qu, Miodrag Potkonjak, and Mani B. Srivastava.
Synthesis Techniques for Low-Power Hard Real-Time Systems on
Variable Voltage Processors. In Proc. Real-Time Systems Sympo-
sium, 1998.

[IF99] Y. Ismail and E. Friedman. Repeater Insertion in RLC Lines for
Minimum Propagation Delay. In Proc. ISCAS’99, pages 404–407,
1999.

[IHS98] M. Potkonjak I. Hong and M. B. Srivastava. On-Line Schedul-
ing of Hard Real-Time Tasks on Variable Voltage Processors. In
IEEE/ACM International Conference on Computer-Aided Design,
pages 653–656, 1998.

[ITR] The International Technology Roadmap for Semiconductors.
http://www.itrs.net.

[IY98] Tohru Ishihara and Hiroto Yasuura. Voltage Scheduling Problem
for Dynamically Variable Voltage Processors. In Proc. Int. Symp.
Low Power Electronics and Design (ISLPED’98), pages 197–202,
1998.

[KA99] Yu-Kwong Kwok and Ishfaq Ahmad. Static Scheduling Algo-
rithms for Allocating Directed Task Graphs to Multiprocessors.
ACM Computing Surveys, 31(4):406–471, December 1999.

[KBP+06] I. A. Khatib, D. Bertozzi, F. Poletti, L. Benini, and et.all. A mul-
tiprocessor systems-on-chip for real-time biomedical monitoring
and analysis: Architectural design space exploration. In Design
Automation Conference, pages 125–131, 2006.



BIBLIOGRAPHY 187

[KCS02] P. Kapur, G. Chandra, and K. Saraswat. Power Estimation in
Global Interconnects and its Reduction using a Novel Repeater
Optimiazation Methodology. In Design Automation Conference,
2002.

[KK05] W. Kwon and T. Kim. Optimal Voltage Allocation Techniques for
Dynamically Variable Voltage Processors. ACM Transactions on
Embedded Computing Systems, February 2005.

[Kla00] Alexander Klaiber. The technology behind crusoe processors.
Transmeta Corporation, January 2000. http://www.transmeta.com.

[Kop97] H. Kopetz. Real-Time Systems-Design Principles for Distributed
Embedded Applications. Kluwer Academic Publishers, 1997.

[KR02] C. Kim and K. Roy. Dynamic Vth Scaling Scheme for Active Leak-
age Power Reduction. In Design, Automation and Test in Europe
Conference, pages 163–167, March 2002.

[LCB02] J. Liu, P. Chou, and N. Bagherzdeh. Communication Speed Se-
lection for Embedded Systems with Networked Voltage-Scalable
Proceossors. In Proc. CODES’02, 2002.

[LJ03] J. Luo and N. Jha. Power-profile Driven Variable Voltage Scaling
for Heterogeneous Distributed Real-time Embedded Systems. In
Proc. VLSI’03, 2003.

[LJ07] J. Luo and N.K. Jha. Power-Efficient Scheduling for Heteroge-
neous Distributed Real-Time Embedded Systems. IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Sys-
tems, 26(6):1161–1170, June 2007.

[LMW96] Y.T.S. Li, S. Malik, and A. Wolfe. Cache modeling for real-time
software: Beyond direct mapped instruction caches. In IEEE Real-
Time Systems Symposium, pages 254–263, 1996.

[LPB04] Mirko Loghi, Massimo Poncino, and Luca Benini. Cycle-accurate
power analysis for multiprocessor systems-on-a-chip. In ACM
Great Lakes symposium on VLSI, pages 410–406, New York, NY,
USA, 2004. ACM Press.

[LS99] T. Lundqvist and P. Stenstrom. An Integrated Path and Timing
Analysis Method based on Cycle-Level Symbolic Execution. Real-
Time Systems, 17(2/3):183–207, 1999.



188 BIBLIOGRAPHY

[LS04] Jacob R. Lorch and Alan Jay Smith. Pace: A new approach
to dynamic voltage scaling. IEEE Transactions on Computers,
53(7):856–869, 2004.

[LTK04] L-F. Leung, C-Y. Tsui, and W-H. Ki. Minimizing Energy Con-
sumption of Multiple-Processors-Core Systems with Simultaneous
Task Allocation, Scheduling and Voltage Assignment. In Asia
South PacifiDesign Automation (ASP-DAC), pages 647–652, Jan
2004.

[LZS+06] Zhijian Lu, Yan Zhang, Mircea Stan, John Lach, and Kevin
Skadron. Procrastinating voltage scheduling with discrete fre-
quency sets. In Design, Automation and Test in Europe Conference,
pages 456–461, 2006.

[MFMB02] S. Martin, K. Flautner, T. Mudge, and D. Blaauw. Combined
Dynamic Voltage Scaling and Adaptive Body Biasing for Lower
Power Microprocessors under Dynamic Workloads. In IEEE/ACM
International Conference on Computer-Aided Design, pages 721–
725, 2002.

[MHQ02] B. Mochocki, X. Hu, and G. Quan. A Realistic Variable Volt-
age Scheduling Model for Real-Time Applications. In IEEE/ACM
International Conference on Computer-Aided Design, pages 726–
731, 2002.

[MHQ07] Bren Mochocki, Xiaobo Sharon Hu, and Gang Quan. Transition-
overhead-aware voltage scheduling for fixed-priority real-time sys-
tems. ACM Transactions on Design Automation of Electronic Sys-
tems, 12(2):11, 2007.

[MMP03] A. Macii, E. Macii, and M. Poncino. Improving the Efficiency of
Memory Partitioning by Address Clustering. In Design, Automa-
tion and Test in Europe Conference, pages 18–22, March 2003.

[Moo65] Gordon Moore. Cramming more components onto integrated cir-
cuits. Electronics Magazine, April 1965.

[MOS] Mosek optimization software. http://www.mosek.com.

[NN94] Y. Nesterov and A. Nemirovskii. Interior-Point Polynomial Algo-
rithms in Convex Programming. Studies in Applied Mathematics,
1994.



BIBLIOGRAPHY 189

[Ogn07] Jens Ogniewski. Development and Optimization of an MPEG2
Video Decoder on a Multiprocessor Embedded Platform. Mas-
ter thesis LITH-IDA/DS-EX–07/006–SE, Linkoping University,
2007.

[OH96] Hyunok Oh and Soonhoi Ha. A Static Scheduling Heuristic for
Heterogeneous Processors. In 2nd International EuroPar Confer-
ence Vol. II, August 1996.

[OvG89] R. H. J. M. Otten and L. P. P. P. van Ginneken. The annealing
algorithm. Kluwer Academic Publishers, 1989.

[PB00] P. Puschner and A. Burns. A Review of Worst-Case Execution-
Time Analysis. Real-Time Systems, 2/3:115–127, 2000.

[PDBR04] S. Pasricha, N. Dutt, and M. Ben-Romdhane. Fast exploration of
bus-based on-chip communication architectures. In CODES+ISSS,
pages 242–247, 2004.

[PEPP06] P. Pop, P. Eles, Z. Peng, and T. Pop. Analysis and Optimization of
Distributed Real-Time Embedded Systems. ACM Transactions on
Design Automation of Electronic Systems, Vol. 11:593–625, 2006.

[PMT04] Daniel Gracia Perez, Gilles Mouchard, and Olivier Temam.
Microlib: A case for the quantitative comparison of micro-
architecture mechanisms. In International Symposium on Microar-
chitecture, 2004.

[pow00] Mobile AMD AthlonTM4, Processor Model 6 CPGA Data Sheet,
November 2000. Publication No 24319 Rev E.

[PP92] S. Prakash and A. Parker. SOS: Synthesis of Application-Specific
Heterogeneous Multiprocessor Systems. J. Parallel & Distributed
Computing, pages 338–351, Dec 1992.

[PPE+06] T. Pop, P. Pop, P. Eles, Z. Peng, and A. Andrei. Timing analysis of
the flexray communication protocol. In Euromicro Conference on
Real-Time Systems, pages 203–216. IEEE Computer Society, 2006.

[QM03] W. Qin and S. Malik. Flexible and Formal Modeling of Micropro-
cessors with Application to Retargetable Simulation. In Design,
Automation and Test in Europe Conference, pages 556–561, March
2003.



190 BIBLIOGRAPHY

[RAEP07] J. Rosen, A. Andrei, P. Eles, and Z. Peng. Bus Access Optimization
for Predictable Implementation of Real-Time Applications on Mul-
tiprocessor Systems-on-Chip. In IEEE Real-Time Systems Sympo-
sium, 2007.

[RE97] W. Ye R. Ernst. Embedded program timing alalysis based on
path clustering and architecture classification. In IEEE/ACM Inter-
national Conference on Computer-Aided Design, pages 598–604,
1997.

[Ree93] C.R. Reevs. Modern Heuristic Techniques for Combinatorial Prob-
lems. Blackwell Scientific Publishers, 1993.

[RGA+06] M. Ruggiero, P. Gioia, G. Alessio, L. Benini, M. Milano,
D. Bertozzi, and A. Andrei. A Cooperative, Accurate Solving
Framework for Optimal Allocation, Scheduling and Frequency Se-
lection on Energy-Efficient MPSoCs. In International Symposium
on Systems-on-Chip, pages 1–4, Nov 2006.

[RJ05] R. Gupta R. Jejurikar. Dynamic Slack Reclamation with Procras-
tination Scheduling in Real-Time Embedded Systems. In Design
Automation Conference, Jun 2005.

[RM05] H. Ramaprasad and F. Mueller. Bounding Preemption Delay within
Data Cache Reference Patterns for Real-Time Tasks. In Real-Time
and Embedded Technology and Applications Symposium, pages
71–80, 2005.

[SAH01] M. Schmitz and Bashir M. Al-Hashimi. Considering Power Varia-
tions of DVS Processing Elements for Energy Minimisation in Dis-
tributed Systems. In Int. Symp. System Synthesis (ISSS’01), pages
250–255, October 2001.

[SAHE02] M. Schmitz, Bashir M. Al-Hashimi, and Petru Eles. Energy-
Efficient Mapping and Scheduling for DVS Enabled Distributed
Embedded Systems. In Design, Automation and Test in Europe
Conference, pages 514–521, March 2002.

[SAHE04] M. Schmitz, B. Al-Hashimi, and P. Eles. System-Level Design
Techniques for Energy-Efficient Embedded Systems. Kluwer Aca-
demic Publisher, 2004.



BIBLIOGRAPHY 191

[SE06] J. Staschulat and R. Ernst. Worst case timing analysis of input
dependent data cache behavior. In Euromicro Conference on Real-
Time Systems, 2006.

[SHE05] M. Schmitz, B. Al Hashimi, and P. Eles. Cosynthesis of Energy-
Efficient Multimode Embedded Systems With Consideration of
Mode-Execution Probabilities. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 24(2):153–169,
Feb 2005.

[SIE06] S. Schliecker, M. Ivers, and R. Ernst. Integrated analysis of com-
municating tasks in mpsocs. In CODES+ISSS, pages 288–293,
2006.

[SK01] D. Sylvester and K. Keutzer. Impact of Small Process Geometries
on Microarchitectures in Systems on a Chip. Proceedings of the
IEEE, 89(4):467–489, April 2001.

[SKC04] Jaewon Seo, Taewhan Kim, and Ki-Seok Chung. Profile-based Op-
timal Intra-Task Voltage Scheduling for Real-Time Applications.
In IEEE Design Automation Conference, pages 87–92, June 2004.

[SKD05] Jaewon Seo, Taewhan Kim, and N. D. Dutt. Optimal integration
of inter-task and intra-task dynamic voltage scaling techniques for
hard real-time applications. In IEEE/ACM International Confer-
ence on Computer-Aided Design, pages 450–455, 2005.

[SKL01] Dongkun Shin, Jihong Kim, and Seongsoo Lee. Intra-Task Voltage
Scheduling for Low-Energy Hard Real-Time Applications. IEEE
Design & Test of Computers, pages 20–30, March–April 2001.

[SKL06] Jaewon Seo, Taewhan Kim, and Joonwon Lee. Optimal intratask
dynamic voltage-scaling technique and its practical extensions.
IEEE Transactions on CAD of Integrated Circuits and Systems,
25(1):47–57, 2006.

[SL93] Gilbert C. Sih and Edward A. Lee. A Compile-time scheduling
heuristic for interconnection-constrained heterogeneous processor
architectures. IEEE Transactions Parallel and Distributed Systems,
4(2):175–187, February 1993.

[SLKK02] E. Salminen, V. Lahtinen, and T. Hamalainen K. Kuusilinna.
Overview of bus-based system-on-chip interconnections. In IS-
CAS, pages 372–375, 2002.



192 BIBLIOGRAPHY

[SPJ02] L. Shang, L. Peh, and N. Jha. Power-efficient Interconnection Net-
works: Dynamic Voltage Scaling with Links. Comp. Arch. Letters,
1(2):1–4, May 2002.

[SSE05] J. Staschulat, S. Schliecker, and R. Ernst. Scheduling analysis of
real-time systems with precise modeling of cache related preemp-
tion delay. In Euromicro Conference on Real-Time Systems, pages
41–48, 2005.

[SSS+04] Kevin Skadron, Mircea R. Stan, Karthik Sankaranarayanan, Wei
Huang, Sivakumar Velusamy, and David Tarjan. Temperature-
aware microarchitecture: Modeling and implementation. ACM
Transactions Architecture and Code Optimization, 1(1):94–125,
2004.

[Sve01] C. Svensson. Optimum Voltage Swing on On-Chip and Off-Chip
Interconnects. IEEE Journal of Solid-State Circuits, 36(7):1108–
1112, July 2001.

[TFW00] H. Theiling, C. Ferdinand, and R. Wilhelm. Fast and Precise
WCET Prediction by Separated Cache and Path Analysis. Real-
Time Systems, 18(2/3):157–179, 2000.

[Thi88] Paul R. Thie. An Introduction to Linear Programming and Game
Theory. John Wiley & Sons, 1988.

[TW04] L. Thiele and R. Wilhelm. Design for Timing Predictability. Real-
Time Systems, 28(2/3):157–177, 2004.

[VJ03] K.S. Vallerio and N.K. Jha. Task graph extraction for embedded
system synthesis. In International Conference on VLSI Design,
pages 480–486, Jan 2003.

[VM03] G. Varatkar and R. Marculescu. Communication-Aware Task
Scheduling and Voltage Selection for Total System Energy Min-
imization. In IEEE/ACM International Conference on Computer-
Aided Design, 2003.

[WG90] M. Wu and D. Gajski. Hypertool: A Programming Aid for
Message-passing Systems. IEEE Transactions on Parallel and Dis-
tributed Systems, 1(3):330–343, July 1990.

[Wil99] H. P. Williams. Model Building in Mathematical Programming.
Wiley, 1999.



BIBLIOGRAPHY 193

[WKL+00] G. Wei, J. Kim, D. Liu, S. Sidiropoulos, and M. Horowitz. A
Variable-Frequency Parallel I/O Interface with Adaptive Power-
Supply Regulation. IEEE J. Solid-State Circuits, 35(11):1600–
1610, Nov 2000.

[Wol05] W. Wolf. Computers as Components: Principles of Embedded
Computing System Design. Morgan Kaufman Publishers, 2005.

[WSE02] F. Wolf, J. Staschulat, and R. Ernst. Associative caches in formal
software timing analysis. In Design Automation Conference, pages
622–627, 2002.

[xsc00] Intel� XScaleTM Core, Developer’s Manual, December 2000.

[YC03] P. Yang and F. Catthoor. Pareto-Optimization-Based Run-Time
Task Scheduling for Embedded Systems. In Proc. CODES+ISSS
’03, pages 120–125, 2003.

[YDS95] F. Yao, A. Demers, and S. Shenker. A Scheduling Model for Re-
duced CPU Energy. IEEE FOCS, 1995.

[YLJ03] L. Yan, J. Luo, and N. Jha. Combined Dynamic Voltage Scaling
and Adaptive Body Biasing for Heterogeneous Distributed Real-
time Embedded Systems. In IEEE/ACM International Conference
on Computer-Aided Design, 2003.

[YLJ05] L. Yan, J. Luo, and N. Jha. Joint dynamic voltage scaling and
adpative body biasing for heterogeneous distributed real-time em-
bedded systems,. IEEE Transactions on Computer-Aided Design,
July 2005.

[ZHC02] Y. Zhang, X. Hu, and D. Chen. Task Scheduling and Voltage Selec-
tion for Energy Minimization. In IEEE Design Automation Con-
ference, June 2002.

[ZHC03] Y. Zhang, X. Hu, and D. Chen. Energy Minimization of Real-
time Tasks on Variable Voltage Processors with Transition Energy
Overhead. In Proc. ASP-DAC’03, pages 65–70, 2003.

[ZLL+05] Yan Zhang, Zhijian Lu, John Lach, Kevin Skadron, and Mircea R.
Stan. Optimal procrastinating voltage scheduling for hard real-time
systems. In Design Automation Conference, pages 905–908, 2005.



194 BIBLIOGRAPHY

[ZM04] Y. Zhu and F. Mueller. Feedback EDF Scheduling Exploiting Dy-
namic Voltage Scaling. In IEEE Real-Time and Embedded Tech-
nology and Applications Symposium, pages 84–93, October 2004.

[ZM05] Y. Zhu and F. Mueller. Feedback EDF Scheduling Exploiting Dy-
namic Voltage Scaling. Real-Time Systems, 31(1-3):33–63, De-
cember 2005.



Department of Computer and Information Science
Linköpings universitet

Dissertations

Linköping Studies in Science and Technology

No 14 Anders Haraldsson: A Program Manipulation
System Based on Partial Evaluation, 1977, ISBN
91-7372-144-1.

No 17 Bengt Magnhagen: Probability Based Verification
of Time Margins in Digital Designs, 1977, ISBN
91-7372-157-3.

No 18 Mats Cedwall: Semantisk analys av process-
beskrivningar i naturligt språk, 1977, ISBN 91-
7372-168-9.

No 22 Jaak Urmi: A Machine Independent LISP Compil-
er and its Implications for Ideal Hardware, 1978,
ISBN 91-7372-188-3.

No 33 Tore Risch: Compilation of Multiple File Queries
in a Meta-Database System 1978, ISBN 91-7372-
232-4.

No 51 Erland Jungert: Synthesizing Database Structures
from a User Oriented Data Model, 1980, ISBN 91-
7372-387-8.

No 54 Sture Hägglund: Contributions to the Develop-
ment of Methods and Tools for Interactive Design
of Applications Software, 1980, ISBN 91-7372-
404-1.

No 55 Pär Emanuelson: Performance Enhancement in a
Well-Structured Pattern Matcher through Partial
Evaluation, 1980, ISBN 91-7372-403-3.

No 58 Bengt Johnsson, Bertil Andersson: The Human-
Computer Interface in Commercial Systems, 1981,
ISBN 91-7372-414-9.

No 69 H. Jan Komorowski: A Specification of an Ab-
stract Prolog Machine and its Application to Partial
Evaluation, 1981, ISBN 91-7372-479-3.

No 71 René Reboh: Knowledge Engineering Techniques
and Tools for Expert Systems, 1981, ISBN 91-
7372-489-0.

No 77 Östen Oskarsson: Mechanisms of Modifiability in
large Software Systems, 1982, ISBN 91-7372-527-
7.

No 94 Hans Lunell: Code Generator Writing Systems,
1983, ISBN 91-7372-652-4.

No 97 Andrzej Lingas: Advances in Minimum Weight
Triangulation, 1983, ISBN 91-7372-660-5.

No 109 Peter Fritzson: Towards a Distributed Program-
ming Environment based on Incremental Compila-
tion,1984, ISBN 91-7372-801-2.

No 111 Erik Tengvald: The Design of Expert Planning
Systems. An Experimental Operations Planning
System for Turning, 1984, ISBN 91-7372-805-5.

No 155 Christos Levcopoulos: Heuristics for Minimum
Decompositions of Polygons, 1987, ISBN 91-7870-
133-3.

No 165 James W. Goodwin: A Theory and System for

Non-Monotonic Reasoning, 1987, ISBN 91-7870-
183-X.

No 170 Zebo Peng: A Formal Methodology for Automated
Synthesis of VLSI Systems, 1987, ISBN 91-7870-
225-9.

No 174 Johan Fagerström: A Paradigm and System for
Design of Distributed Systems, 1988, ISBN 91-
7870-301-8.

No 192 Dimiter Driankov: Towards a Many Valued Logic
of Quantified Belief, 1988, ISBN 91-7870-374-3.

No 213 Lin Padgham: Non-Monotonic Inheritance for an
Object Oriented Knowledge Base, 1989, ISBN 91-
7870-485-5.

No 214 Tony Larsson: A Formal Hardware Description and
Verification Method, 1989, ISBN 91-7870-517-7.

No 221 Michael Reinfrank: Fundamentals and Logical
Foundations of Truth Maintenance, 1989, ISBN 91-
7870-546-0.

No 239 Jonas Löwgren: Knowledge-Based Design Support
and Discourse Management in User Interface Man-
agement Systems, 1991, ISBN 91-7870-720-X.

No 244 Henrik Eriksson: Meta-Tool Support for Knowl-
edge Acquisition, 1991, ISBN 91-7870-746-3.

No 252 Peter Eklund: An Epistemic Approach to Interac-
tive Design in Multiple Inheritance Hierar-
chies,1991, ISBN 91-7870-784-6.

No 258 Patrick Doherty: NML3 - A Non-Monotonic For-
malism with Explicit Defaults, 1991, ISBN 91-
7870-816-8.

No 260 Nahid Shahmehri: Generalized Algorithmic De-
bugging, 1991, ISBN 91-7870-828-1.

No 264 Nils Dahlbäck: Representation of Discourse-Cog-
nitive and Computational Aspects, 1992, ISBN 91-
7870-850-8.

No 265 Ulf Nilsson: Abstract Interpretations and Abstract
Machines: Contributions to a Methodology for the
Implementation of Logic Programs, 1992, ISBN 91-
7870-858-3.

No 270 Ralph Rönnquist: Theory and Practice of Tense-
bound Object References, 1992, ISBN 91-7870-
873-7.

No 273 Björn Fjellborg: Pipeline Extraction for VLSI Data
Path Synthesis, 1992, ISBN 91-7870-880-X.

No 276 Staffan Bonnier: A Formal Basis for Horn Clause
Logic with External Polymorphic Functions, 1992,
ISBN 91-7870-896-6.

No 277 Kristian Sandahl: Developing Knowledge Man-
agement Systems with an Active Expert Methodolo-
gy, 1992, ISBN 91-7870-897-4.

No 281 Christer Bäckström: Computational Complexity



of Reasoning about Plans, 1992, ISBN 91-7870-
979-2.

No 292 Mats Wirén: Studies in Incremental Natural Lan-
guage Analysis, 1992, ISBN 91-7871-027-8.

No 297 Mariam Kamkar: Interprocedural Dynamic Slic-
ing with Applications to Debugging and Testing,
1993, ISBN 91-7871-065-0.

No 302 Tingting Zhang: A Study in Diagnosis Using Clas-
sification and Defaults, 1993, ISBN 91-7871-078-2.

No 312 Arne Jönsson: Dialogue Management for Natural
Language Interfaces - An Empirical Approach,
1993, ISBN 91-7871-110-X.

No 338 Simin Nadjm-Tehrani: Reactive Systems in Phys-
ical Environments: Compositional Modelling and
Framework for Verification, 1994, ISBN 91-7871-
237-8.

No 371 Bengt Savén: Business Models for Decision Sup-
port and Learning. A Study of Discrete-Event Man-
ufacturing Simulation at Asea/ABB 1968-1993,
1995, ISBN 91-7871-494-X.

No 375 Ulf Söderman: Conceptual Modelling of Mode
Switching Physical Systems, 1995, ISBN 91-7871-
516-4.

No 383 Andreas Kågedal: Exploiting Groundness in Log-
ic Programs, 1995, ISBN 91-7871-538-5.

No 396 George Fodor: Ontological Control, Description,
Identification and Recovery from Problematic Con-
trol Situations, 1995, ISBN 91-7871-603-9.

No 413 Mikael Pettersson: Compiling Natural Semantics,
1995, ISBN 91-7871-641-1.

No 414 Xinli Gu: RT Level Testability Improvement by
Testability Analysis and Transformations, 1996,
ISBN 91-7871-654-3.

No 416 Hua Shu: Distributed Default Reasoning, 1996,
ISBN 91-7871-665-9.

No 429 Jaime Villegas: Simulation Supported Industrial
Training from an Organisational Learning Perspec-
tive - Development and Evaluation of the SSIT
Method, 1996, ISBN 91-7871-700-0.

No 431 Peter Jonsson: Studies in Action Planning: Algo-
rithms and Complexity, 1996, ISBN 91-7871-704-
3.

No 437 Johan Boye: Directional Types in Logic Program-
ming, 1996, ISBN 91-7871-725-6.

No 439 Cecilia Sjöberg: Activities, Voices and Arenas:
Participatory Design in Practice, 1996, ISBN 91-
7871-728-0.

No 448 Patrick Lambrix: Part-Whole Reasoning in De-
scription Logics, 1996, ISBN 91-7871-820-1.

No 452 Kjell Orsborn: On Extensible and Object-Rela-
tional Database Technology for Finite Element
Analysis Applications, 1996, ISBN 91-7871-827-9.

No 459 Olof Johansson: Development Environments for
Complex Product Models, 1996, ISBN 91-7871-
855-4.

No 461 Lena Strömbäck: User-Defined Constructions in

Unification-Based Formalisms,1997, ISBN 91-
7871-857-0.

No 462 Lars Degerstedt: Tabulation-based Logic Program-
ming: A Multi-Level View of Query Answering,
1996, ISBN 91-7871-858-9.

No 475 Fredrik Nilsson: Strategi och ekonomisk styrning -
En studie av hur ekonomiska styrsystem utformas
och används efter företagsförvärv, 1997, ISBN 91-
7871-914-3.

No 480 Mikael Lindvall: An Empirical Study of Require-
ments-Driven Impact Analysis in Object-Oriented
Software Evolution, 1997, ISBN 91-7871-927-5.

No 485 Göran Forslund: Opinion-Based Systems: The Co-
operative Perspective on Knowledge-Based Deci-
sion Support, 1997, ISBN 91-7871-938-0.

No 494 Martin Sköld: Active Database Management Sys-
tems for Monitoring and Control, 1997, ISBN 91-
7219-002-7.

No 495 Hans Olsén: Automatic Verification of Petri Nets in
a CLP framework, 1997, ISBN 91-7219-011-6.

No 498 Thomas Drakengren: Algorithms and Complexity
for Temporal and Spatial Formalisms, 1997, ISBN
91-7219-019-1.

No 502 Jakob Axelsson: Analysis and Synthesis of Hetero-
geneous Real-Time Systems, 1997, ISBN 91-7219-
035-3.

No 503 Johan Ringström: Compiler Generation for Data-
Parallel Programming Langugaes from Two-Level
Semantics Specifications, 1997, ISBN 91-7219-
045-0.

No 512  Anna Moberg: Närhet och distans - Studier av
kommunikationsmmönster i satellitkontor och flexi-
bla kontor, 1997, ISBN 91-7219-119-8.

No 520 Mikael Ronström: Design and Modelling of a Par-
allel Data Server for Telecom Applications, 1998,
ISBN 91-7219-169-4.

No 522 Niclas Ohlsson: Towards Effective Fault 
Prevention - An Empirical Study in Software Engi-
neering, 1998, ISBN 91-7219-176-7.

No 526 Joachim Karlsson: A Systematic Approach for Pri-
oritizing Software Requirements, 1998, ISBN 91-
7219-184-8.

No 530 Henrik Nilsson: Declarative Debugging for Lazy
Functional Languages, 1998, ISBN 91-7219-197-x.

No 555 Jonas Hallberg: Timing Issues in High-Level Syn-
thesis,1998, ISBN 91-7219-369-7.

No 561 Ling Lin: Management of 1-D Sequence Data -
From Discrete to Continuous, 1999, ISBN 91-7219-
402-2.

No 563 Eva L Ragnemalm: Student Modelling based on
Collaborative Dialogue with a Learning Compan-
ion, 1999, ISBN 91-7219-412-X.

No 567 Jörgen Lindström: Does Distance matter? On geo-
graphical dispersion in organisations, 1999, ISBN
91-7219-439-1.

No 582 Vanja Josifovski: Design, Implementation and



Evaluation of a Distributed Mediator System for
Data Integration, 1999, ISBN 91-7219-482-0.

No 589 Rita Kovordányi: Modeling and Simulating Inhib-
itory Mechanisms in Mental Image Reinterpretation
- Towards Cooperative Human-Computer Creativi-
ty, 1999, ISBN 91-7219-506-1.

No 592 Mikael Ericsson: Supporting the Use of Design
Knowledge - An Assessment of Commenting
Agents, 1999, ISBN 91-7219-532-0.

No 593 Lars Karlsson: Actions, Interactions and Narra-
tives, 1999, ISBN 91-7219-534-7.

No 594 C. G. Mikael Johansson: Social and Organization-
al Aspects of Requirements Engineering Methods -
A practice-oriented approach, 1999, ISBN 91-
7219-541-X.

No 595 Jörgen Hansson: Value-Driven Multi-Class Over-
load Management in Real-Time Database Systems,
1999, ISBN 91-7219-542-8.

No 596 Niklas Hallberg: Incorporating User Values in the
Design of Information Systems and Services in the
Public Sector: A Methods Approach, 1999, ISBN
91-7219-543-6.

No 597 Vivian Vimarlund: An Economic Perspective on
the Analysis of Impacts of Information Technology:
From Case Studies in Health-Care towards General
Models and Theories, 1999, ISBN 91-7219-544-4.

No 598 Johan Jenvald: Methods and Tools in Computer-
Supported Taskforce Training, 1999, ISBN 91-
7219-547-9.

No 607 Magnus Merkel: Understanding and enhancing
translation by parallel text processing, 1999, ISBN
91-7219-614-9.

No 611 Silvia Coradeschi: Anchoring symbols to sensory
data, 1999, ISBN 91-7219-623-8.

No 613 Man Lin: Analysis and Synthesis of Reactive
Systems: A Generic Layered Architecture
Perspective, 1999, ISBN 91-7219-630-0.

No 618 Jimmy Tjäder: Systemimplementering i praktiken
- En studie av logiker i fyra projekt, 1999, ISBN 91-
7219-657-2.

No 627 Vadim Engelson: Tools for Design, Interactive
Simulation, and Visualization of Object-Oriented
Models in Scientific Computing, 2000, ISBN 91-
7219-709-9.

No 637 Esa Falkenroth: Database Technology for Control
and Simulation, 2000, ISBN 91-7219-766-8.

No 639 Per-Arne Persson: Bringing Power and
Knowledge Together: Information Systems Design
for Autonomy and Control in Command Work,
2000, ISBN 91-7219-796-X.

No 660 Erik Larsson: An Integrated System-Level Design
for Testability Methodology, 2000, ISBN 91-7219-
890-7.

No 688 Marcus Bjäreland: Model-based Execution
Monitoring, 2001, ISBN 91-7373-016-5.

No 689 Joakim Gustafsson: Extending Temporal Action
Logic, 2001, ISBN 91-7373-017-3.

No 720 Carl-Johan Petri: Organizational Information Pro-
vision - Managing Mandatory and Discretionary Use
of Information Technology, 2001, ISBN-91-7373-
126-9.

No 724 Paul Scerri: Designing Agents for Systems with
Adjustable Autonomy, 2001, ISBN 91 7373 207 9.

No 725 Tim Heyer: Semantic Inspection of Software Arti-
facts: From Theory to Practice, 2001, ISBN 91 7373
208 7.

No 726 Pär Carlshamre: A Usability Perspective on Re-
quirements Engineering - From Methodology to
Product Development, 2001, ISBN 91 7373 212 5.

No 732 Juha Takkinen: From Information Management to
Task Management in Electronic Mail, 2002, ISBN
91 7373 258 3.

No 745 Johan Åberg: Live Help Systems: An Approach to
Intelligent Help for Web Information Systems,
2002, ISBN 91-7373-311-3.

No 746 Rego Granlund: Monitoring Distributed Team-
work Training, 2002, ISBN 91-7373-312-1.

No 757 Henrik André-Jönsson: Indexing Strategies for
Time Series Data, 2002, ISBN 917373-346-6.

No 747 Anneli Hagdahl: Development of IT-suppor-ted In-
ter-organisational Collaboration - A Case Study in
the Swedish Public Sector, 2002, ISBN 91-7373-
314-8.

No 749 Sofie Pilemalm: Information Technology for Non-
Profit Organisations - Extended Participatory De-
sign of an Information System for Trade Union Shop
Stewards, 2002, ISBN 91-7373-
318-0.

No 765 Stefan Holmlid: Adapting users: Towards a theory
of use quality, 2002, ISBN 91-7373-397-0.

No 771 Magnus Morin: Multimedia Representations of
Distributed Tactical Operations, 2002, ISBN 91-
7373-421-7.

No 772 Pawel Pietrzak: A Type-Based Framework for Lo-
cating Errors in Constraint Logic Programs, 2002,
ISBN 91-7373-422-5.

No 758 Erik Berglund: Library Communication Among
Programmers Worldwide, 2002,
ISBN 91-7373-349-0.

No 774 Choong-ho Yi: Modelling Object-Oriented
Dynamic Systems Using a Logic-Based Framework,
2002, ISBN 91-7373-424-1.

No 779 Mathias Broxvall: A Study in the 
Computational Complexity of Temporal 
Reasoning, 2002, ISBN 91-7373-440-3.

No 793 Asmus Pandikow: A Generic Principle for 
Enabling Interoperability of Structured and 
Object-Oriented Analysis and Design Tools, 2002,
ISBN 91-7373-479-9.

No 785 Lars Hult: Publika Informationstjänster. En studie
av den Internetbaserade encyklopedins bruksegen-
skaper, 2003, ISBN 91-7373-461-6.

No 800 Lars Taxén: A Framework for the Coordination of
Complex Systems´ Development, 2003, ISBN 91-
7373-604-X

No 808 Klas Gäre: Tre perspektiv på förväntningar och
förändringar i samband med införande av informa-



tionsystem, 2003, ISBN 91-7373-618-X.
No 821 Mikael Kindborg: Concurrent Comics - program-

ming of social agents by children, 2003,
ISBN 91-7373-651-1.

No 823 Christina Ölvingson: On Development of Infor-
mation Systems with GIS Functionality in Public
Health Informatics: A Requirements Engineering
Approach, 2003, ISBN 91-7373-656-2.

No 828 Tobias Ritzau: Memory Efficient Hard Real-Time
Garbage Collection, 2003, ISBN 91-7373-666-X.

No 833 Paul Pop: Analysis and Synthesis of 
Communication-Intensive Heterogeneous Real-
Time Systems, 2003, ISBN 91-7373-683-X.

No 852 Johan Moe: Observing the Dynamic
Behaviour of Large Distributed Systems to Improve
Development and Testing - An Emperical Study in
Software Engineering, 2003, ISBN 91-7373-779-8.

No 867 Erik Herzog: An Approach to Systems Engineer-
ing Tool Data Representation and Exchange, 2004,
ISBN 91-7373-929-4.

No 872 Aseel Berglund: Augmenting the Remote Control:
Studies in Complex Information Navigation for

Digital TV, 2004, ISBN 91-7373-940-5.
No 869 Jo Skåmedal: Telecommuting’s Implications on

Travel and Travel Patterns, 2004, ISBN 91-7373-
935-9.

No 870 Linda Askenäs: The Roles of IT - Studies of Or-
ganising when Implementing and Using Enterprise
Systems, 2004, ISBN 91-7373-936-7.

No 874 Annika Flycht-Eriksson: Design and Use of On-
tologies in Information-Providing Dialogue Sys-
tems, 2004, ISBN 91-7373-947-2.

No 873 Peter Bunus: Debugging Techniques for Equation-
Based Languages, 2004, ISBN 91-7373-941-3.

No 876 Jonas Mellin: Resource-Predictable and Efficient
Monitoring of Events, 2004, ISBN 91-7373-956-1.

No 883 Magnus Bång: Computing at the Speed of Paper:
Ubiquitous Computing Environments for Health-
care Professionals, 2004, ISBN 91-7373-971-5

No 882 Robert Eklund: Disfluency in Swedish 
human-human and human-machine travel booking
dialogues, 2004. ISBN 91-7373-966-9.

No 887 Anders Lindström: English and other Foreign Lin-
quistic Elements in Spoken Swedish. Studies of
Productive Processes and their Modelling using Fi-
nite-State Tools, 2004, ISBN 91-7373-981-2.

No 889 Zhiping Wang: Capacity-Constrained Production-
inventory systems - Modellling and Analysis in
both a traditional and an e-business context, 2004,
ISBN 91-85295-08-6.

No 893 Pernilla Qvarfordt: Eyes on Multimodal Interac-
tion, 2004, ISBN 91-85295-30-2.

No 910 Magnus Kald: In the Borderland between Strategy
and Management Control - Theoretical Framework
and Empirical Evidence, 2004, ISBN 91-85295-82-
5.

No 918 Jonas Lundberg: Shaping Electronic News: Genre
Perspectives on Interaction Design, 2004, ISBN 91-
85297-14-3.

No 900 Mattias Arvola: Shades of use: The dynamics of
interaction design for sociable use, 2004, ISBN 91-
85295-42-6.

No 920 Luis Alejandro Cortés: Verification and Schedul-
ing Techniques for Real-Time Embedded Systems,
2004, ISBN 91-85297-21-6.

No 929 Diana Szentivanyi: Performance Studies of Fault-
Tolerant Middleware, 2005, ISBN 91-85297-58-5.

No 933 Mikael Cäker: Management Accounting as Con-
structing and Opposing Customer Focus: Three Case
Studies on Management Accounting and Customer
Relations, 2005, ISBN 91-85297-64-X.

No 937 Jonas Kvarnström: TALplanner and Other Exten-
sions to Temporal Action Logic, 2005, ISBN 91-
85297-75-5.

No 938 Bourhane Kadmiry: Fuzzy Gain-Scheduled Visual
Servoing for Unmanned Helicopter, 2005, ISBN 91-
85297-76-3.

No 945 Gert Jervan: Hybrid Built-In Self-Test and Test
Generation Techniques for Digital Systems, 2005,
ISBN: 91-85297-97-6.

No 946 Anders Arpteg: Intelligent Semi-Structured Infor-
mation Extraction, 2005, ISBN 91-85297-98-4.

No 947 Ola Angelsmark: Constructing  Algorithms for
Constraint Satisfaction and Related Problems -
Methods and Applications, 2005,  ISBN 91-85297-
99-2.

No 963 Calin Curescu: Utility-based Optimisation of Re-
source Allocation for Wireless Networks, 2005.
ISBN 91-85457-07-8.

No 972 Björn Johansson: Joint Control in Dynamic Situa-
tions, 2005, ISBN 91-85457-31-0.

No 974 Dan Lawesson: An Approach to Diagnosability
Analysis for Interacting Finite State Systems, 2005,
ISBN 91-85457-39-6.

No 979 Claudiu Duma: Security and Trust Mechanisms for
Groups in Distributed Services, 2005, ISBN 91-
85457-54-X.

No 983 Sorin Manolache: Analysis and Optimisation of
Real-Time Systems with Stochastic Behaviour,
2005, ISBN 91-85457-60-4.

No 986 Yuxiao Zhao: Standards-Based Application Inte-
gration for Business-to-Business Communications,
2005, ISBN 91-85457-66-3.

No 1004 Patrik Haslum: Admissible Heuristics for Auto-
mated Planning, 2006, ISBN 91-85497-28-2.

No 1005 Aleksandra Tešanovic: Developing Re-
usable and Reconfigurable Real-Time Software us-
ing Aspects and Components, 2006, ISBN 91-
85497-29-0.

No 1008 David Dinka: Role, Identity and Work: Extending
the design and development agenda, 2006, ISBN 91-
85497-42-8.

No 1009 Iakov Nakhimovski: Contributions to the Modeling
and Simulation of Mechanical Systems with De-
tailed Contact Analysis, 2006, ISBN 91-85497-43-
X.

No 1013 Wilhelm Dahllöf: Exact Algorithms for Exact Sat-
isfiability Problems, 2006, ISBN 91-85523-97-6.

No 1016 Levon Saldamli: PDEModelica - A High-Level
Language for Modeling with Partial Differential
Equations, 2006, ISBN 91-85523-84-4.

No 1017 Daniel Karlsson: Verification of Component-based
Embedded System Designs, 2006, ISBN 91-85523-
79-8.



No 1018 Ioan Chisalita: Communication and Networking
Techniques for Traffic Safety Systems, 2006, ISBN
91-85523-77-1.

No 1019 Tarja Susi: The Puzzle of Social Activity - The
Significance of Tools in Cognition and Coopera-
tion, 2006, ISBN 91-85523-71-2.

No 1021 Andrzej Bednarski: Integrated Optimal Code
Generation for Digital Signal Processors, 2006,
ISBN 91-85523-69-0.

No 1022 Peter Aronsson: Automatic Parallelization of
Equation-Based Simulation Programs, 2006, ISBN
91-85523-68-2.

No 1023 Sonia Sangari: Some Visual Correlates to Focal
Accent in Swedish, 2006, ISBN 91-85523-67-4.

No 1030 Robert Nilsson: A Mutation-based Framework for
Automated Testing of Timeliness, 2006, ISBN 91-
85523-35-6.

No 1034 Jon Edvardsson: Techniques for Automatic 
Generation of Tests from Programs and Specifica-
tions, 2006, ISBN 91-85523-31-3.

No 1035 Vaida Jakoniene: Integration of Biological Data,
2006, ISBN 91-85523-28-3.

No 1045 Genevieve Gorrell: Generalized Hebbian 
Algorithms for Dimensionality Reduction in Natu-
ral Language Processing, 2006, ISBN 91-85643-
88-2.

No 1051 Yu-Hsing Huang: Having a New Pair of 
Glasses - Applying Systemic Accident Models on
Road Safety, 2006, ISBN 91-85643-64-5.

No 1054 Åsa Hedenskog: Perceive those things which can-
not be seen - A Cognitive Systems Engineering per-
spective on requirements management, 2006, ISBN
91-85643-57-2.

No 1061 Cécile Åberg: An Evaluation Platform for 
Semantic Web Technology, 2007, ISBN 91-85643-
31-9.

No 1073 Mats Grindal: Handling Combinatorial Explosion
in Software Testing, 2007, ISBN 978-91-85715-74-
9.

No 1075 Almut Herzog: Usable Security Policies for 
Runtime Environments, 2007, ISBN 978-91-
85715-65-7.

No 1079 Magnus Wahlström: Algorithms, measures, and
upper bounds for satisfiability and related prob-
lems, 2007, ISBN 978-91-85715-55-8.

No 1083 Jesper Andersson: Dynamic Software Architec-
tures, 2007, ISBN 978-91-85715-46-6.

No 1086 Ulf Johansson: Obtaining Accurate and Compre-
hensible Data Mining Models - An Evolutionary
Approach, 2007, ISBN 978-91-85715-34-3. 

No 1089 Traian Pop: Analysis and Optimisation of 
Distributed Embedded Systems with Heterogene-
ous Scheduling Policies, 2007, ISBN 978-91-
85715-27-5.

No 1091 Gustav Nordh: Complexity Dichotomies for CSP-
related Problems, 2007, ISBN 978-91-85715-20-6.

No 1106 Per Ola Kristensson: Discrete and Continuous
Shape Writing for Text Entry and Control, 2007,
ISBN 978-91-85831-77-7.

No 1110 He Tan: Aligning Biomedical Ontologies, 2007,
ISBN 978-91-85831-56-2.

No 1112 Jessica Lindblom: Minding the body - Interacting
socially through embodied action, 2007, ISBN 978-
91-85831-48-7.

No 1113 Pontus Wärnestål: Dialogue Behavior Manage-
ment in Conversational Recommender Systems,
2007, ISBN 978-91-85831-47-0.

No 1120 Thomas Gustafsson: Management of Real-Time
Data Consistency and Transient Overloads in Em-
bedded Systems, 2007, ISBN 978-91-85831-33-3.

No 1127 Alexandru Andrei: Energy Efficient and Predicta-
ble Design of Real-time Emdedded Systems, 2007,
ISBN 978-91-85831-06-7.

Linköping Studies in Information Science

No 1 Karin Axelsson: Metodisk systemstrukturering- att
skapa samstämmighet mellan informa-tionssyste-
markitektur och verksamhet, 1998. ISBN-9172-19-
296-8.

No 2 Stefan Cronholm: Metodverktyg och användbarhet
- en studie av datorstödd metodbaserad syste-
mutveckling, 1998. ISBN-9172-19-299-2.

No 3 Anders Avdic: Användare och utvecklare - om an-
veckling med kalkylprogram, 1999. ISBN-91-7219-
606-8.

No 4 Owen Eriksson: Kommunikationskvalitet hos in-
formationssystem och affärsprocesser, 2000. ISBN
91-7219-811-7.

No 5 Mikael Lind: Från system till process - kriterier för
processbestämning vid verksamhetsanalys, 2001,
ISBN 91-7373-067-X

No 6 Ulf Melin: Koordination och informationssystem i
företag och nätverk, 2002, ISBN 91-7373-278-8.

No 7 Pär J. Ågerfalk: Information Systems Actability -
Understanding Information Technology as a Tool
for Business Action and Communication, 2003,
ISBN 91-7373-628-7.

No 8 Ulf Seigerroth: Att förstå och förändra
systemutvecklingsverksamheter - en taxonomi
för metautveckling, 2003, ISBN91-7373-736-4. 

No 9 Karin Hedström: Spår av datoriseringens värden -
Effekter av IT i äldreomsorg, 2004, ISBN 91-7373-
963-4.

No 10 Ewa Braf: Knowledge Demanded for Action -
Studies on Knowledge Mediation in Organisations,
2004, ISBN 91-85295-47-7.

No 11 Fredrik Karlsson: Method Configuration -
method and computerized tool support, 2005, ISBN
91-85297-48-8.

No 12 Malin Nordström: Styrbar systemförvaltning - Att
organisera systemförvaltningsverksamhet med hjälp
av effektiva förvaltningsobjekt, 2005, ISBN 91-
85297-60-7.

No 13 Stefan Holgersson: Yrke: POLIS - Yrkeskunskap,
motivation, IT-system och andra förutsättningar för
polisarbete, 2005, ISBN 91-85299-43-X.

No 14 Benneth Christiansson, Marie-Therese Chris-
tiansson: Mötet mellan process och komponent -
mot ett ramverk för en verksamhetsnära kravspeci-



fikation vid anskaffning av komponentbaserade in-
formationssystem, 2006, ISBN 91-85643-22-X.


