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Abstract. We give a sound and complete fence insertion procedure for concur-
rent finite-state programs running under the classical TSO memory model. This
model allows “write to read” relaxation corresponding to the addition of an un-
bounded store buffer between each processor and the main memory. We introduce
a novel machine model, called the Single-Buffer (SB) semantics, and show that
the reachability problem for a program under TSO can be reduced to the reacha-
bility problem under SB. We present a simple and effective backward reachability
analysis algorithm for the latter, and propose a counter-example guided fence in-
sertion procedure. The procedure is augmented by a placement constraint that
allows the user to choose places inside the program where fences may be in-
serted. For a given placement constraint, we automatically infer all minimal sets
of fences that ensure correctness. We have implemented a prototype and run it
successfully on all standard benchmarks together with several challenging exam-
ples that are beyond the applicability of existing methods.

1 Introduction

Modern concurrent process architectures allow weak (relaxed) memory models, in
which certain memory operations may overtake each other. The use of weak memory
models makes reasoning about the behaviors of concurrent programs much more dif-
ficult and error-prone compared to the classical Sequentially Consistent (SC) memory
model. In fact, several algorithms that are designed for the synchronization of concur-
rent processes, such as mutual exclusion and producer-consumer protocols, are not cor-
rect when run on weak memories [2]. One way to eliminate the non-desired behaviors
resulting from the use of weak memory models is to insert memory fence instructions
in the program code. In this work, a fence instruction forbids reordering between in-
structions issued by the same process. It does not allow any operation issued after the
fence instruction to overtake an operation issued before it. Hence, a naive approach to
correct a program running under a weak memory model is to insert a fence instruction
after every operation. Adopting this approach results in significant performance degra-
dation [13]. Therefore, it is important to optimize fence placement. A natural criterion
is to provide minimal sets of fences whose insertion is sufficient for ensuring program
correctness under the considered weak memory model (provided correctness under SC).

One of the most common relaxations corresponds to TSO (Total Store Ordering)
that is adopted by Sun’s SPARC multiprocessors. TSO is the kernel of many common



weak memory models [28, 31], and is the latest formalization of the x86 memory model.
In TSO, read operations are allowed to overtake write operations of the same process
if they concern different variables. In this paper, we use the usual formal model of
TSO, developed in e.g. [28, 30], and assume it gives a faithful description of the actual
hardware on which we run our programs. This model adds an unbounded FIFO buffer
between each process and the main memory.

Our approach We present a sound and complete method for checking safety proper-
ties and for inserting fences in finite-state programs running on the TSO model. The
procedure is parameterized by a fence placement constraint that allows to restrict the
places inside the program where fences may be inserted. To cope with the unbounded
store buffers in the case of TSO, we present a new semantics, called the Single-Buffer
(SB) semantics, in which all the processes share one (unbounded) buffer. We show that
the SB semantics is equivalent to the operational model of TSO (as defined in [30]).
A crucial feature of the SB semantics is that it permits a natural ordering on the (infi-
nite) set of configurations, and that the induced transition relation is monotonic wrt. this
ordering. This allows to use general frameworks for well quasi-ordered systems [1] in
order to derive verification algorithms for programs running on the SB model. In case
the program fails to satisfy the specification with the current set of fences, our algorithm
provides counter-examples (traces) that can be used to increase the set of fences in a
systematic manner. Thus, we get a counter-example guided procedure for refining the
sets of fences. We prove termination of the obtained procedure. Since each refinement
step is performed based on an exact reachability analysis algorithm, the procedure will
eventually return all minimal sets of fences (wrt. the given placement constraint) that
ensure correctness of the program. Although we instantiate our framework to the case
of TSO, the method can be extended to other memory models such as the PSO model.

Contribution We present the first sound and complete procedure for fence insertion
for programs under TSO. The main ingredients of the framework are the following:
(i) A new semantical model, the so called SB model, that allows efficient infinite state
model checking. (ii) A simple and effective backward analysis algorithm for solving
the reachability problem under the SB semantics. (iii) The algorithm uses finite-state
automata as a symbolic representation for infinite sets of configurations, and returns a
symbolic counter-example in case the program violates its specification. (iv) A counter-
example guided procedure that automatically infers all minimal sets of fences sufficient
for correctness under a given fence placement policy. (v) Based on the algorithm, we
have implemented a prototype, and run it successfully on several challenging concurrent
programs, including some that cannot be handled by existing methods.

Proofs, implementation details and experimental results are in the appendix.

Related Work To our knowledge, our approach is the first sound and complete auto-
matic fence insertion method that discovers all minimal sets of fences for finite-state
concurrent programs running under TSO. Since we are dealing with infinite-state ver-
ification, it is hard to provide methods that are both automatic and that return ex-
act solutions. Existing approaches avoid solving the general problem by considering
under-approximations, over-approximations, restricted classes of programs, forbidding



sequential inconsistent behavior, or by proposing exact algorithms for which termina-
tion is not guaranteed. Under-approximations of the program behavior can be achieved
through testing [9], bounded model checking [7, 6], or by restricting the behavior of the
program, e.g., through bounding the sizes of the buffers [18] or the number of switches
[5]. Such techniques are useful in practice for finding errors. However, they are not able
to check all possible traces and can therefore not tell whether the generated set of fences
is sufficient for correctness. Recent techniques based on over-approximations [19] are
valuable for showing correctness; however they are not complete and might not be able
to prove correctness although the program satisfies its specification. Hence, the com-
puted set of fences need not be minimal. Examples of restricted classes of programs
include those that are free from different types of data races [27]. Considering only
data-race free programs can be unrealistic since data races are very common in efficient
implementations of concurrent algorithms. Another approach is to use monitors [3, 8,
10], compiler techniques [12], and explicit state model checking [16] to insert fences
in order to remove all non-sequential consistent behaviors even if these will not vio-
late the desired correctness properties. As a result, this approach cannot guarantee to
generate minimal sets of fences to make programs correct because they also remove be-
nign sequentially inconsistent behaviors. The method of [23] performs an exact search
of the state space, combined with fixpoint acceleration techniques, to deal with the
potentially infinite state space. However, in general, the approach does not guarantee
termination. State reachability for TSO is shown to be non primitive recursive in [4] by
reductions to/from lossy channel systems. The reductions involve nondeterministically
guessing buffer contents, which introduces a serious state space explosion problem. The
approach does not discuss fence insertion and cannot even verify the simplest examples.
An important contribution of our work is the introduction of a single buffer semantics
for avoiding the immediate state space explosion. In contrast to the above approaches,
our method is efficient and performs exact analysis of the program on the given memory
model. We show termination of the analysis. As a consequence, we are able to compute
all minimal sets of fences required for correctness of the program.

2 Preliminaries

In this section we first introduce notations that we use throughout the paper, and then
define a model for concurrent systems.

Notation We use N to denote the set of natural numbers. For sets A and B, we use
[A 7→ B] to denote the set of all total functions from A to B and f : A 7→ B to denote that
f is a total function that maps A to B. For a ∈ A and b ∈ B, we use f [a←↩ b] to denote
the function f ′ defined as follows: f ′(a) = b and f ′(a′) = f (a′) for all a′ 6= a.

Let Σ be a finite alphabet. We denote by Σ∗ (resp. Σ+) the set of all words (resp.
non-empty words) over Σ, and by ε the empty word. The length of a word w ∈ Σ∗ is
denoted by |w|; we assume that |ε|= 0. For every i : 1≤ i≤ |w|, let w(i) be the symbol
at position i in w. For a ∈ Σ, we write a ∈ w if a appears in w, i.e., a = w(i) for some
i : 1 ≤ i≤ |w|. For words w1,w2, we use w1 ·w2 to denote the concatenation of w1 and
w2. For a word w 6= ε and i : 0≤ i≤ |w|, we define w� i to be the suffix of w we get by
deleting the prefix of length i, i.e., the unique w2 such that w = w1 ·w2 and |w1|= i.



A transition system T is a triple (C,Init,−→) where C is a (potentially infinite) set
of configurations, Init ⊆ C is the set of initial configurations, and −→ ⊆ C× C is the
transition relation. We write c−→c′ to denote that (c,c′) ∈ −→, and ∗−→ to denote the
reflexive transitive closure of −→. A configuration c is said to be reachable if c0

∗−→c
for some c0 ∈ Init; and a set C of configurations is said to be reachable if some c ∈C
is reachable. A run π of T is of the form c0−→c1−→·· ·−→cn, where ci−→ci+1 for all
i : 0≤ i < n. Then, we write c0

π−→cn. We use target (π) to denote the configuration cn.
Notice that, for configurations c,c′, we have that c ∗−→c′ iff c π−→c′ for some run π. The
run π is said to be a computation if c0 ∈ Init. Two runs π1 = c0−→c1−→·· ·−→cm and
π2 = cm+1−→cm+2−→·· ·−→cn are said to be compatible if cm = cm+1. Then, we write
π1 •π2 to denote the run π = c0−→c1−→·· ·−→cm−→cm+2−→·· ·−→cn. Given an ordering
v on C, we say that−→ is monotonic wrt.v if whenever c1−→c′1 and c1 v c2, there exists
a c′2 s.t. c2

∗−→c′2 and c′1 v c′2. We say that −→ is effectively monotonic wrt. v if, given
configurations c1,c′1,c2 as above, we can compute c′2 and a run π s.t. c2

π−→c′2.

Concurrent Programs We define concurrent programs, a model for representing
shared-memory concurrent processes. A concurrent program P has a finite number of
finite-state processes (threads), each with its own program code. Communication be-
tween processes is performed through a shared-memory that consists of a fixed number
of shared variables (finite domains) to which all threads can read and write.

We assume a finite set X of variables ranging over a finite data domain V . A concur-
rent program is a pair P=(P,A) where P is a finite set of processes and A= {Ap| p ∈ P}
is a set of extended finite-state automata (one automaton Ap for each process p ∈ P).
The automaton Ap is a triple

(
Qp,qinit

p ,∆p
)

where Qp is a finite set of local states,
qinit

p ∈ Qp is the initial local state, and ∆p is a finite set of transitions. Each transi-
tion is a triple (q,op,q′) where q,q′ ∈ Qp and op is an operation. An operation is of
one of the following five forms: (1) “no operation” nop, (2) read operation r(x,v), (3)
write operation w(x,v), (4) fence operation fence, and (5) atomic read-write operation
arw(x,v,v′), where x∈ X , and v,v′ ∈V . For a transition t = (q,op,q′), we use source(t),
operation(t), and target (t) to denote q, op, and q′ respectively. We define Q :=∪p∈PQp
and ∆ := ∪p∈P∆p. A local state definition q is a mapping P 7→ Q such that q(p) ∈ Qp
for each p ∈ P.

3 TSO Semantics

We describe the TSO model formalized in [28, 30]. Conceptually, the model adds a
FIFO buffer between each process and the main memory. The buffer is used to store
the write operations performed by the process. Thus, a process executing a write in-
struction inserts it into its store buffer and immediately continues executing subsequent
instructions. Memory updates are then performed by non-deterministically choosing a
process and by executing the first write operation in its buffer (the left-most element in
the buffer). A read operation by a process p on a variable x can overtake some write
operations stored in its own buffer if all these operations concern variables that are dif-
ferent from x. Thus, if the buffer contains some write operations to x, then the read value
must correspond to the value of the most recent write operation to x. Otherwise, the



value is fetched from the memory. A fence means that the buffer of the process must be
flushed before the program can continue beyond the fence. Notice that the store buffers
of the processes are unbounded since there is a priori no limit on the number of write
operations that can be issued by a process before a memory update occurs. Below we
define the transition system induced by a program running under the TSO semantics. To
do that, we define the set of configurations and transition relation. We fix a concurrent
program P = (P,A).

Formal Semantics A TSO-configuration c is a triple
(
q,b,mem

)
where q is a local state

definition, b : P 7→ (X×V )∗, and mem : X 7→ V . Intuitively, q(p) gives the local state
of process p. The value of b(p) is the content of the buffer belonging to p. This buffer
contains a sequence of write operations, where each write operation is defined by a
pair, namely a variable x and a value v that is assigned to x. In our model, messages
will be appended to the buffer from the right, and fetched from the left. Finally, mem
defines the value of each variable in the memory. We use CTSO to denote the set of
TSO-configurations. We define the transition relation −→TSO on CTSO. The relation is
induced by (1) members of ∆; and (2) a set ∆′ :=

{
updatep| p ∈ P

}
where updatep is

an operation that updates the memory using the first message in the buffer of process
p. For configurations c =

(
q,b,mem

)
, c′ =

(
q′,b′,mem′

)
, a process p ∈ P, and t ∈

∆p ∪
{
updatep

}
, we write c t−→TSO c′ to denote that one of the following conditions is

satisfied:

– Nop: t = (q,nop,q′), q(p) = q, q′ = q [p←↩ q′], b′ = b, and mem′ = mem. The pro-
cess changes its local state while buffer and memory contents remain unchanged.

– Write to store: t = (q,w(x,v),q′), q(p) = q, q′ = q [p←↩ q′], b′ =
b [p←↩ b(p) · (x,v)], and mem′ = mem. The write operation is appended to
the tail of the buffer.

– Update: t = updatep, q′ = q, b = b′
[
p←↩ (x,v) ·b′(p)

]
, and mem′ = mem [x←↩ v].

The write in the head of the buffer is removed and memory is updated accordingly.
– Read: t = (q, r(x,v),q′), q(p) = q, q′ = q [p←↩ q′], b′ = b, mem′ = mem, and one

of the following two conditions is satisfied:
• Read own write: There is an i : 1 ≤ i ≤ |b(p)| such that b(p)(i) = (x,v), and

(x,v′) 6∈ (b(p)� i) for all v′ ∈V . If there is a write operation on x in the buffer
of p then we consider the most recent of such a write operation (the right-most
one in the buffer). This operation should assign v to x.

• Read memory: (x,v′) 6∈ b(p) for all v′ ∈V and mem(x) = v. If there is no write
operation on x in the buffer of p then the value v of x is fetched from memory.

– Fence: t = (q, fence,q′), q(p) = q, q′ = q [p←↩ q′], b(p) = ε, b′ = b, and mem′ =
mem. A fence operation may be performed by a process only if its buffer is empty.

– ARW: t = (q,arw(x,v,v′),q′), q(p) = q, q′ = q [p←↩ q′], b(p) = ε, b′ = b, mem(x) =
v, and mem′=mem [x←↩ v′]. The ARW operation corresponds to an atomic compare
and swap (or test and set). It can be performed by a process only if its buffer is
empty. The operation checks whether the value of x is v. In such a case, it changes
its value to v′.

We use c−→TSO c′ to denote that c t−→TSO c′ for some t ∈∆∪∆′. The set InitTSO of initial
TSO-configurations contains all configurations of the form

(
qinit,binit,meminit

)
where,



for all p ∈ P, we have that qinit(p) = qinit
p and binit(p) = ε. In other words, each process

is in its initial local state and all the buffers are empty. On the other hand, the memory
may have any initial value. The transition system induced by a concurrent system under
the TSO semantics is then given by (CTSO,InitTSO,−→TSO).

The TSO Reachability Problem Given a set Target of local state definitions, we use
Reachable(TSO)(P)(Target) to be a predicate that indicates the reachability of the set{(

q,b,mem
)
| q ∈ Target

}
, i.e., whether a configuration c, where the local state defini-

tion of c belongs to Target, is reachable. The reachability problem for TSO is to check,
for a given Target, whether Reachable(TSO)(P)(Target) holds or not. Using stan-
dard techniques we can reduce checking safety properties to the reachability problem.
More precisely, Target denotes “bad configurations” that we do not want to occur dur-
ing the execution of the system. For instance, for mutual exclusion protocols, the bad
configurations are those where the local states of two processes are both in the critical
sections. We say that the “program is correct” to indicate that Target is not reachable.

4 Single-Buffer Semantics

The formal model of TSO [28, 30] is quite powerful since it uses unbounded perfect
buffers. However, the reachability problem remains decidable [4]. Our goal is to exploit
this to design a practically efficient verification algorithm. To do that, we introduce a
new semantics model, called the Single-Buffer (SB) model that weaves the buffers of all
processes into one unified buffer. The SB model satisfies two important properties (1)
it is equivalent to the TSO semantics wrt. reachability, i.e., Target is reachable in the
TSO semantics iff it is reachable in the SB semantics; (2) the induced transition system
is “monotonic” wrt. some pre-order (on configurations) so that the classical infinite state
model checking framework of [1] can be applied. Fix a concurrent system P = (P,A).

Formal Semantics A SB-configuration c is a triple
(
q,b,z

)
where q is (as in the case

of TSO-semantics) a local state definition, b ∈ ([X 7→V ]×P×X)+, and z : P 7→ N. In-
tuitively, the (only) buffer contains triples of the form (mem, p,x) where mem defines
variable values (encoding a memory snapshot), x is the latest variable that has been
written into, and p is the process that performed the write operation. Furthermore, z
represents a set of pointers (one per process) where, from the point of view of p, the
word b� z(p) is the sequence of write operations that have not yet been used for mem-
ory updates and the first element of the triple b(z(p)) represents the memory content. As
we shall see below, the buffer will never be empty, since it is not empty in an initial con-
figuration, and since no messages are ever removed from it during a run of the system
(in the SB semantics, the update operation moves a pointer to the right instead of re-
moving a message from the buffer). This implies (among other things) that the invariant
z(p)> 0 is always maintained. We use CSB to denote the set of SB-configurations.

Let c =
(
q,b,z

)
be an SB-configuration. For every p ∈ P and x ∈ X , we use

LastWrite(c, p,x) to denote the index of the most recent buffer message where p
writes to x or the current memory of p if the aforementioned type of message does
not exist in the buffer from the point of view of p. Formally, LastWrite(c, p,x) is the
largest index i such that i = z(p) or b(i) = (mem, p,x) for some mem.



We define the transition relation −→SB on the set of SB-configurations as follows. In
a similar manner to the case of TSO, the relation is induced by members of ∆∪∆′. For
configurations c =

(
q,b,z

)
, c′ =

(
q′,b′,z′

)
, and t ∈ ∆p∪

{
updatep

}
, we write c t−→SB c′

to denote that one of the following conditions is satisfied:

– Nop: t = (q,nop,q′), q(p) = q, q′ = q [p←↩ q′], b′ = b and z′ = z. The operation
changes only the local state of p.

– Write to store: t = (q,w(x,v),q′), q(p) = q, q′ = q [p←↩ q′], b(|b|) is of the form
(mem1, p1,x1), b′ = b ·(mem1 [x←↩ v] , p,x), and z′ = z. A new element is appended
to the tail of the buffer. Values of variables in the new element are identical to
those in the previous last element except that the value of x has been updated to v.
Furthermore, we include the updating process p and the updated variable x.

– Update: t = updatep, q′ = q, b′ = b, z(p)< |b| and z′ = z [p←↩ z(p)+1]. An update
operation (as seen by p) is simulated by moving the pointer of p one step to the
right. This means that we remove the oldest write operation that is yet to be used for
a memory update. The removed element will now represent the memory contents
from the point of view of p.

– Read: t = (q, r(x,v),q′), q(p) = q, q′ = q [p←↩ q′], b′ = b, and
b(LastWrite(c, p,x)) = (mem1, p1,x1) for some mem1, p1,x1 with mem1(x) = v.

– Fence: t = (q, fence,q′), q(p) = q, q′ = q [p←↩ q′], z(p) = |b|, b′ = b, and z′ = z.
The buffer should be empty from the point of view of p when the transition is
performed. This is encoded by the equality z(p) = |b|.

– ARW: t = (q,arw(x,v,v′),q′), q(p) = q, q′ = q [p←↩ q′], z(p) = |b|, b(|b|) is of
the form (mem1, p1,x1), mem1(x) = v, b′ = b · (mem1 [x←↩ v′] , p,x), and z′ =
z [p←↩ z(p)+1]. The fact that the buffer is empty from the point of view of p is
encoded by the equality z(p) = |b|. The content of the memory can then be fetched
from the right-most element b(|b|) in the buffer. To encode that the buffer is still
empty after the operation (from the point of view of p) the pointer of p is moved
one step to the right.

We use c−→SB c′ to denote that c t−→SB c′ for some t ∈ ∆∪∆′. The set InitSB of ini-
tial SB-configurations contains all configurations of the form

(
qinit,binit,zinit

)
where

|binit| = 1, and for all p ∈ P, we have that qinit(p) = qinit
p , and zinit(p) = 1. In other

words, each process is in its initial local state. The buffer contains a single message, say
of the form (meminit, pinit,xinit), where meminit represents the initial value of the mem-
ory. The memory may have any initial value. Also, the values of pinit and xinit are not
relevant since they will not be used in the computations of the system. The pointers of
all the processes point to the first position in the buffer. According to our encoding, this
indicates that their buffers are all empty. The transition system induced by a concurrent
system under the SB semantics is then given by (CSB,InitSB,−→SB).

The SB Reachability Problem We define the predicate Reachable(SB)(P)(Target),
and the reachability problem for the SB semantics, in a similar manner to TSO. The
following theorem states equivalence of the reachability problems under TSO and SB
semantics. Due to its technicality and lack of space, we leave the proof for the appendix.

Theorem 1. For a concurrent program P and a local state definition Target, the
reachability problems are equivalent under the TSO and SB semantics.



5 The SB Reachability Algorithm

In this section, we present an algorithm for checking reachability of an (infinite) set
of configurations characterized by a (finite) set Target of local state definitions. In
addition to answering the reachability question, the algorithm also provides an “error
trace” in case Target is reachable. First, we define an ordering v on the set of SB-
configurations, and show that it satisfies two important properties, namely (i) it is a well
quasi-ordering (wqo), i.e., for every infinite sequence c0,c1, . . . of SB-configurations,
there are i < j with ci v c j; and (ii) the SB-transition relation −→SB is monotonic wrt.
v. The algorithm performs backward reachability analysis from the set of configura-
tions with local state definitions that belong to Target. During each step of the search
procedure, the algorithm takes the upward closure (wrt. v) of the generated set of con-
figurations. By monotonicity of v it follows that taking the upward closure preserves
exactness of the analysis [1]. From the fact that we always work with upward closed
sets and that v is a wqo it follows that the algorithm is guaranteed to terminate [1]. In
the algorithm, we use a variant of finite-state automata, called SB-automata, to encode
(potentially infinite) sets of SB-configurations.

Ordering For an SB-configuration c =
(
q,b,z

)
we define ActiveIndex(c) :=

min{z(p)| p ∈ P}. In other words, the part of b to the right of (and including)
ActiveIndex(c) is “active”, while the part to the left is “dead” in the sense that all
its content has already been used for memory updates. The left part is therefore not
relevant for computations starting from c.

Let c =
(
q,b,z

)
and c′ =

(
q′,b′,z′

)
be two SB-configurations. Define j :=

ActiveIndex(c) and j′ := ActiveIndex(c′). We write cv c′ to denote that (i) q = q′

and that (ii) there is an injection g : { j, j+1, . . . , |b|} 7→ { j′, j′+1, . . . , |b′|} such that
the following conditions are satisfied. For every i, i1, i2 ∈ { j, . . . , |b|}, (1) i1 < i2 implies
g(i1)< g(i2), (2) b(i) = b′(g(i)), (3) LastWrite(c′, p,x) = g(LastWrite(c, p,x)) for
all p ∈ P and x ∈ X , and (4) z′(p) = g(z(p)) for all p ∈ P. The first condition means
that g is strictly monotonic. The second condition corresponds to that the active part of
b is a sub-word of the active part of b′. The third condition ensures the last write indices
wrt. all processes and variables are consistent. The last condition ensures each process
points to identical elements in b and b′.

We get the following lemma from the fact that (i) the sub-word relation is a well-
quasi ordering on finite words [15], and that (ii) the number of states and messages
(associated with last write operations and pointers) that should be equal, is finite.

Lemma 1. The relation v is a well-quasi ordering on SB-configurations.

The following lemma shows effective monotonicity (cf. Section 2) of the SB-
transition relation wrt. v. As we shall see below, this allows the reachability algorithm
to only work with upward closed sets. Monotonicity is used in the termination of the
reachability algorithm. The effectiveness aspect is used in the fence insertion algorithm
(cf. Section 6).

Lemma 2. −→SB is effectively monotonic wrt. v.

The upward closure of a set C is defined as C↑:= {c′ |∃c∈C, cv c′}. A set C is upward
closed if C =C↑.



SB-Automata First we introduce an alphabet Σ := ([X 7→V ]×P×X)× 2P. Each
element ((mem, p,x) ,P′) ∈ Σ represents a single position in the buffer of an SB-
configuration. More precisely, the triple (mem, p,x) represents the message stored at
that position and the set P′ ⊆ P gives the (possibly empty) set of processes whose point-
ers point to the given position. Consider a word w = a1a2 · · ·an ∈ Σ∗, where ai is of the
form ((memi, pi,xi) ,Pi). We say that w is proper if, for each process p ∈ P, there is ex-
actly one i : 1≤ i≤ n with p∈ Pi. In other words, the pointer of each process is uniquely
mapped to one position in w. A proper word w of the above form can be “decoded” into
a (unique) pair decoding(w) := (b,z), defined by (i) |b| = n, (ii) b(i) = (memi, pi,xi)
for all i : 1≤ i≤ n, and (iii) z(p) is the unique integer i : 1≤ i≤ n such that p ∈ Pi (the
value of i is well-defined since w is proper). We extend the function to sets of words
where decoding(W ) := {decoding(w)| w ∈W}.

An SB-automaton A is a tuple
(
S,∆,Sfinal,h

)
where S is a finite set of states,

∆ ⊆ S× Σ× S is a finite set of transitions, Sfinal ⊆ S is the set of final states, and
h : (P 7→ Q) 7→ S. The total function h defines a labeling of the states of A by the local
state definitions of the concurrent program P, such that each q is mapped to a state h(q)
in A. For a state s∈ S, we define L(A,s) to be the set of words of the form w= a1a2 · · ·an
such that there are states s0,s1, . . . ,sn ∈ S satisfying the following conditions: (i) s0 = s,
(ii) (si,ai+1,si+1) ∈ ∆ for all i : 0≤ i < n, (iii) sn ∈ Sfinal, and (iv) w is proper. We define
the language of A by L(A) :=

{(
q,b,z

)
| (b,z) ∈ decoding

(
L
(
A,h(q)

))}
. Thus, the lan-

guage L(A) characterizes a set of SB-configurations. More precisely, the configuration(
q,b,z

)
belongs to L(A) if (b,z) is the decoding of a word that is accepted by A when

A is started from the state h(q) (the state labeled by q). A set C of SB-configurations is
said to be regular if C = L(A) for some SB-automaton A.

Operations on SB-Automata We show that we can compute the operations (union, in-
tersection, test emptiness, compute predecessor, etc.) needed for the reachability algo-
rithm. First, observe that regular sets of SB-configurations are closed under union and
intersection. For SB-automata A1,A2, we use A1 ∩A2 to denote an automaton A such
that L(A) = L(A1)∩L(A2). We define A1∪A2 in a similar manner. We use A /0 to denote
an (arbitrary) automaton whose language is empty. We can construct SB-automata for
the set of initial SB-configurations, and for sets of SB-configurations characterized by
local state definitions.

Lemma 3. We can compute an SB-automaton Ainit such that L
(
Ainit

)
= InitSB. For a

set Target of local state definitions, we can compute an SB-automaton Afinal (Target)
such that L

(
Afinal (Target)

)
:=
{(

q,b,z
)
| q ∈ Target

}
.

The following lemma tells us that regularity of a set is preserved by taking upward
closure, and that we in fact can compute an automaton describing its upward closure.

Lemma 4. For an SB-automaton A we can compute an SB-automaton A↑ such that
L(A↑) = L(A)↑.

We define the predecessor function as follows. Let t ∈ ∆∪∆′ and let C be a set
of SB-configurations. We define Pret (C) := {c |∃c′ ∈ C,c t−→SB c′} to denote the set
of immediate predecessor configurations of C w.r.t. the transition t. In other words,



Pret (C) is the set of configurations that can reach a configuration in C through a single
execution of t. The following lemma shows that Pre preserves regularity, and that in
fact we can compute the automaton of the predecessor set.

Lemma 5. For a transition t and an SB-automaton A, we can compute an SB-
automaton Pret (A) such that L(Pret (A)) = Pret (L(A)).

Algorithm 1: Reachability
input : A concurrent program P and a finite

set Target of local state definitions.
output: “unreachable” if

¬Reachable(SB)(P)(Target) holds.
A trace to Target otherwise.

1 W ←
{

Afinal (Target)
}

;
2 AV ← A /0;
3 while W 6= /0 do
4 Pick and remove a trace δ from W ;
5 A← head (δ);
6 if L

(
A∩Ainit) 6= /0 then return δ;

7 if L(A)⊆ L
(

AV
)

then discard A;

8 else
9 W ←

{
δ′ ∈W | L(head (δ′)) 6⊆ L(A)

}
∪

{(Pret (A))↑ ·t ·δ| t ∈ ∆∪∆′};
10 AV ← AV ∪A
11 return “unreachable”;

Reachability Algorithm The algo-
rithm performs a symbolic backward
reachability analysis [1], where we
use SB-automata for representing
infinite sets of SB-configurations.
In fact, the algorithm also provides
traces that we will use to find places
inside the code where to insert
fences (see Section 6). For a set
Target of local state definitions,
a trace δ to Target is a se-
quence of the form A0t1A1t2 · · · tnAn
where A0,A1, . . . ,An are SB-
automata, t1, . . . , tn are transitions,
and (i) L(A0) ∩ InitSB 6= /0; (ii)
Ai =

(
Preti+1 (Ai+1)

)
↑ for all

i : 0 ≤ i < n (even if L(Ai+1) is
upward-closed, it is still possi-
ble that L

(
Preti+1 (Ai+1)

)
is not

upward-closed; however due to monotonicity taking upward closure does not affect
exactness of the analysis); and (iii) An = Afinal (Target). In the following, we use
head (δ) to denote the SB-automaton A0. The algorithm inputs a finite set Target, and
checks the predicate Reachable(SB)(P)(Target). If the predicate does not hold then
Algorithm 1 simply answers unreachable; otherwise, it returns a trace. It maintains a
working set W that contains a set of traces. Intuitively, in a trace A0t1A1t2 · · · tnAn ∈W ,
the automaton A0 has been “detected” but not yet “analyzed”, while the rest of the trace
represents a sequence of transitions and SB-automata that has led to the generation of
A0. The algorithm also maintains an automaton AV that encodes configurations that
have already been analyzed.

Initially, AV is an automaton recognizing the empty language, and W is the sin-
gleton

{
Afinal (Target)

}
. In other words, we start with a single trace containing the

automaton representing configurations induced by Target (can be constructed by
Lemma 3). At the beginning of each iteration, the algorithm picks and removes a trace
δ (with head A) from the set W . First it checks whether A intersects with Ainit (can be
constructed by Lemma 3). If yes, it returns the trace δ. If not, it checks whether A is
covered by AV (i.e., L(A)⊆ L

(
AV
)

). If yes then A does not carry any new information
and it (together with its trace) can be safely discarded. Otherwise, the algorithm per-
forms the following operations: (i) it discards all elements of W that are covered by A;
(ii) it adds A to AV ; and (iii) for each transition t it adds a trace A1 · t ·δ to W , where we



compute A1 by taking the predecessor Pret (A) of A wrt. t, and then taking the upward
closure (Lemmata 4 and 5). Notice that since we take the upward closure of the gener-
ated automata, and since Afinal (Target) accepts an upward closed set, then AV and all
the automata added to W accept upward closed sets. The algorithm terminates when
W becomes empty.

Theorem 2. The reachability algorithm always terminates with the correct answer.

6 Fence Insertion

Our fence insertion algorithm is parameterized by a predefined placement constraint
G where G ⊆ Q. The algorithm will place fences only after local states that belong to
G. This gives the user the freedom to choose between the efficiency of the verifica-
tion algorithm and the number of fences that are needed to ensure correctness of the
program. The weakest placement constraint is defined by taking G to be the set of all
local states of the processes, which means that a fence might be placed anywhere inside
the program. On the other hand, one might want to place fences only after write op-
erations, place them only before read operations, or avoid putting them within certain
loops (e.g., loops that are known to be executed often during the runs of the program).
For any given G, the algorithm finds the minimal sets of fences (if any) that are suffi-
cient for correctness. First, we show how to use a trace δ to derive a counter-example:
an SB-computation that reaches Target. From the counter example, we explain how
to derive a set of fences in G such that the insertion of at least one element of the set
is necessary in order to eliminate the counter-example. Finally, we introduce the fence
insertion algorithm.

Fences We identify fences with local states. For a concurrent program P = (P,A) and
a fence f ∈ Q, we use P⊕ f to denote the concurrent program we get by inserting a
fence operation just after the local state f in P. Formally, if f ∈ Qp, for some p ∈ P,

then P⊕ f :=
(

P,
{

A′p′ | p′ ∈ P
})

where A′p′ = Ap′ if p 6= p′. Furthermore, if Ap =(
Qp,qinit

p ,∆p
)
, then we define A′p =

(
Qp∪{q′} ,qinit

p ,∆′p
)

with q′ 6∈ Qp, and ∆′p = ∆p∪
{( f , fence,q′)}∪{(q′,op,q′′)| ( f ,op,q′′) ∈ ∆p}\{( f ,op,q′′)| ( f ,op,q′′) ∈ ∆p}. We say
F is minimal wrt. a set Target of local state definitions and a placement constraint
G if F ⊆ G and Reachable(SB)(P⊕F \{ f})(Target) holds for all f ∈ F but not
Reachable(SB)(P⊕F)(Target). We use FG

min (P)(Target) to denote the set of mini-
mal sets of fences in P wrt. Target that respect the placement constraint G.

Counter-Example Generation Consider a trace δ = A0t1A1t2 · · · tnAn. We show
how to derive a counter-example from δ. Formally, a counter-example is a run
c0

t1−→SB c1
t2−→SB · · · tm−−→SB cm of the transition system induced from P under the SB

semantics, where c0 ∈ InitSB and cm ∈
{(

q,b,z
)
| q ∈ Target

}
. We assume a func-

tion choose that, for each automaton A, chooses a member of L(A) (if L(A) 6= /0),
i.e., choose(A) = w for some arbitrary but fixed w ∈ L(A). We will define π using
a sequence of configurations c0, . . . ,cn where ci ∈ L(Ai) for i : 0 ≤ i ≤ n. Define



c0 := choose
(
A0∩Ainit

)
. The first configuration c0 in π is a member of the intersec-

tion of A0 and Ainit (this intersection is not empty by the definition of a trace). Sup-
pose that we have computed ci for some i : 0 ≤ i < n. Since Ai = Preti+1 (Ai+1)↑
and ci ∈ L(Ai), there exist c′i ∈ Preti+1 (Ai+1) ⊆ L(Ai) and di+1 ∈ L(Ai+1) such that

c′i v ci and c′i
ti+1−−−→SB di+1. Since there are only finitely many configurations that are

smaller than ci wrt. v, we can indeed compute both c′i and di+1. By Lemma 2, we
know we can compute a configuration ci+1 and a run πi+1 such that di+1 v ci+1 and
ci

πi+1−−−→SB ci+1. Since L(Ai+1↑) is upward closed, we know that ci+1 ∈ L(Ai+1↑). We
define π := c0 •π1 • c1 •π2 • · · · •πn • cn. We use CounterEx(δ) to denote such a π.

Fence Inference We will identify points along a counter-example π =

c0
t1−→SB c1

t2−→SB · · ·
tn−1−−−→SB cn−1

tn−→SB cn at which read operations overtake
write operations and derive a set of fences such that any one of them forbids such
an overtaking. We do this in several steps. Let ci be of the form

(
q

i
,bi,zi

)
. Define

ni := |bi|. First, we define a sequence of functions α0, . . . ,αn where αi associates to
each message in the buffer bi the position in π of the write transition that gave rise to
the message. Below we explain how to generate those α functions. The first message
bi(1) in each buffer represents the initial state of memory. It has not been generated
by any write transition, and therefore αi(1) is undefined. Since b0 contains exactly
one message, α0( j) is undefined for all j. If ti+1 is not a write transition then define
αi+1 := αi (no new message is appended to the buffer, so all transitions associated to
all messages have been defined). Otherwise, we define αi+1( j) := αi( j) if 2 ≤ j ≤ ni
and define αi+1(ni +1) := i+1. In other words, a new message will be appended to the
end of the buffer (placed at position ni+1 = ni + 1); and to this message we associate
i+1 (the position in π of the write transition that generated the message).

Next, we identify the write transitions that have been overtaken by read op-
erations. Concretely, we define a function Overtaken such that, for each i : 1 ≤
i ≤ n, if ti is a read transition then the value Overtaken(π)(i) gives the positions
of the write transitions in π that have been overtaken by the read operation. For-
mally, if ti is not a read transition define Overtaken(π)(i) := /0. Otherwise, as-
sume that ti = (q, r(x,v),q′) ∈ ∆p for some p ∈ P. We have Overtaken(π)(i) :={

αi( j)| LastWrite(ci, p,x)< j ≤ ni∧ tαi( j) ∈ ∆p
}

. In other words, we consider the
process p that has performed the transition ti and the variable x whose value is read
by p in ti. We search for pending write operations issued by p on variables different
from x. These are given by transitions that (i) belong to p and (ii) are associated with
messages inside the buffer that belong to p and that are yet to be used for updating the
memory (they are in the postfix of the buffer to the right of LastWrite(ci, p,x)).

Finally, we notice that, for each i : 1≤ i≤ n and each j ∈ Overtaken(π)(i), the pair
( j, i) represents the position j of a write operation and the position i of a read operation
that overtakes the write operation. Therefore, it is necessary to insert a fence at least
in one position between such a pair in order to ensure that we eliminate at least one of
the overtakings that occur along π. Furthermore, we are only interested in local states
that belong to the placement constraint G. To reflect this, we define Barrier(G)(π) :={

q
k
(p)| ∃i : 1≤ i≤ n. ∃ j ∈ Overtaken(π)(i). j ≤ k < i

}
∩G.



Algorithm 2: Fence Inference
input : concurrent program P, placement

constraint G, local state definitions
Target.

output: FG
min (P)(Target).

1 W ←{ /0};
2 C ← /0;
3 while W 6= /0 do
4 Pick and remove a set F from W ;
5 if Reachable(SB)(P⊕F)(Target) = δ then
6 FB← Barrier(G)(CounterEx(δ));
7 if FB = /0 then
8 return /0

9 else foreach f ∈ FB do
10 F ′← F ∪{ f};
11 if ∃F ′′ ∈ C ∪W . F ′′ ⊆ F ′ then
12 discard F ′

13 else W ←W ∪{F ′}
14 else
15 C ← C ∪{F}
16 return C ;

Algorithm Our fence insertion al-
gorithm (Algorithm 2) inputs a con-
current program P, a placement con-
straint G, and a finite set Target

of local state definitions, and re-
turns all minimal sets of fences
(FG

min (P)(Target)). If this set is
empty then we conclude that the
program cannot be made correct by
placing fences in G. In this case, and
if G = Q (or indeed, if G includes
sources of all read operations or des-
tinations of all write operations), the
program is not correct even under
SC-semantics (hence no set of fences
can make it correct).

Theorem 3. For a concurrent pro-
gram P, a placement constraint
G, and a finite set Target, Al-
gorithm 2 terminates and returns
FG

min (P)(Target).
Remark 1. If only a smallest minimal set is of interest, then it is sufficient to implement
W as a queue and to return the first added element to C .

7 Experimental Results

We have evaluated our approach on several benchmark examples including some diffi-
cult problem sets that cannot be handled by any previous approaches. We have imple-
mented Algorithm 2 in OCaml and run the experiments using a laptop computer with an
Intel Core i3 2.26 GHz CPU and 4GB of memory. Table 1 summarizes our results. The
placement constraint only allows fences immediately after write operations. The exper-
iments were run in two modes: one until the first minimal set of fences is found, and
one where all minimal sets of fences are found. For each concurrent program we give
the program size (number of processes, number of states, variables and transitions), the
total required time in seconds, the number of inserted fences in the smallest minimal
fence set and the number of minimal fence sets.

Our implementation is able to verify all above examples. This is beyond the capa-
bilities of previous approaches. In particular, none of our examples is data-race free.
Furthermore, some of our examples may generate an arbitrary number of messages in-
side the buffers and they may have sequential inconsistent behaviors. To the best of our
knowledge, only the approaches in [19] and in [22] are potentially able to handle such
general classes of problems. However, the approach of [22] does not guarantee termina-
tion. The work in [19] abstracts away the order between buffer messages, and hence it
cannot handle examples where the order of messages sent to the buffer is crucial (such
as the “Increasing Sequence” example in the table). See the appendix for further details.



Size Total time Total time Fences Number of
Proc./States/Var./Trans seconds seconds necessary minimal

(one fence set) (all fence sets) (smallest set) fence sets
1. Simple Dekker [31] 2/8/2/10 0.02 0.02 1 per process 1
2. Full Dekker [11] 2/14/3/18 0.28 0.28 1 per process 1
3. Peterson [29] 2/10/3/14 0.24 0.6 1 per process 1
4. Lamport Bakery [20] 2/22/4/32 52 5538 2 per process 4
5. Lamport Fast [21] 2/26/4/38 6.5 6.5 2 per process 1
6. CLH Queue Lock[25] 2/48/4/60 26 26 0 1
7. Sense Reversing Barrier [26] 2/16/2/24 1.1 1.1 0 1
8. Burns [24] 2/9/2/11 0.07 0.07 1 per process 1
9. Dijkstra [24] 2/14/3/24 9.5 10 1 per process 1
10. Tournament Barriers [14] 2/8/2/8 1.2 1.2 0 1
11. A Task Scheduling Algorithm 3/7/2/9 60 60 0 1
12. Increasing Sequence 2/26/1/44 25 27 0 1
13. Alternating Bit 2/8/2/12 0.2 0.2 0 1
14. Producer Consumer, v1, N=2 18/3/22 0.2 0.2 Erroneous 0
15. Producer Consumer, v1, N=3 22/4/28 4.5 4.5 Erroneous 0
16. Producer Consumer, v2, N=2 14/3/18 5.7 5.7 0 1
17. Producer Consumer, v2, N=3 16/4/22 580 583 0 1

Table 1. Analyzed concurrent programs

8 Conclusion

We have presented a sound and complete method for automatic fence insertion in finite-
state programs running under the TSO memory model, based on a new (so called)
SB-semantics. We have automatically verified several challenging examples, includ-
ing some that cannot be handled by existing approaches. The design of the new SB
semantics is not a trivial task. For instance, ”obvious” variants such as simply mak-
ing the buffer in TSO ”lossy”, or removing the pointers or storing less information
inside the messages of the SB-buffer would fail, since they yield either over- or under-
approximations (even wrt. reachability properties). Also the ordering we define on SB
configurations cannot be ”translated back” to an ordering on TSO configuration (this
would make it possible to apply our method directly on TSO rather than on the SB
semantics). The reason is that standard proofs that show reductions between differ-
ent semantics (models), where each configuration in one model is shown to be in (bi-
)simulation with a configuration in the other model cannot be used here. Given an SB-
configuration, it is not obvious how to define an ”equivalent” TSO configuration, and
vice versa. However (crucially, as shown in the proof of Theorem 1) we show that each
computation in one semantics violating/satisfying a given safety property is simulated
by a (whole) computation that violates/satisfies the same safety property in the other.
Our method can be carried over to other memory models such as PSO in a straightfor-
ward manner. In the future, we plan to apply our techniques to more memory models
and to combine with predicate abstraction for handling programs with unbounded data.
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