
String Constraints for Verification?

Parosh Aziz Abdulla1, Mohamed Faouzi Atig1, Yu-Fang Chen2, Lukáš Hoĺık3,
Ahmed Rezine4, Philipp Rümmer1, and Jari Stenman1

1 Department of Information Technology, Uppsala University, Sweden
2 Institute of Information Science, Academia Sinica, Taiwan

3 Faculty of Information Technology, Brno University of Technology, Czech Republic
4 Department of Computer and Information Science, Linköping University, Sweden

Abstract. We present a decision procedure for a logic that combines
(i) word equations over string variables denoting words of arbitrary
lengths, together with (ii) constraints on the length of words, and on
(iii) the regular languages to which words belong. Decidability of this
general logic is still open. Our procedure is sound for the general logic,
and a decision procedure for a particularly rich fragment that restricts
the form in which word equations are written. In contrast to many ex-
isting procedures, our method does not make assumptions about the
maximum length of words. We have developed a prototypical implemen-
tation of our decision procedure, and integrated it into a CEGAR-based
model checker for the analysis of programs encoded as Horn clauses. Our
tool is able to automatically establish the correctness of several programs
that are beyond the reach of existing methods.

1 Introduction

Software model checking is an active research area that has witnessed a remark-
able success in the past decades [15, 8]. Mature model checking tools are already
used in industrial applications [2]. One main reason for this success are recent
developments in SMT technology [5, 7, 3], which enable efficient reasoning about
symbolic representations of different data types in programs. This dependence
encompasses, however, that model checking tools are inherently limited by the
data types that can be handled by the underlying SMT solver. A data type for
which satisfying decision procedures have been missing is that of strings. Our
work proposes a rich string logic together with a decision procedure targeting
model checking applications.

String data types are present in all conventional programming and scripting
languages. In fact, it is impossible to capture the essence of many programs,
for instance in database and web applications, without the ability to precisely
represent and reason about string data types. The control flow of programs can
depend on the words denoted by the string variables, on the length of words, or
on the regular languages to which they belong. For example, a program allowing
users to choose a username and a password may require the password to be of a

? supported by the Uppsala Programming for Multicore Architectures Research Center
(UPMARC), the Czech Science Foundation (13-37876P), Brno University of Tech-
nology (FIT-S-12-1, FIT-S-14-2486), and the Linköping CENIIT Center (12.04).

minimal length, to be different from the username, and to be free from invalid
characters. Reasoning about such constraints is also crucial when verifying that
database and web applications are free from SQL injections and other security
vulnerabilities.

Existing solvers for programs manipulating string variables and their length
are either unsound, not expressive enough, or lack the ability to provide coun-
terexamples. Many solvers [9, 23, 24] are unsound since they assume an a priori
fixed upper bound on the length of the possible words. Others [9, 17, 26] are not
expressive enough as they do not handle word equations, length constraints, or
membership predicates. Such solvers are mostly aimed at performing symbolic
executions, i.e., establishing feasibility of paths in a program. The solver in [25]
performs sound over-approximation, but without supplying counterexamples in
case the verification fails. In contrast, our decision procedure specifically targets
model checking applications. In fact, we use it in a prototype model checker in
order to automatically establish program correctness for several examples.

Our decision procedure establishes satisfiability of formulae written as Boolean
combinations of: (i) word (dis)equations such as (a · u = v · b) or (a · u 6= v · b),
where a, b are letters and u, v are string variables denoting words of arbitrary
lengths, (ii) length constraints such as (|u| = |v| + 1), where |u| refers to the
length of the word denoted by string variable u, and (iii) predicates representing
membership in regular expressions, e.g., u ∈ c · (a + b)∗. Each of these predi-
cates can be crucial for capturing the behavior and establishing the correctness
of a string-manipulating program (cf. the program in Section 2). The analysis is
not trivial as it needs to capture subtle interactions between different types of
predicates. For instance, the formulae φ1 = (a · u = v · b) ∧ (|u| = |v| + 1) and
φ2 = (a · u = v · b) ∧ v ∈ c · (a + b)∗ are unsatisfiable, i.e., there is no possible
assignment of words to u and v that makes the conjunctions evaluate to true. To
capture this, the analysis needs to propagate facts from one type of predicates
to another; e.g., in φ1 the analysis deduces from (a · u = v · b) that |u| = |v|,
which results in an unsatisfiable formula (|u| = |v| ∧ |u| = |v|+ 1)). The general
decidability problem is still open. We guarantee termination of our procedure
for a fragment of the full logic that includes the three types of predicates. The
fragment we consider is rich enough to capture all the practical examples we
have encountered.

We have integrated our decision procedure in a prototype model checker
and used it to verify properties of implementations of common string manip-
ulating functions such as the Hamming and Levenshtein distances. Predicates
required for verification can be provided by hand; to achieve automation, in ad-
dition we propose a constraint-based interpolation procedure for regular word
constraints. In combination with our decision procedure for words, this enables
us to automatically analyze programs that are currently beyond the reach of
state-of-the-art software model checkers.

Related Work. The pioneering work by Makanin [18] proposed a decision pro-
cedure for word equations (i.e., Boolean combinations of (dis)equalities) where
the variables can denote words of arbitrary lengths. The decidability problem is

2

already open [4] when word equations are combined with length constraints of
the form |u| = |v|. Our logic adds predicates representing membership in regular
languages to word equations and length constraints. This means that decidabil-
ity is still an open problem. A contribution of our work is the definition of a rich
sub-logic for which we guarantee the termination of our procedure.

In a work close to ours, the authors in [10] show decidability of a logic that is
strictly weaker than the one for which we guarantee termination. For instance,
in [10], membership predicates are allowed only under the assumption that no
string variables can appear in the right hand sides of the equality predicates. This
severely restricts the expressiveness of the logic. In [26], the authors augment
the Z3 [7] SMT solver in order to handle word equations with length constraints.
However, they do not support regular membership predicates. In our experience,
these are crucial during model checking based verification.

Finally, in addition to considering more general equations, our work comes
with an interpolation-based verification technique adapted for string programs.
Notice that neither of [10, 26] can establish correctness of programs with loops.

Outline. In the next section, we use a simple program to illustrate our approach.
In Section 3 we introduce a logic for word equations with arithmetic and regular
constraints, and then describe in Section 4 a procedure for deciding satisfiability
of formulae in the logic. In Section 5 we define a class formulae for which we
guarantee the termination of our decision procedure. We describe the verification
procedure in Section 6 and the implementation effort in Section 7. Finally in
Section 8 we give some conclusions and directions for future work.

2 A Simple Example

In this section, we use the simple program listed in Fig. 1 to give a flavor of
our verification approach. The listing makes use of features that are common in
string manipulating programs. We will argue that establishing correctness for
such programs requires: (i) the ability to refer to string variables of arbitrary
lengths, (ii) the ability to express combinations of constraints, like that the
words denoted by the variables belong to regular expressions, that their lengths
obey arithmetic inequalities, or that the words themselves are solutions to word
equations, and (iii) the ability for a decision procedure to precisely capture the
subtle interaction between the different kinds of involved constraints.

In the program of Fig. 1, a string variable s is initialized with the empty word.
A loop is then executed an arbitrary number of times. At each iteration of the
loop, the instruction s= ’a’ + s + ’b’ appends the letter ’a’ at the beginning
of variable s and the letter ’b’ at its end. After the loop, the program asserts that
s does not have the word ’ba’ as a substring (denoted by !s.contains(’ba’),
and that its length (denoted by s.length()) is even.

Observe that the string variable s does not assume a maximal length. Any
verification procedure that requires an a priori fixed bound on the length of the
string variables is necessarily unsound and will fail to establish correctness.

Moreover, establishing correctness requires the ability to express and to rea-
son about predicates such as those mentioned in the comments of the code in

3

// Pre = (true)
String s= ’’;

// P1 = (s ∈ ε)
while (*){

// P2 = (s = u · v ∧ u ∈ a∗ ∧ v ∈ b∗ ∧ |u| = |v|)
s= ’a’ + s + ’b’;

}

// P3 = P2

assert (!s.contains(’ba’) && (s.length () % 2) == 0);

// Post = P3

Fig. 1. A simple program manipulating a string variable s. Our logic allows to precisely
capture the word equations, membership predicates and length constraints that are
required for validating the assertion is never violated. Our decision procedure can then
automatically validate the required verification conditions described in Fig. 2.

vc1 : post(Pre, s = ””) =⇒ P1

vc2 : P1 =⇒ P2

vc3 : post(P2, s = ”a” · s · ”b”) =⇒ P2

vc4 : P2 =⇒ P3

vc5 : post(P3, assume(s.contains("ba") || !(s.length()%2 ==0))) =⇒ false
vc6 : post(P3, assume(!s.contains("ba") && (s.length()%2 ==0))) =⇒ Post

Fig. 2. Verification conditions for the simple program of Fig. 1.

Fig. 1. For instance, the loop invariant P2 states that: (i) the variable s denotes
a finite word ws of arbitrary length, (ii) that ws equals the concatenation of two
words wu and wv, (iii) that wu ∈ a∗ and wv ∈ b∗, and (iv) that the length |wu|
of word wu equals the length |wv| of word wv.

Using the predicates in Fig. 1, we can formulate program correctness in terms
of the validity of each of the implications listed in Fig. 2. For instance, validity
of the verification condition vc5 amounts to showing that ¬vc5 = (s = u ·v∧u ∈
a∗ ∧ v ∈ b∗ ∧ |u| = |v|) ∧ (s = s1 · b · a · s2 ∨ ¬(|s| = 2n)) is unsatisfiable. To
establish this result, our decision procedure generates the two proof obligations
¬vc51 : (s = u · v ∧ u ∈ a∗ ∧ v ∈ b∗ ∧ |u| = |v| ∧ s = s1 · b · a · s2) and
¬vc52 : (s = u · v ∧ u ∈ a∗ ∧ v ∈ b∗ ∧ |u| = |v| ∧ ¬(|s| = 2n)).

In order to check vc51, the procedure symbolically matches all the possible
ways in which a word denoted by u · v can also be denoted by s1 · b · a · s2.
For instance, u = s1 · b ∧ v = a · s2 is one possible matching. In order to be
able to show unsatisfiability, the decision procedure has to also consider the
other possible matchings. For instance, the case where the word denoted by
u is a strict prefix of the one denoted by s1 has also to be considered. For this
reason, the matching process might trigger new matchings. In general, there is no
guarantee that the sequence of generated matchings will terminate. However, we
show that this sequence terminates for an expressive fragment of the logic. This
fragment includes the predicates of mentioned in this section and all predicates

4

we encountered in practical programs, The procedure then checks satisfiability
of each such a matching. For instance, the matching u = s1 · b ∧ v = a · s2
is shown to be unsatisfiable due the the membership predicate v ∈ b∗. In fact
our procedure automatically proves that ¬v51 is not satisfiable after checking all
possible matchings.

So for ¬vc5 to be satisfiable, ¬vc52 needs to be satisfiable. Our procedure
deduces that this would imply that |u| = |v| ∧¬(|u|+ |v| = 2n) is satisfiable. We
leverage on existing standard decision procedures for linear arithmetic in order
to show that this is not the case. Hence ¬vc5 is unsatisfiable and vc5 is valid. For
this example, and those we report on in Section 6, our procedure can establish
correctness fully automatically given the required predicates.

Observe that establishing validity requires the ability to capture interactions
among the different types of predicates. For instance, establishing validity of vc5
involves the ability to combine the word equations (s = u · v ∧ s = s1 · b · a · s2)
with the membership predicates (u ∈ a∗ ∧ v ∈ b∗) for vc51, and with the length
constraints (|u| = |v| ∧ ¬(|s| = 2n)) for vc52. Capturing such interactions is
crucial for establishing correctness and for eliminating false positives.

3 Defining the String Logic Ee,r,l

In this section we introduce a logic, which we call Ee,r,l, for word equations,
regular constraints (short for membership constraints in regular languages) and
length and arithmetic inequalities. We assume a finite alphabet Σ and write Σ∗

to mean the set of finite words over Σ. We work with a set U of string variables
denoting words in Σ∗ and write Z for the set of integer numbers.

Syntax. We let variables u, v range over the set U . We write |u| to mean the
length of the word denoted by variable u, k to mean an integer in Z, c to mean
a letter in Σ and w to mean a word in Σ∗. The syntax of formulae in Ee,r,l is
defined as follows:

φ ::= φ ∧ φ || ¬φ || ϕe || ϕl || ϕr formulae

ϕe ::= tr = tr || tr 6= tr (dis)equalities

ϕl ::= e ≤ e arithmetic inequalities
ϕr ::= tr ∈ R membership predicates

tr ::= ε || c || u || tr · tr terms

R ::= ∅ || ε || c || w || R · R || R+R || R ∩R || RC || R∗ regular expressions

e ::= k || |tr| || k ∗ e || e+ e integer expressions

Assume variables {ui}ni=1, terms {tri}ni=1 and integer expressions {ei}ni=1. We
write φ[u1/tr1] . . . [un/trn] (resp. φ[|u1|/e1] . . . [|un|/en]) to mean the formula
obtained by syntactically substituting in φ each occurrence of ui by term tri
(resp. each occurrence of |ui| by expression ei). Such a substitution is said to be
well-defined if no variable ui (resp. |ui|) appears in any tri (resp. ei).

The set of word variables appearing in a term is defined as follows: Vars(ε) =
∅, Vars(c) = ∅, Vars(u) = {u} and Vars(tr1 · tr2) = Vars(tr1) ∪Vars(tr2).

5

Semantics. The semantics of Ee,r,l is mostly standard. We describe it using a
mapping η (called interpretation) that assigns words in Σ∗ to string variables
in U . We extend η to terms as follows: η(ε) = ε, η(c) = c and η(tr1.tr2) =
η(tr1).η(tr2). Every regular expression R is evaluated to the language L(R)
it represents. Given an interpretation η, we define another mapping βη that
associates a number in Z to integer expressions as follows: βη(k) = k, βη(|u|) =
|η(u)|, βη(|tr|) = |η(tr)|, βη(k ∗ e) = k ∗ βη(e), and βη(e1 + e2) = βη(e1) + β(e2).
A formula in Ee,r,l is then evaluated to a value in {ff , tt} as follows:

valη(φ1 ∧ φ2) = tt iff valη(φ1) = tt and valη(φ2) = tt

valη(¬φ1) = tt iff valη(φ1) = ff

valη(tr ∈ R) = tt iff η(tr) ∈ L(R)

valη(tr1 = tr2) = tt iff η(tr1) = η(tr2)

valη(tr1 6= tr2) = tt iff ¬(η(tr1) = η(tr2))

valη(e1 ≤ e2) = tt iff βη(e1) ≤ βη(e2)

A formula φ is said to be satisfiable if there is an interpretation η such that
valη(φ) = tt . It is said to be unsatisfiable otherwise.

4 Inference Rules

In this section, we describe our set of inference rules for checking the satisfiability
of formulae in the logic Ee,r,l of Section 3. Given a formula φ, we build a proof
tree rooted at φ by repeatedly applying the inference rules introduced in this
Section. We can assume, without loss of generality, that the formula is given in
Disjunctive Normal Form. An inference rule is of the form:

Name :
B1 B2 ... Bn

A
cond

In this inference rule, Name is the name of the rule, cond is a side condition on
A for the application of the rule, B1 B2 ... Bn are called premises, and A is called
the conclusion of the rule. (We omit the side condition cond from Name when
it is tt .) The premises and conclusion are formulae in Ee,r,l. Each application
consumes a conclusion and produces the set of premises. The inference rule is
said to be sound if the satisfiability of the conclusion implies the satisfiability of
one of the premises. It is said to be locally complete if the satisfiability of one
of the premises implies the satisfiability of the conclusion. If all inference rules
are locally complete, and if φ or one of the produced premises turns out to be
satisfiable, then φ is also satisfiable. If all the inference rules are sound and none
of the produced premises is satisfiable, then φ is also unsatisfiable.

We organize the inference rules in four groups. We use the rules of the first
group to eliminate disequalities. The rules of the second group are used to sim-
plify equalities. The rules of the third group are used to eliminate membership
predicates. The rules of the last group are used to propagate length constraints.
In addition, we assume standard decision procedures [3] for integer arithmetic.

6

Lemma 1. The inference rules of this section are sound and locally complete.

4.1 Removing Disequalities

We use rules Not-Eq and Diseq-Split in order to eliminate disequalities. In
rule Not-Eq, we establish that tr 6= tr ∧ φ is not satisfiable and close this
branch of the proof. In the second rule Diseq-Split, we eliminate disequalities
involving arbitrary terms. For this, we make use of the fact that the alpha-
bet Σ is finite and replace any disequality with a finite set of equalities. More
precisely, assume a formula tr 6= tr′ ∧ φ in Ee,r,l. We observe that the disequal-
ity tr 6= tr′ holds iff the words wtr and wtr′ denoted by the terms tr and tr′

are different. This corresponds to one of three cases. Assume three fresh vari-
ables u, v and v′. In the first case, the words wtr and wtr′ contain different
letters c 6= c′ after a common prefix wu. They are written as the concatena-
tions wu · c · wv and wu · c′ · wv′ respectively. We capture this case using the
set SplitDiseq-Split = {tr = u · c · v ∧ tr′ = u · c′ · v′ ∧ φ | c, c′ ∈ Σ and c 6= c′}.
In the second case, the word wtr′ = wu is a strict prefix of wtr = wu · c ·wv. We
capture this with Split′Diseq-Split = {tr = u · c · v ∧ tr′ = u ∧ φ | c ∈ Σ}. In the
third case, the word wtr = wu is a strict prefix of wtr′ = wu·c′·w′v, and we capture
this case using the set Split′′Diseq-Split = {tr = u ∧ tr′ = u · c · v′ ∧ φ | c ∈ Σ}.

Not-Eq :
∗

tr 6= tr ∧ φ Eq :
φ

tr = tr ∧ φ

Diseq-Split :
SplitDiseq-Split ∪ Split′Diseq-Split ∪ Split′′Diseq-Split

tr 6= tr′ ∧ φ

4.2 Simplifying Equalities

We introduce rules Eq, Eq-Var, and Eq-Word to manipulate equalities. Rule
applications take into account symmetry of the equality operator (i.e., if a rule
can apply to w · tr1 = tr2 ∧ φ then it can also apply to tr2 = w · tr1 ∧ φ). Rule
Eq eliminates trivial equalities of the form tr = tr.

Rule Eq-Var eliminates variable u from the equality u · tr1 = tr2 ∧ φ. Let
wu be some word denoted by u. For the equality to hold, wu must be a prefix
of the word denoted by tr2. There are two cases. The first case, represented by
SplitEq-Var in Eq-Var, captures situations where wu coincides with a word
denoted by a prefix tr3 of tr2. The second case, represented by Split′Eq-Var,
captures situations where wu does not coincide with a word denoted by a prefix
of tr2. Instead, tr2 can be written as tr3 · v · tr4 and the word wu is written as
the concatenation of two words, one that is denoted by tr3 and another that is
prefix of the word denoted by v.

Eq-Var :
SplitEq-Var ∪ Split′Eq-Var

u · tr1 = tr2 ∧ φ

7

The set SplitEq-Var captures the first case, when wu coincides with a word
denoted by a prefix tr3 of tr2. The premises for this case are partitioned into
two sets, namely SplitEq-Var-1 and SplitEq-Var-2:

SplitEq-Var-1 =

{
(tr1 = tr4 ∧ φ)[u/tr3] |
tr2 = tr3 · tr4 and u does not syntactically appear in tr3

}
SplitEq-Var-2 =

{
tr1 = tr4 ∧ tr5 · tr6 ∈ ε ∧ φ |
tr2 = tr3 · tr4 and tr3 = tr5 · u · tr6

}
Variable u is eliminated from the premises contained in the set SplitEq-Var-1.
The second set SplitEq-Var-2 captures cases where u does syntactically appear
in tr3. Variable u might still appear in some of the premises of SplitEq-Var-2.

The set Split′Eq-Var in Eq-Var captures the second case, namely when wu
does not coincide with a word denoted by a prefix of tr2, written tr3 · v · tr4
for some variable v. The premises in Split′Eq-Var are partitioned into two sets,
namely Split′Eq-Var-1 and Split′Eq-Var-2:

Split′Eq-Var-1 =

{(
(tr1 = v2 · tr4 ∧ φ)[u/tr3 · v1]

)
[v/v1 · v2] |

tr2 = tr3 · v · tr4 and u appears neither in tr3 nor in v

}
Split′Eq-Var-2 =

{(
tr1 = u2 · tr4 ∧ u1 · u2 = tr3 · u1 ∧ φ

)
[u/tr3 · u1] |

tr2 = tr3 · u · tr4 and u does not appear in tr3

}
The premises in Split′Eq-Var-1 mention neither u nor v. The set Split′Eq-Var-2
captures cases where u in the left-hand side overlaps with its occurrence on the
right-hand side. Cases where u appears in tr3 are captured in SplitEq-Var.

Rule Eq-Word eliminates the word w from the equality w · tr1 = tr2 ∧ φ:

Eq-Word :
SplitEq-Word ∪ Split′Eq-Word

w · tr1 = tr2 ∧ φ

Again, we define two sets representing the premises of the rule:

SplitEq-Word =
{
tr3 ∈ w ∧ tr4 = tr1 ∧ φ | tr2 = tr3 · tr4

}
Split′Eq-Word =

{(
tr3 · v1 ∈ w ∧ v2 · tr4 = tr1 ∧ φ

)
[v/v1 · v2] | tr2 = tr3 · v · tr4

}
To simplify the presentation, we do not present suffix versions for rules

Eq-Var and Eq-Word. Such rules match suffixes instead of prefixes and simply
mirror the rules described above.

4.3 Removing Membership Predicates

We use rules Reg-Neg, Memb, Not-Memb, Reg-Split and Reg-Len to sim-
plify and eliminate membership predicates. We describe them below.

Rule Reg-Neg replaces the negation of a membership predicate in a regular
expression R with a membership predicate in its complement RC .

Reg-Neg :
tr ∈ RC ∧ φ
¬(tr ∈ R) ∧ φ

8

Rule Memb eliminates the predicate w ∈ R in case the word w belongs to
the language L(R) of the regular expression R. If w does not belong to L(R)
then rule Not-Memb closes this branch of the proof.

Memb :
φ

w ∈ R ∧ φ
w ∈ L(R) Not-Memb :

∗
w ∈ R ∧ φ

w 6∈ L(R)

Rule Reg-Split simplifies membership predicates of the form tr · tr′ ∈ R.
Given such a predicate, the rule replaces it with a disjunction

∨n
i=1

(
tr ∈ Ri ∧

tr′ ∈ R′i
)

where the set {(Ri,R′i)}ni=1 is finite and only depends on the regular
expression R. To define this set, represent L(R) using some arbitrary but fixed
finite automaton (S, s0, δ, F). Assume S = {s0, . . . , sn}. Choose the regular ex-
pressions Ri,R′i such that : (1) Ri has the same language as the automaton
(S, s0, δ, {si}), and (2) R′i has the same language as the automaton(S, si, δ, F).
For any word wtr · wtr′ denoted by tr · tr′ and accepted by R, there will be a
state si in S such that wtr is accepted by Ri and wtr′ is accepted by R′i. Given
a regular expression R, we let F(R) denote the set {(Ri,R′i)}

n
i=1 above.

Reg-Split :
{tr ∈ R′ ∧ tr′ ∈ R′′ ∧ φ | (R′,R′′) ∈ F(R)}

tr · tr′ ∈ R ∧ φ
Rule Reg-Len can only be applied in certain cases. To identify these cases,

we define the condition Γ (φ, u) which states, given a formula φ and a variable
u, that u is not used in any membership predicate or in any (dis)equation in
φ. In other words, the condition states that if u occurs in φ then it occurs in a
length predicate. The rule Reg-Len replaces, in one step, all the membership
predicates {u ∈ Ri}ni=1 with an arithmetic constraint Len(R1 ∩ . . . ∩ Rm, u).
This arithmetic constraint expresses that the length |u| of variable u belongs to
the semi-linear set corresponding to the Parikh image of the intersection of all
regular expressions {Ri}ni=1 appearing in membership predicates of variable u. It
is possible to determine a representation of this semi linear set by starting from
a finite state automaton representing the intersection ∩iRi and replacing all
letters with a unique arbitrary letter. The obtained automaton is determinized
and the semi linear set is deduced from the length of the obtained lasso if any
(notice that since the automaton is deterministic and its alphabet is a singleton,
its form will be either a lasso or a simple path.) After this step, there will be no
membership predicates involving u.

Reg-Len :
Len(R1 ∩ . . . ∩Rm, u) ∧ φ
u ∈ R1 ∧ . . . ∧ u ∈ Rm ∧ φ

Γ (φ, u)

4.4 Propagating Term Lengths

The rule Term-Leng is the only inference rule in the fourth group. It substitutes
the expression |tr|+ |tr′| for every occurrence in φ of the expression |tr · tr′|.

Term-Leng :
φ[|tr · tr′|/|tr|+ |tr′|]

φ
|tr · tr′| appears in φ

9

We can also add rules to systematically add the length predicate |tr| = |tr′|
each time an equality tr = tr′ appears in a formula; however, such rules are not
necessary for the completeness of our procedure, as shown in the next section.

5 Completeness of the Procedure

In this section, we define a class of formulae of acyclic form (we say a formula is
in acyclic form, or acyclic for short) for which the decision procedure in Section 4
is guaranteed to terminate. For simplicity, we assume w.l.o.g that the formula is
a conjunction of predicates and negated predicates.

Non-termination may be caused by an infinite chain of applications of rule
Eq-Var of Section 4.2 for removing equalities. Consider for instance the equal-
ity u · v = v · u. One of the cases generated within the disjunct Split′Eq-Var-1
of Eq-Var is v1 · v2 = v2 · v1. This is the same as the original equality up to
renaming of variables. In this case, the process of removing equalities clearly
does not terminate. To prevent this, we will require that no variable can ap-
pear on both sides of an equality. We also need to prevent the repetition of a
variable inside one side of an equality. This is needed in cases like u · u = v · v
where Split′Eq-Var-1 includes v1 = v2 · v1 · v2, with a variable v1 on both sides
of the equality, which is the situation which we wanted to prevent at the first
place. These restrictions must hold initially and must be preserved by applica-
tions of any of the rules presented in Sections 4. Attention must be given to
rules that modify equalities. Rules such as Eq-Var involve substitution of a
variable from one side of an equality by a term from the other side. We need
to prevent chains of such substitutions that cause variables to appear several
times in a (dis)equality. Acyclic formulae must also guarantee that the undesired
cases cannot appear after a use of Diseq-Split of Section 4.1 that transforms a
disequality to equalities. We respectively state preservation of these restriction
and termination of the procedure of Section 4 in theorems 1 and 2 at the end of
this Section. First, we need some definitions.

Linear formulae. A formula in Ee,r,l is said to be linear if it contains no equality
or disequality where a variable appears more than once.

Given a conjunction φ in Ee,r,l involving m (dis)equalities, we can build a de-
pendency graph Gφ = (N,E, label, map) in the following way. We order the
(dis)equalities from e1 to em, where each ej is of the form lhs(j) ≈ rhs(j) for
j : 1 ≤ j ≤ m and ≈∈ {=, 6=}. For each j : 1 ≤ j ≤ m, a node n2j−1 is used
to refer to the left-hand side of the jth (dis)equality, and n2j to its right-hand
side. For example, two different nodes are used even in the case of the simple
equality u = u, one to refer to the left-hand side, and the other to refer the
right-hand side. N is then the set of 2 × m nodes {ni|i : 1 ≤ i ≤ 2×m}. The
mapping label associates the term lhs(j) (resp. rhs(j)) to each node n2j−1
(resp. n2j) for j : 1 ≤ j ≤ m. label is not necessarily a one to one mapping.
The mapping map : E → {rel, var} labels edges as follows: map(n, n′) = rel

for each (n, n′) = (n2j−1, n2j) for each j : 1 ≤ j ≤ m, and map(n, n′) = var iff

10

n 6= n′, and label(n) and label(n′) have some common variables. By construc-
tion, map is defined to be total, i.e., E contains only edges that are labeled by
map.

A dependency cycle in Gφ = (N,E, label, map) is a cycle where successive edges
have alternating labels. Formally, a dependency cycle is a sequence of distinct
nodes n0, n1, . . . , nk in N with k ≥ 1 such that 1) for every i : 0 ≤ i ≤ k,
map(ni, ni+1%(k+1)) is defined, and 2) for each i : 0 ≤ i < k, map(ni, ni+1) 6=
map(ni+1, ni+2%(k+1)).

Acyclic graph. A conjunction φ in Ee,r,l is said to be acyclic iff it is linear and
its dependency graph does not contain any dependency cycle.

Theorem 1. Application of rules of Section 4 preserves acyclicity.

An ordered procedure is any procedure that applies the rules of Section 4
on a formula in Ee,r,l in the four following phases. In the first phase, all dise-
qualities are eliminated using Diseq-Split and Not-Eq. In the second phase,
the procedure eliminates one equality at a time by repeatedly applying Eq-Var,
Eq-Word and Eq. In the third phase, membership predicates are eliminated by
repeatedly applying Reg-Neg, Memb, Not-Memb, Reg-Split and Reg-Len.
In the last phase, arithmetic predicates are solved using a standard decision
procedure [3].

Theorem 2. Ordered procedures terminate on acyclic formulae.

6 Complete Verification of String-Processing Programs

The analysis of string-processing programs has gained importance due to the
increased use of string-based APIs and protocols, for instance in the context of
databases and Web programming. Much of the existing work has focused on the
detection of bugs or the synthesis of attacks; in contrast, the work presented in
this paper primarily targets verification of functional correctness. The following
sections outline how we use our logic Ee,r,l for this purpose. On the one hand, our
solver is designed to handle the satisfiability checks needed when constructing
finite abstractions of programs, with the help of predicate abstraction [11, 13]
or Impact-style algorithms [19]; since Ee,r,l can express both length properties
and regular expressions, it covers predicates sufficient for a wide range of ver-
ification applications. On the other hand, we propose a constraint-based Craig
interpolation algorithm for the automatic refinement of program abstractions
(Section 6.2), leading to a completeness result in the style of [16]. We represent
programs in the framework of Horn clauses [20, 12], which make it easy to handle
language features like recursion; however, our work is in no way restricted to this
setting.

6.1 Horn Constraints with Strings

In our context, a Horn clause is a formula H ← C ∧B1 ∧ · · · ∧Bn where C is a
formula (constraint) in Ee,r,l; each Bi is an application p(t1, . . . , tk) of a relation

11

symbol p ∈ R to first-order terms; H is either an application p(t1, . . . , tk) of
p ∈ R to first-order terms, or the constraint false. H is called the head of the
clause, C ∧ B1 ∧ · · · ∧ Bn the body. A set HC of Horn clauses is called solvable
if there is an assignment that maps every n-ary relation symbol p to a word
formula Cp[x1, . . . , xn] with n free variables, such that every clause inHC is valid.
Since Horn clauses can capture properties such as initiation and consecution of
invariants, programs can be encoded as sets of Horn clauses in such a way that
the clauses are solvable if and only if the program is correct.

Example 1. The example from Section 2 is represented by the following set of
Horn clauses, encoding constraints on the intermediate assertions Pre, P1, P2, P3.
Note that the clauses closely correspond to the verification conditions given in
Fig. 2. Any solution of the Horn clauses represents a set of mutually inductive
invariants, and witnesses correctness of the program.

Pre(s)← true
P1(s′)← s′ = ε ∧ Pre(s)
P2(s)← P1(s)

P2(”a” · s · ”b”)← P2(s)

P3(s)← P2(s)
false ← s ∈ (a|b)∗ · ba · (a|b)∗ ∧ P3(s)
false ← ∀k. 2k 6= |s| ∧ P3(s)

Algorithms to construct solutions of Horn clauses with the help of predicate
abstraction have been proposed for instance in [12]; in this context, automatic
solving is split into two main steps: 1) the synthesis of predicates as building
blocks for solutions, and 2) the construction of solutions as Boolean combinations
of the predicates. The second step requires a solver to decide consistency of sets of
predicates, as well as implication between predicates (a set of predicates implies
some other predicate); our logic is designed for this purpose.
Ee,r,l covers a major part of the string operations commonly used in software

programs; further operations can be encoded elegantly, including:

– extraction of substring v of length len from a string u, starting at posi-
tion pos, which is defined by the formula:

u = p · v · s ∧ |v| = len ∧ |p| = pos

– replacement of the substring v (of length len, starting at position pos) by v′,
resulting in the new overall string u′:

u = p · v · s ∧ u′ = p · v′ · s ∧ |v| = len ∧ |p| = pos

– search for the first occurrence of a string, using either equations or regular
expression constraints.

6.2 Constraint-Based Craig Interpolation

In order to synthesize new predicates for verification, we propose a constraint-
based Craig interpolation algorithm [6]. We say that a formula I[s̄] is an inter-
polant of a conjunction A[s̄], B[s̄] over common variables s̄ = s1, . . . , sn (and

12

Algorithm 1: Constraint-based interpolation of string formulae.

Input: Interpolation problem A[s̄] ∧B[s̄] with common variables s̄; bound L.
Output: Interpolant s1|s2| · · · |sn ∈ R; or result Inseparable.

1 Aw ← ∅; Bw ← ∅;
2 while there is RE R of size ≤ L such that Aw ⊆ L(R) and Bw ∩ L(R) = ∅ do
3 if A[s̄] ∧ ¬(s1|s2| · · · |sn ∈ R) is satisfiable with assignment η then
4 Aw ← Aw ∪ {η(s1)| · · · |η(sn)};
5 else if B[s̄] ∧ (s1|s2| · · · |sn ∈ R) is satisfiable with assignment η then
6 Bw ← Bw ∪ {η(s1)| · · · |η(sn)};
7 else
8 return s1|s2| · · · |sn ∈ R;
9 end

10 end
11 return Inseparable;

possibly including further local variables), if the conjunctions A[s̄] ∧ ¬I[s̄] and
B[s̄] ∧ I[s̄] are unsatisfiable. In other words, an interpolant I[s̄] is an over-
approximation of A[s̄] that is disjoint from B[s̄]. It is well-known that inter-
polants are suitable candidates for predicates in software model checking; for a
detailed account on the use of interpolants for solving Horn clauses, we refer the
reader to [22].

Our interpolation procedure is shown in Alg. 1, and generates interpolants
in the form of regular constraints separating A[s̄] and B[s̄]. This means that
interpolants are not arbitrary formulae in the logic Ee,r,l, but are restricted to
the form s1|s2| · · · |sn ∈ R, where ”|” ∈ Σ is a distinguished separating letter,
and R is a regular expression. In addition, only interpolants up to a bound L are
considered; L can limit, for instance, the length of the regular expression R, or
the number of states in a finite automaton representing R.

Alg. 1 maintains finite sets Aw and Bw of words representing solutions of A[s̄]
andB[s̄], respectively. In line 2, a candidate interpolant of the form s1|s2| · · · |sn ∈
R is constructed, in such a way that L(R) is a superset of Aw but disjoint from
Bw. The concrete construction of candidate interpolants of size ≤ L can be im-
plemented in a number of ways, for instance via an encoding as a SAT or SMT
problem (as done in our implementation), or with the help of learning algorithms
like L∗ [1]. It is then checked whether s1|s2| · · · |sn ∈ R satisfies the properties
of an interpolant (lines 3, 5), which can be done using the string solver devel-
oped in this paper. If any of the properties is violated, the constructed satisfying
assignment η gives rise to a further word to be included in Aw or Bw.

Lemma 2 (Correctness). Suppose bound L is chosen such that it is only sat-
isfied by finitely many formulae s1|s2| · · · |sn ∈ R. Then Alg. 1 terminates and
either returns a correct interpolant s1|s2| · · · |sn ∈ R, or reports Inseparable.

By iteratively increasing bound L, eventually a regular interpolant for any
(unsatisfiable) conjunction A[s̄]∧B[s̄] can be found, provided that such an inter-

13

polant exists at all. This scheme of bounded interpolation is suitable for integra-
tion in the complete model checking algorithm given in [16]: since only finitely
many predicates can be inferred for every value L, divergence of model checking
is impossible for any fixed L. By globally increasing L in an iterative manner,
eventually every predicate that can be expressed in the form s1|s2| · · · |sn ∈ R
will be found.

7 Implementation

We have implemented our algorithm in a tool called Norn5 The tool takes as
input a formula in the logic described in Section 3, and returns either Sat together
with a witness of satisfiability (i.e., concrete string values for all variables), or
Unsat. Norn first converts the given formula to DNF, after which each disjunct
goes through the following steps:

1. Recursively split equalities, backtracking if necessary, until no equality con-
straints are left.

2. Recursively split membership constraints, again backtracking if necessary,
and compute the language of each variable. From the language, we extract
length constraints which we add to the formula.

3. Solve the remaining length constraints using Princess [3].

We will now explain the second step in more detail. Assume that we have
a membership constraint tr ∈ A, where A is an automaton (Norn makes use
of dk.brics.automaton [21] for all automata operations). We can remove a
sequence of trailing constants a1a2 · · · ak in tr = tr′ · a1a2 · · · an by replacing the
constraint with tr′ ∈ rev(δak···a2a1(rev(A))), where δs(A) denotes the derivative
of A w.r.t. the string s, and rev(A) denotes the reverse of A. We now have a
membership constraint s1 · · · sn ∈ A′ where the term consists of a number of
segments si, each of the form a1 · · · aniXi, i.e., a number of constants followed
by a variable. The procedure keeps, at each step, a mapping m that maps each
variable to an automaton representing the language it admits. For the constraint
to be satisfiable, the constraints s1 ∈ A′1 and s2 · · · sn ∈ A′2 must be satisfiable
for some pair (A1, A2) in the splitting of A′. This means that we can update
our mapping by m(Xi) = m(Xi) ∩ δa1···ani

(A1) and recurse on s2 · · · sn ∈ A′2.
If at any point any automaton in the mapping becomes empty, the membership
constraint is unsatisfiable, and we backtrack.

If, in the third step, Princess tells that the given formula is satisfiable,
it gives concrete lengths for all variables. By restricting each variable to the
solution given by Princess and reversing the substitutions performed in step 1,
we can compute witnesses for the variables in the original formula.

Norn can be used both as a library and as a command line tool. In addition
to the logic in Section 3, Norn supports character ranges (e.g. [a − c]) and
the wildcard character (.) in regular expressions. It also supports the divisibility

5 Available at http://user.it.uu.se/~jarst116/norn/.

14

Program Property Time

anbn (Fig. 1) s 6∈ (a+ b)∗ · ba · (a+ b)∗ ∧ ∃k. 2k = |s| 8.0s
StringReplace pre: s ∈ (a+ b+ c)∗; post: s ∈ (a+ c)∗ 4.5s
ChunkSplit pre: s ∈ (a+ b)∗; post: s ∈ (a+ b+ c)∗ 5.5s
Levenshtein dist ≤ |s|+ |t| 5.3s
HammingDistance dist = |v| if u ∈ 0∗, v ∈ 1∗ 27.1s

Table 1. Verification runtime for a set of string-processing programs. Experiments
were done on an Intel Core i5 machine with 3.2GHz, running 64 bit Linux.

predicate x div y, which says that x divides y. This translates to the arithmetic
constraint x = y ∗ n, where n is a free variable.

Model Checking. We have integrated Norn into the predicate abstraction-based
model checker Eldarica [14], on the basis of the algorithm and interpolation
procedure from Section 6. We use the regular interpolation procedure from Sec-
tion 6.2 in combination with an ordinary interpolation procedure for Presburger
arithmetic to infer predicates about word length. Table 1 gives an overview
of preliminary results obtained when analyzing a set of hand-written string-
processing programs. Although the programs are quite small, the presence of
string operations makes them intricate to analyze using automated model check-
ing techniques; most of the programs require invariants in form of regular ex-
pressions for verification to succeed. Our implementation is able to verify all
programs fully automatically within a few seconds; since performance has not
been the main focus of our implementation work so far, further optimization will
likely result in much reduced runtimes. To the best of our knowledge, all of the
programs are beyond the scope of other state-of-the-art software model checkers.

8 Conclusions and Future Work

In contrast to much of the existing work that has focused on the detection of
bugs or the synthesis of attacks for string-manipulating programs; the work pre-
sented in this paper primarily targets verification of functional correctness. To
achieve this goal, we have made several key contributions. First, we have pre-
sented a decision procedure for a rich logic of strings. Although the problem
in its generality remains open, we are able to identify an expressive fragment
for which our procedure is both sound and complete. We are not aware of any
decision procedure with a similar expressive power. Second, we leverage on the
fact that our logic is able to reason both about length properties and regular
expressions in order to capture and manipulate predicates sufficient for a wide
range of verification applications. Future works include experimenting with bet-
ter integrations of the different theories, exploring different Craig interpolation
techniques, and exploring the applicability of our framework to more general
classes of string processing applications.

15

References

1. Dana Angluin. Learning regular sets from queries and counterexamples. Inf.
Comput., 75(2):87–106, 1987.

2. Thomas Ball, Vladimir Levin, and Sriram K. Rajamani. A decade of software
model checking with slam. Commun. ACM, 54(7):68–76, 2011.

3. Angelo Brillout, Daniel Kroening, Philipp Rümmer, and Thomas Wahl.
An interpolating sequent calculus for quantifier-free Presburger arithmetic.
Journal of Automated Reasoning, 47:341–367, 2011.

4. J. R. Büchi and S. Senger. Definability in the existential theory of concate-
nation and undecidable extensions of this theory. Z. Math. Logik Grundlagen
Math., 34(4), 1988.

5. Alessandro Cimatti, Alberto Griggio, Bastiaan Joost Schaafsma, and
Roberto Sebastiani. The MathSAT5 SMT solver. In TACAS, pages 93–
107, 2013.

6. William Craig. Linear reasoning. A new form of the Herbrand-Gentzen
theorem. The Journal of Symbolic Logic, 22(3), 1957.

7. Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient SMT solver.
In Proceedings of the Theory and Practice of Software, 14th International
Conference on Tools and Algorithms for the Construction and Analysis of
Systems, TACAS’08/ETAPS’08, pages 337–340, Berlin, Heidelberg, 2008.
Springer-Verlag.

8. Vijay D’Silva, Daniel Kroening, and Georg Weissenbacher. A survey of
automated techniques for formal software verification. IEEE Trans. on CAD
of Integrated Circuits and Systems, 27(7):1165–1178, 2008.

9. Vijay Ganesh and David L. Dill. A decision procedure for bit-vectors and ar-
rays. In Proceedings of the 19th International Conference on Computer Aided
Verification, CAV’07, pages 519–531, Berlin, Heidelberg, 2007. Springer-
Verlag.

10. Vijay Ganesh, Mia Minnes, Armando Solar-Lezama, and Martin Rinard.
Word equations with length constraints: Whats decidable? In Armin Biere,
Amir Nahir, and Tanja Vos, editors, Hardware and Software: Verification
and Testing, volume 7857 of Lecture Notes in Computer Science, pages 209–
226. Springer Berlin Heidelberg, 2013.

11. Susanne Graf and Hassen Saidi. Construction of abstract state graphs with
PVS. In CAV, pages 72–83, 1997.

12. Sergey Grebenshchikov, Nuno P. Lopes, Corneliu Popeea, and Andrey Ry-
balchenko. Synthesizing software verifiers from proof rules. In PLDI, pages
405–416, 2012.

13. Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Kenneth L.
McMillan. Abstractions from proofs. In 31st POPL, 2004.

14. Hossein Hojjat, Filip Konecný, Florent Garnier, Radu Iosif, Viktor Kuncak,
and Philipp Rümmer. A verification toolkit for numerical transition systems
- tool paper. In FM, pages 247–251, 2012.

15. Ranjit Jhala and Rupak Majumdar. Software model checking. ACM Com-
put. Surv., 41(4), 2009.

16

16. Ranjit Jhala and Kenneth L. McMillan. A practical and complete approach
to predicate refinement. In TACAS, pages 459–473, 2006.

17. A. Kieżun, V. Ganesh, S. Artzi, P. J. Guo, P. Hooimeijer, and M. D. Ernst.
HAMPI: A solver for word equations over strings, regular expressions, and
context-free grammars. ACM Transactions on Software Engineering and
Methodology, 21(4), 2012.

18. G.S. Makanin. The problem of solvability of equations in a free semigroup.
Mathematics of the USSR-Sbornik, 32(2):129–198, 1977.

19. Kenneth L. McMillan. Lazy abstraction with interpolants. In CAV, 2006.
20. Mario Méndez-Lojo, Jorge A. Navas, and Manuel V. Hermenegildo. A flex-

ible, (c)lp-based approach to the analysis of object-oriented programs. In
LOPSTR, 2007.

21. Anders Møller. dk.brics.automaton – finite-state automata and regular ex-
pressions for Java, 2010. http://www.brics.dk/automaton/.

22. Philipp Rümmer, Hossein Hojjat, and Viktor Kuncak. Classifying and solv-
ing horn clauses for verification. In VSTTE, pages 1–21, 2013.

23. Prateek Saxena, Devdatta Akhawe, Steve Hanna, Feng Mao, Stephen McCa-
mant, and Dawn Song. A Symbolic Execution Framework for JavaScript. In
IEEE Symposium on Security and Privacy, pages 513–528. IEEE Computer
Society, 2010.

24. Prateek Saxena, Steve Hanna, Pongsin Poosankam, and Dawn Song. FLAX:
Systematic discovery of client-side validation vulnerabilities in rich web ap-
plications. In NDSS. The Internet Society, 2010.

25. Fang Yu, Muath Alkhalaf, and Tevfik Bultan. Stranger: An automata-based
string analysis tool for PHP. In TACAS, volume 6015 of LNCS, pages 154–
157. Springer, 2010.

26. Yunhui Zheng, Xiangyu Zhang, and Vijay Ganesh. Z3-str: A Z3-based string
solver for web application analysis. In Proceedings of the 2013 9th Joint
Meeting on Foundations of Software Engineering, ESEC/FSE 2013, pages
114–124, New York, NY, USA, 2013. ACM.

17

