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Abstract

This report addresses the problem of minimizing the average execution time of an
application, based on speculative FPGA configuration prefetch. Dynamically reconfig-
urable systems (like FPGAs) provide both the performance of hardware acceleration
and the flexibility and adaptability that modern applications require. Unfortunately,
one of their main drawbacks that significantly impacts performance is the high recon-
figuration overhead. Configuration prefetching is one method to reduce this penalty
by overlapping FPGA reconfigurations with useful computations. In order to make
it effective and to avoid very high misprediction penalties, it is important to prefetch
the configurations that provide the highest performance improvement, and to do this
early enough to hide the reconfiguration overhead. In this report we propose a specu-
lative approach that schedules prefetches at design time and simultaneously performs
HW/SW partitioning, in order to minimize the expected execution time of an appli-
cation. Our method prefetches and executes in hardware those configurations that
provide the highest performance improvement. The algorithm takes into consideration
profiling information (such as branch probabilities and execution time distributions),
correlated with the application characteristics. We demonstrate the effectiveness of our
approach compared to the previous state-of-art using extensive experiments, including
real-life case studies.

1 Introduction

In recent years, FPGA-based reconfigurable computing systems have gained in popularity
because they promise to satisfy the simultaneous needs of high performance and flexibility
[11]. Modern FPGAs provide support for partial dynamic reconfiguration [18], which means
that parts of the device may be reconfigured at run-time, while the other parts remain fully
functional. This feature offers high flexibility, but does not come without challenges: one
major impediment is the high reconfiguration overhead.

Researchers have proposed several techniques to reduce the reconfiguration overhead.
Such approaches are configuration compression [7] (which tries to decrease the amount of
configuration data that must be transferred to the FPGA), configuration caching [7] (which
addresses the challenge to determine which configurations should be stored in an on-chip
memory and which should be replaced when a reconfiguration occurs) and configuration
prefetch [4, 8, 9, 10, 13] (which tries to preload future configurations, overlapping as much
as possible the reconfiguration overhead with useful computation).
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In this report we present a speculative approach to configuration prefetching that im-
plicitly performs HW/SW partitioning and improves the state-of-art1. The high reconfigu-
ration overheads make configuration prefetching a challenging task: the configurations to be
prefetched should be the ones with the highest potential to provide a performance improve-
ment and they should be predicted early enough to overlap the reconfiguration with useful
computation. Therefore, the key for high performance of such systems is efficient HW/SW
partitioning and intelligent prefetch of configurations.

2 Related Work

The authors of [3] proposed a partitioning algorithm, as well as an ILP formulation and a
heuristic approach to scheduling of task graphs. In [2] the authors present an exact and
a heuristic algorithm that simultaneously partitions and schedules task graphs on FPGAs.
The authors of [5] proposed a CLP formulation and a heuristic to find the minimal hard-
ware overhead and corresponding task mapping for systems with communication security
constraints. The main difference compared to our work is that the above papers address the
optimization problem at a task level, and for a large class of applications (e.g. those that con-
sist of a single sequential task) using such a task-level coarse granularity is not appropriate.
Instead, it is necessary to analyze the internal structure and properties of tasks.

The authors of [12] present a hybrid design-/run-time prefetch scheduling heuristic that
prepares a set of schedules at design time and then chooses between them at run-time. This
work uses the same task graph model as the ones before. In [7], the author proposes hybrid
and dynamic prefetch heuristics that perform part or all of the scheduling computations at
run-time and also require additional hardware. One major advantage of static prefetching
is that, unlike the dynamic approaches mentioned above, it requires no additional hardware
and it generates minimal run-time overhead. Moreover, the solutions generated are good as
long as the profile and data access information known at compile time are accurate.

The authors of [16] present an approach for accelerating the error detection mechanisms.
A set of path-dependent prefetches are prepared at design time, and at run-time the appro-
priate action is applied, corresponding to the actual path taken. The main limitation of this
work is that it is customized for the prefetch of particular error detection modules.

To our knowledge, the works most closely related to our own are [13], [8] and [9]. Panainte
et al. proposed both an intra-procedural [9] and an inter-procedural [10] static prefetch sche-
duling algorithm that minimizes the number of executed FPGA reconfigurations taking into
account FPGA area placement conflicts. In order to compute the locations where hardware
reconfigurations can be anticipated, they first determine the regions not shared between any
two conflicting hardware modules, and then insert prefetches at the beginning of each such
region. This approach is too conservative and a more aggressive speculation could hide more
reconfiguration overhead. Also, profiling information (such as branch probabilities and exe-
cution time distributions) could be used to prioritize between two non-conflicting modules.

Li et al. continued the pioneering work of Hauck [4] in configuration prefetching. They
compute the probabilities to reach any hardware module, based on profiling information
[8]. This algorithm can be applied only after all the loops are identified and collapsed into
dummy nodes. Then, the hardware modules are ranked at each basic block according to these
probabilities and prefetches are issued. The main limitations of this work are that it removes
all loops (which leads to loss of path information) and that it uses only probabilities to guide
prefetch insertion (without taking into account execution time distributions, for example).
Also, this approach was developed for FPGAs with relocation and defragmentation, and it
does not account for placement conflicts between modules.

To our knowledge, the state-of-art in static configuration prefetching for partially recon-
figurable FPGAs is the work of Sim et al. [13]. The authors present an algorithm that

1Configuration compression and caching are not addressed here, but they are complementary techniques
that can be used in conjunction with our proposed approach.
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Figure 1: Architecture Model

minimizes the reconfiguration overhead for an application, taking into account FPGA area
placement conflicts. Using profiling information, the approach tries to predict the execution
of hardware modules by computing ‘placement-aware’ probabilities (PAPs). They represent
the probabilities to reach a hardware module from a certain basic block without encoun-
tering any conflicting hardware module on the way. These probabilities are then used in
order to generate prefetch queues to be inserted by the compiler in the control flow graph of
the application. The main limitation of this work is that it uses only the ‘placement-aware’
probabilities to guide prefetch insertion. As we will show in this report, it is possible to gen-
erate better prefetches (and, thus, further reduce the execution time of the application) if we
also take into account the execution time distributions, correlated with the reconfiguration
time of each hardware module.

3 System Model

3.1 Architecture Model

We consider the architecture model presented in Fig. 1. This is a realistic model that
supports commercially available FPGAs (like, e.g., the Xilinx Virtex or Altera Stratix fami-
lies). Most current reconfigurable systems consist of a host microprocessor connected, either
loosely or tightly, to an FPGA (used as a coprocessor for hardware acceleration).

One common scenario for the tightly connected case is that the FPGA is partitioned into
a static region, where the microprocessor itself and the reconfiguration controller reside, and
a partially dynamically reconfigurable (PDR) region, where the application hardware mod-
ules can be loaded at run-time. The host CPU executes the software part of the application
and is also responsible for initiating the reconfiguration of the PDR region of the FPGA.
The reconfiguration controller will configure this region by loading the bitstreams from the
memory, upon CPU requests. While one reconfiguration is going on, the execution of the
other (non-overlapping) modules on the FPGA is not affected.

We model the PDR region as a rectangular matrix of configurable logic blocks. Each
hardware module occupies a contiguous rectangular area of this matrix. Although it is
possible for the hardware modules to be relocated on the PDR region of the FPGA at run-
time, this operation is known to be computationally expensive [14]. Thus, similar to the
assumptions of Panainte [9] and Sim [13], we also consider that the placement of the hardware
modules is decided at design time and any two hardware modules that have overlapping areas
are in ‘placement conflict’.

3.2 Application Model

The main goal of our approach is to minimize the expected execution time of a program
executed on the hardware platform described above. We consider a structured [1] program2,

2Since any non-structured program is equivalent to some structured one, our assumption loses no gen-
erality.
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modeled as a control flow graph (CFG) Gcf (Ncf , Ecf ), where each node in Ncf corresponds
to either a basic block (a straight-line sequence of instructions) or a candidate module
to be executed on the FPGA, and the set of edges Ecf corresponds to the possible flow
of control within the program. Gcf captures all potential execution paths and contains
two distinguished nodes, root and sink, corresponding to the entry and the exit of the
program. The function prob : Ecf → [0, 1] represents the probability of each edge in the
CFG to be taken, and it is obtained by profiling the application. For each loop header n,
iter probn : N → [0, 1] represents the probability mass function of the discrete distribution
of loop iterations.

We denote the set of hardware candidates with H ⊆ Ncf and any two modules that have
placement conflicts with m1 ./ m2. We assume that all hardware modules in H have both
a hardware implementation and a corresponding software implementation. Since sometimes
it might be impossible to hide enough of the reconfiguration overhead for all candidates in
H, our technique will try to decide at design time which are the most profitable modules to
insert prefetches for (at a certain point in the CFG). Thus, for some candidates, it might
be better to execute the module in software, instead of inserting a prefetch too close to its
location (because waiting for the reconfiguration to finish and then executing the module on
the FPGA is slower than executing it in software). This approach will implicitly generate a
HW/SW partitioning of the set H of hardware candidates.

The set H can be determined automatically (or by the designer) and might contain, for
example, the computation intensive parts of the application, identified after profiling. Please
note that it is not necessary that all candidate modules fromH will end up on the FPGA. Our
technique will try to use the limited hardware resources as efficiently as possible by choosing
to prefetch the modules with the highest potential to reduce the expected execution time.
Thus, together with the prefetch scheduling we also perform a HW/SW partitioning of the
modules from H ⊆ Ncf .

For each node n ∈ Ncf we assume that we know its software execution time3,
sw : Ncf → R+. For each hardware candidate m ∈ H, we also know its hardware exe-
cution time3, hw : H → R+. The function area : H → N, specifies the area that hardware
modules require, size : H → N×N gives their size, and pos : H → N×N specifies the position
where they were placed on the reconfigurable region. Since for all modules in H a hardware
implementation and placement are known at design time, we also know the reconfiguration
duration, which we assume it is given by a function rec : H → R+.

3.3 Reconfiguration API

We adopt the reconfiguration library described in [14], that defines an interface to the re-
configuration controller, and enables the software control of reconfiguring the FPGA. The
architecture described in Sec. 3.1 supports preemption and resumption of hardware recon-
figurations. The library defines the following functions to support initialization, preemption
and resumption of reconfigurations:

• load(m): Non-blocking call that requests the reconfiguration controller to start or resume
loading the bitstream of module m.

• currently reconfig(): Returns the id of the hardware module being currently reconfig-
ured, or -1 otherwise.

• is loaded(m): Returns true if the hardware module m is already loaded on the FPGA, or
false otherwise.

• exec(m): Blocking call that returns only after the execution of hardware module m has
finished.

3Instead of a single number, the execution time could be modeled as a discrete probability distribution
as well, without affecting our overall approach for configuration prefetching.
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Figure 2: Motivational Example

3.4 Middleware and Execution Model

Let us assume that at each node n ∈ Ncf the hardware modules to be prefetched have
been ranked at compile-time (according to some strategy) and placed in a queue (denoted
loadQ). The exact hardware module to be prefetched will be determined at run-time (by the
middleware, using the reconfiguration API), since it depends on the run-time conditions. If
the module with the highest priority (the head of loadQ) is not yet loaded and is not being
currently reconfigured, it will be loaded at that particular node. If the head of loadQ is
already on FPGA, the module with the next priority that is not yet on the FPGA will be
loaded, but only in case the reconfiguration controller is idle. Finally, if a reconfiguration is
ongoing, it will be preempted only in case a hardware module with a priority higher than
that of the module being reconfigured is found in the current list of candidates (loadQ).

At run-time, once a hardware module m ∈ H is reached, the middleware checks whether
m is already fully loaded on the FPGA, and in this case it will be executed there. Thus,
previously reconfigured modules are reused4. Otherwise, if m is currently reconfiguring, the
application will wait for the reconfiguration to finish and then execute the module on FPGA,
but only if this generates a shorter execution time than the software execution. If none of
the above are true, the software version of m will be executed.

4 Problem Formulation

Given an application (as described in Sec. 3.2) intended to run on the reconfigurable archi-
tecture described in Sec. 3.1, our goal is to determine, at each node n ∈ Ncf , the loadQ to
be used by the middleware (as described in Sec. 3.4), such that the expected execution time
of the application is minimized. This will implicitly also determine the HW/SW partitioning
of the candidate modules from H.

5 Motivational Example

Let us consider the control flow graph (CFG) in Fig. 2a, where candidate hardware modules
are represented with squares, and software nodes with circles. The discrete probability

4Please note that this information is known only at run-time.
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distribution for the iterations of the loop a−b, the software and hardware execution times for
the nodes, as well as the edge probabilities, are illustrated on the graph. The reconfiguration
times are: rec(m1) = 37, rec(m2) = 20, rec(m3) = 46. We also consider that hardware
modules m1 and m2 are conflicting due to their placement (m1 ./ m2).

Let us try to schedule the configuration prefetches for the three hardware modules on the
given CFG. If we use the method developed by Panainte et al. [9], the result is shown in Fig.
2b. As we can see, the load for m3 can be propagated upwards in the CFG from node m3

up to r. For nodes m1 and m2 it is not possible (according to this approach) to propagate
their load calls to their ancestors, because they are in placement conflict. The data-flow
analysis performed by the authors is too conservative, and the propagation of prefetches is
stopped whenever two load calls targeting conflicting modules meet at a common ancestor
(e.g. node f for m1 and m2). As a result, since the method fails to prefetch modules
earlier, the reconfiguration overhead for neither m1, nor m2, can be hidden at all. Only
module m3 will not generate any waiting time, since the minimum time to reach it from
r is 92 > rec(m3) = 46. Using this approach, the application must stall (waiting for the
reconfigurations to finish) W1 = 90% · rec(m1) + rec(m2) = 90% · 37 + 20 = 53.3 time units
on average (because m1 is executed with a probability of 90%, and m2 is always executed).

Fig. 2c shows the resulting prefetches after using the method proposed by Li et al. [8].
As we can see, the prefetch queue generated by this approach at node r is loadQ : m2, m3,
m1, because the probabilities to reach the hardware modules from r are 100%, 95% and
90% respectively. Please note that this method is developed for FPGAs with relocation and
defragmentation and it ignores placement conflicts. Also, the load queues are generated
considering only the probability to reach a module (and ignoring other factors, such as the
execution time distribution from the prefetch point up to the prefetched module). Thus,
if applied to our example, the method performs poorly: in 90% of the cases, module m1

will replace module m2 (initially prefetched at r) on the FPGA. In this cases, none of the
reconfiguration overhead for m1 can be hidden, and in addition, the initial prefetch for m2

is wasted. The average waiting time for this scenario is W2 = 90% ·rec(m1)+(100%−10%) ·
rec(m2) = 90% · 37 + 90% · 20 = 51.3 time units (the reconfiguration overhead is hidden in
10% of the cases for m2, and always for m3).

For this example, although the approach proposed by Sim et al. [13] tries to avoid some of
the previous problems, it ends up with similar waiting time. The method uses ‘placement-
aware’ probabilities (PAPs). For any node n ∈ Ncf and any hardware module m ∈ H,
PAP (n,m) represents the probability to reach module m from node n, without encountering
any conflicting hardware module on the way. Thus, the prefetch order for m1 and m2 is
correctly inverted since PAP (r,m1) = 90%, as in the previous case, but PAP (r,m2) = 10%,
instead of 100% (because in 90% of the cases, m2 is reached via the conflicting module m1).
Unfortunately, since the method uses only PAPs to generate prefetches, and PAP (r,m3) =
95% (since it is not conflicting with neither m1, nor m2), m3 is prefetched before m1 at node
r, although its prefetch could be safely postponed. The result is illustrated in Fig. 2d (m2 is
removed from the load queue of node r because it conflicts with m1, which has a higher PAP).
These prefetches will determine that no reconfiguration overhead can be hidden for m1 or
m2 (since the long reconfiguration of m3 postpones their own one until the last moment).
The average waiting time for the application will be W3 = 90% · rec(m1) + rec(m2) =
90% · 37 + 20 = 53.3 time units.

If we examine the example carefully, we can see that taking into account only the
‘placement-aware’ probabilities is not enough. The prefetch generation mechanism should
also consider the distance from the current decision point to the hardware modules candidate
for prefetching, correlated with the reconfiguration time of each module. Our approach, pre-
sented in the current report, is to estimate the performance gain associated with starting the
reconfiguration of a certain module at a certain node in the CFG. We do this by considering
both the execution time gain resulting from the hardware execution of that module (including
any stalling cycles spent waiting for the reconfiguration to finish) compared to the software
execution, and by investigating how this prefetch influences the execution time of the other
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Algorithm 1 Generating the prefetch queues

1: procedure GeneratePrefetchQ
2: for all n ∈ Ncf do
3: for all {m ∈ H|PAP (n,m) 6= 0} do
4: if Gnm > 0 ∨m in loop then
5: compute priority function Cnm

6: end if
7: end for
8: loadQ(n)← modules in decreasing order of Cnm

9: remove all lower priority modules that have area conflicts with higher priority modules in loadQ(n)
10: end for
11: eliminate redundant prefetches
12: end procedure

reachable modules. For the example presented here, it is not a good idea to prefetch m3 at
node r, because this results in a long waiting time for m1 (similar reasoning applies for pre-
fetching m2 at r). The resulting prefetches are illustrated in Fig. 2e. As we can see, the best
choice of prefetch order is m1, m3 at node r (m2 is removed from the load queue because it
conflicts with m1), and this will hide most of the reconfiguration overhead for m1, and all for
m3. The overall average waiting time is W = 90% ·W rm1

+rec(m2) = 90% ·4.56+20 ≈ 24.1,
less than half of the penalties generated by the previous methods (Sec. 6.2 and Fig. 3 explain
the computation of the average waiting time generated by m1, W rm1 = 4.56 time units).

6 Speculative Prefetching

Our overall strategy is shown in Algorithm 1. The main idea is to intelligently assign
priorities to the candidate prefetches and determine the load queue (loadQ) at every node
in the CFG (line 8). We try to use all the available knowledge from the profiling in order to
take the best possible decisions and speculatively prefetch the hardware modules with the
highest potential to reduce the expected execution time of the application. The intelligence
of our algorithm resides in computing the priority function Cnm (see Sec. 6.1), which tries to
estimate at design time what is the impact of reconfiguring a certain module on the average
execution time. We consider for prefetch only the modules for which it is profitable to start
a prefetch at the current point (line 4): either the average execution time gain Gnm (over
the software execution of the candidate) obtained if its reconfiguration starts at this node is
greater than 0, or the module is inside a loop (in which case, even if the reconfiguration is not
finished in the first few loop iterations and we execute the module in software, we will gain
from executing the module in hardware in future loop iterations). Then we sort the prefetch
candidates in decreasing order of their priority function (line 8), and in case of equality
we give higher priority to modules placed in loops. After the loadQ has been generated
for a node, we remove all the lower priority modules that have area conflicts with the
higher priority modules in the queue (line 9). Once all the queues have been generated, we
eliminate redundant prefetches (all consecutive candidates at a child node that are a starting
sub-sequence at all its parents in the CFG), as in [8] or [13]. The exact hardware module to
be prefetched will be determined by the middleware at run-time, as explained in Sec. 3.4.

6.1 Prefetch Priority Function

Our prefetch function represents the priorities assigned to the hardware modules reachable
from a certain node in the CFG, and thus determines the loadQ to insert at that location.
Considering that the processor must stall if the reconfiguration overhead cannot be com-
pletely hidden and that some candidates will provide a higher performance gain than others,
our priority function will try to estimate the overall impact on the average execution time
that results from different prefetches being issued at a particular node in the CFG. In order
to accurately predict the next configuration to prefetch, several factors have to be considered.
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The first one is represented by the ‘placement-aware’ probabilities (PAPs), computed
with the method from [13]. The second factor that influences the decision of prefetch sche-
duling is represented by the execution time gain distributions (that will be discussed in detail
in Sec. 6.2). The gain distributions reflect the reduction of execution time resulting from
prefetching a certain candidate and executing it in hardware, compared to executing it in
software. They are directly impacted by the waiting time distributions (which capture the
relation between the reconfiguration time for a certain hardware module and the execution
time distribution between the prefetch node in the CFG and that module).

We denote the set of hardware modules for which it is profitable to compute the priority
function at node n with Reach(n) = {m ∈ H | PAP (n,m) 6= 0∧(Gnm > 0∨m in loop)}. For
our example in Fig. 2a, Reach(r) = {m1,m2,m3}, but Reach(m3) = ∅, because it does not
make sense to reconfigurem3 anymore (although PAP (m3,m3) = 100%, we have the average
waiting time Wm3m3

= rec(m3) and rec(m3) + hw(m3) = 46 + 12 > 50 = sw(m3)). Thus,
we do not gain anything by starting the reconfiguration of m3 right before it is reached,
i.e. Gm3m3

= 0. Considering the above discussion, our priority function expressing the
reconfiguration gain generated by prefetching module m ∈ Reach(n) at node n is defined as:

Cnm = PAP (n,m) ·Gnm
+

∑
k∈MutEx(m)

PAP (n, k) ·Gsk

+
∑

k 6∈MutEx(m)

PAP (n, k) ·Gknm

In the above equation, Gnm denotes the average execution time gain generated by pre-
fetching module m at node n (see Sec. 6.2), MutEx(m) denotes the set of hardware modules
that are executed mutually exclusive with m, the index s in Gsk represents the node where

the paths leading from n to m and k split, and G
k

nm represents the expected gain generated
by k, given that its reconfiguration is started immediately after the one for m.

The first term of the priority function represents the contribution (in terms of average
execution time gain) of the candidate module m, the second term tries to capture the
impact that the reconfiguration of m will produce on other modules that are executed
mutually exclusive with it, and the third term captures the impact on the execution time
of modules that are not mutually exclusive with m (and might be executed after m). In
Fig. 2a, modules m1, m2 and m3 are not mutually exclusive. Let us calculate the priority
function for the three hardware modules from Fig. 2a at node r (considering their areas
proportional with their reconfiguration time). Crm1

= 90%·40.4+10%·36.9+95%·38 ≈ 76.1,
Crm2 = 10%·40+90%·22.5+95%·38 ≈ 60.3 and Crm3 = 95%·38+90%·1.7+10%·30.9 ≈ 40.7
(the computation of execution time gains is discussed in Sec. 6.2). As we can see, since
Crm1

> Crm2
> Crm3

, the correct loadQ of prefetches is generated at node r. Note that m2

is removed from the queue because it is in placement conflict with m1, which is the head of
the queue (see line 9 in Algorithm 1).

6.2 Average Execution Time Gain

Let us consider a node n ∈ Ncf from the CFG and a hardware module m ∈ H, reachable
from n. Given that the reconfiguration of module m starts at node n, we define the av-
erage execution time gain Gnm as the expected execution time that is saved by executing
m in hardware (including any stalling cycles when the application is waiting for the re-
configuration of m to be completed), compared to a software execution of m. In order to
compute it, we start with the distance (in time) from n to m. Let Xnm be the random
variable associated with this distance. The waiting time is given by the random variable
Wnm = max(0, rec(m)−Xnm). Note that the waiting time cannot be negative (if a module
is already present on FPGA when we reach it, it does not matter how long ago its reconfigu-
ration finished). The execution time gain is given by the distribution of the random variable
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Figure 3: Computing the Gain Probability Distribution Step by Step

Gnm = max(0, sw(m)−(Wnm+hw(m))). In case the software execution time of a candidate
is shorter than waiting for its reconfiguration to finish and executing it in hardware, then
the module will be executed in software by the middleware (as described in Sec. 3.4), and
the gain is zero. If we denote the probability mass function (pmf) of Gnm with gnm, then
the average gain Gnm will be computed as:

Gnm =

∞∑
x=0

(
x · gnm(x)

)
(1)

The discussion is illustrated graphically in Fig. 3, considering the nodes n = r and
m = m1 from Fig. 2a. The probability mass function (pmf) for Xrm1

(distance in time
from r to m1) is represented in Fig. 3a and the pmf for the waiting time Wrm1

in Fig.
3b. Note that the negative part of the distribution (depicted with dotted line) generates no
waiting time. In Fig. 3c we add the hardware execution time to the potential waiting time
incurred. Finally, Fig. 3d represents the discrete probability distribution of the gain Grm1 .
The resulting average gain is Grm1 = 34·18%+39·42%+44·6%+45·34% = 40.44 time units.

Before presenting our algorithm for computing the gain distribution and the average
gain, let us first introduce a few concepts. Given a control flow graph Gcf (Ncf , Ecf ), we
introduce the following definitions [1]:

Definition 1 A node n ∈ Ncf is post-dominated by a node m ∈ Ncf in the control flow
graph Gcf if every directed path from n to sink (excluding n) contains m.

Definition 2 Given a control flow graph Gcf , a node m ∈ Ncf is control dependent upon
a node n ∈ Ncf via a control flow edge e ∈ Ecf if the next conditions hold:

• There exists a directed path P from n to m in Gcf , starting with e, with all nodes in
P (except m and n) post-dominated by m;

• m does not post-dominate n in Gcf .

In other words, there is some control edge from n that definitely causes m to execute, and
there is some path from n to sink that avoids executing m.

Definition 3 A control dependence graph (CDG) Gcd(Ncd, Ecd) corresponding to a control
flow graph Gcf (Ncf , Ecf ) is defined as: Ncd = Ncf and Ecd = {((n, m), e) | m is control
dependent upon n via edge e}. If we ignore all the backward edges in the CDG we obtain a
forward control dependence tree (FCDT) [1].

Fig. 4 shows the FCDT corresponding to the CFG in Fig. 2a (note that the pseudo-edge
r → s was introduced in the CFG in order to get all nodes to be directly, or indirectly, control
dependent on r).
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Algorithm 2 Computing the average execution time gain

1: procedure AvgExecTimeGain(n, m)
2: construct subgraph with nodes between n and m
3: build its FCDT (saved as a global variable)
4: Xnm ← ExecT imeDist(n,m)
5: Wnm ← max(0, rec(m)−Xnm)
6: Gnm ← max(0, sw(m)− (Wnm + hw(m)))
7: for all y ∈ {t | gnm(t) 6= 0} do
8: Gnm ← Gnm + gnm(y) · y
9: end for

10: return Gnm

11: end procedure

Algorithm 2 presents our method for computing the average gain. Let us consider a node
n ∈ Ncf and a hardware module m ∈ H. Given that the reconfiguration of module m starts
at node n, our algorithm estimates the average execution time gain over a software execution,
that results from executing m in hardware (after waiting for its reconfiguration to finish if
needed). The first steps are to construct the subgraph with all the nodes between n and
m and to build its FCDT, according to Def. 3 (lines 2-3). Then we compute the execution
time distribution of the subgraph constructed earlier, representing the distance (in time)
between n and m (line 4). Then we compute the waiting time distribution (line 5) and the
gain distribution (line 6). Finally we compute the average gain with formula (1) (lines 7-8).

6.3 Execution Time Distribution

Algorithm 3 details our method for computing the execution time distribution between node
n and module m. We remind the reader that all the computation is done considering the
subgraph containing only the nodes between n and m and its forward control dependence
tree. Also, before applying the algorithm we transform all post-test loops into pre-test ones
(this transformation is done on the CFG representation, for analysis purposes only). Our
approach is to compute the execution time distribution of node n and all its children in the
FCDT, using the recursive procedure ExecT imeDist. If n has no children in the FCDT
(i.e. no nodes control dependent on it), then we simply return its own execution time (line
4). For the root node we convolute5 its execution time with the execution time distribution
of all its children in the FCDT (line 6).

For a control node, the approach is to compute the execution time distribution for all its
children in the FCDG that are control dependent on the ‘true’ branch, convolute this with
the execution time of n and scale the distribution with the probability of the ‘true’ branch,
t (line 9). Similarly, we compute the distribution for the ‘false’ branch as well (line 10) and
then we superpose the two distributions to get the final one (line 11). For example, for the
branch node c in Fig. 2a, we have ext(2 + 3) = 30%, exf (2 + 8) = 70% and, thus, the pmf
for the execution time of the entire if-then-else structure is x(5) = 30% and x(10) = 70%.

5This is done because the probability distribution of a sum of two random variables is obtained as the
convolution of the individual probability distributions.
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Algorithm 3 Computing the execution time distribution

1: procedure ExecTimeDist(n, m)
2: exn ← Exec(n)
3: if n has 0 children in FCDT then
4: x(exn)← 100%
5: else if n.type = root then
6: x ← exn ∗ FCDTChildrenDist(n,m, l)
7: else if n.type = control then . ‘if’ blocks
8: (t, f)← GetLabels(n) . branch frequencies
9: ext ← t×

(
exn ∗ FCDTChildrenDist(n,m, t)

)
10: exf ← f ×

(
exn ∗ FCDTChildrenDist(n,m, f)

)
11: x ← ext + exf
12: else if n.type = loop header then
13: exli ← exn ∗ FCDTChildrenDist(n,m, l)
14: Truncate(exli, rec(m))
15: for all i ∈ Iterations(n) do
16: exi ← iter probn(i)×

[
(∗i)exli

]
17: Truncate(exi, rec(m))
18: exlb ← exlb + exi . the loop body
19: if min{y | exi(y) 6= 0} ≥ rec(m) then
20: break . no point to continue
21: end if
22: end for
23: x ← exn ∗ exlb . header executed last time
24: end if
25: Truncate(x, rec(m))
26: return x
27: end procedure

28: procedure FCDTChildrenDist(n, m, label)
29: for all c ∈ FCDTChildren(n, label) do
30: dist← dist ∗ ExecT imeDist(n,m)
31: Truncate(dist, rec(m))
32: if min{y | dist(y) 6= 0} ≥ rec(m) then
33: break . no point to continue
34: end if
35: end for
36: return dist
37: end procedure

38: procedure Truncate(dist, rec)
39: ymin ← min{y | dist(y) 6= 0}
40: if ymin ≥ rec then
41: trunc(ymin)← dist(ymin)
42: else

43: trunc(y)←
{

dist(y) : y < rec
0 : y ≥ rec

44: end if
45: return trunc
46: end procedure

47: procedure Exec(m)
48: if m.type = hardware then
49: return hw(m) + αm · (sw(m)− hw(m))
50: else
51: return sw(m)
52: end if
53: end procedure

Finally, for a loop header, we first compute the distribution of all its children in the
FCDT (which represents the execution time of all the nodes inside the loop body) and
then we convolute this with the execution time of the header (line 13). The result will be
the execution time distribution of one iteration through the loop (exli). Then we use the
distribution of loop iterations (available from profiling) to convolute exli with itself ((∗i)
denotes the operation of convolution with itself i times). The result is scaled (line 16) with
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the probability of i iterations to occur (iter probn(i)) and then superposed (line 18) with
the distribution of the loop body computed so far (exlb).

Let us illustrate the computation for the loop composed of nodes a − b in our CFG
example from Fig. 2a using its corresponding FCDT from Fig. 4. Since in this particular
case b is the only node inside the loop, exli = exa ∗ exb gives the probability mass function
(pmf) exli(1 + 4) = 100%. Then we convolute exli with itself two times, and we scale the
result with the probability to iterate twice through the loop, iter proba(2) = 60%. Thus, we
obtain ex2(10) = 60%. Similarly, ex4(20) = 20% and ex5(25) = 20%. By superposing ex2,
ex4 and ex5 we get the pmf for the loop body, exlb, which we finally have to convolute with
exa to get the pmf of the entire loop: x(10+1) = 60%, x(20+1) = 20% and x(25+1) = 20%.
This distribution can be further used in the computation of Grm1 , for example.

The procedure FCDTChildrenDist (line 28) simply convolutes the distributions of all
children of n in the FCDT that are control dependent on the parameter edge label. In order
to speed-up the computation, we exploit the following observation: when computing the
pmf for the execution time distributions, we discard any values that are greater or equal
than the reconfiguration time, because those components of the distribution will generate
no waiting time (one example in lines 31-33).

Procedure Truncate works as follows: if the smallest execution time is already greater
than the reconfiguration overhead, we keep only this smallest value in the distribution (line
41). This is done because the distribution in question might be involved in convolutions
or superpositions (in procedure ExecT imeDist), and keeping only this minimal value is
enough for computing the part of the execution time distribution of interest (that might
generate waiting time). Otherwise, we simply truncate the distribution at rec (line 43).

One observation related to the computation of the execution time of a node m ∈ Ncf
(procedure Exec in Algorithm 3, line 47) is that, if m is a hardware candidate (m ∈ H) we
need to approximate its execution time, since the prefetches for it might be yet undecided
and, thus, it is not known if the module will be executed in software or on the FPGA.
In order to estimate the execution time, we make use of a coefficient αm ∈ [0, 1]. The
execution time for a hardware module m will be computed as (line 49): exec(m) = hw(m)+
αm · (sw(m)−hw(m)). Our experiments have proven that very good results are obtained by
setting the value of αm, for each hardware module, to the ratio between its own hardware

area and the total area needed for all modules in H: αm = area(m)∑
k∈H area(k) .

7 Experimental Results

7.1 Monte Carlo Simulation

7.1.1 Sampling

In order to evaluate the quality of our prefetch solutions we have used an in-house developed
Monte Carlo simulator that produces the execution time distribution of an application con-
sidering the architectural assumptions described in Sec. 3.1, 3.3 and 3.4. Each simulation
generates a trace through the control flow graph, starting at the root node, and ending at
the sink node (and we record the length of these traces). Whenever a branch node is en-
countered, we perform a Bernoulli draw (based on the probabilities of the outgoing edges) to
decide if the branch is taken or not. At loop header nodes we perform random sampling from
the discrete distribution of loop iterations (iter probn) to decide how many times to loop.

For control nodes, if correlations between two or more branches are known, then they
could be captured through joint probability tables. In such a case, whenever we perform a
draw from the marginal Bernoulli distribution for a branch, we can compute the conditional
probabilities for all the branches correlated with it, based on the joint probability table.
Later in the simulation, when the correlated branches are reached, we do not sample their
marginal distribution, but instead we sample their conditional distribution based on the
outcome of the first branch.
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7.1.2 Accuracy Analysis

We stop the Monte Carlo simulation once we reach a satisfactory accuracy for the mean
of the execution time distribution. We describe the desired accuracy in the following way:
“The mean of the output distribution should be accurate to within ±ε with confidence κ”.
The accuracy can be arbitrarily precise at the expense of longer simulation times. We will
next present an analysis based on confidence intervals [15], to determine the number of
samples to run in order to achieve the required accuracy.

Let us assume that µ is the actual mean of the true output distribution and µ̂ is the
estimate mean computed by the Monte Carlo simulation. Since each simulation result is an
independent sample from the same distribution, using the Central Limit Theorem we have
that the distribution of the estimate of the true mean is (asymptotically) given by:

µ̂ = Normal

(
µ,

σ√
N

)
where σ is the true standard deviation of the output execution time distribution and N
represents the number of samples. The above equation can be rewritten as follows:

µ = Normal

(
µ̂,

σ√
N

)
By considering the required accuracy for our mean estimate and performing a transfor-

mation to the standard Normal distribution (i.e. with mean 0 and standard deviation 1),
we can obtain the following relationship [15]:

ε =
σ√
N

Φ−1
(

1 + κ

2

)
where the function Φ−1(•) is the inverse of the standard Normal cumulative distribution
function. By rearranging the terms and considering that we want to achieve at least this
accuracy we obtain the minimum value for the number of samples N :

N >

(
σΦ−1

(
1+κ
2

)
ε

)2

Please note that we do not know the true standard deviation σ, but for our purpose we can
estimate it by taking the standard deviation of the first few samples (for example the first 40).

7.2 Synthetic Examples

In order to evaluate the effectiveness of our algorithm we first performed experiments on
synthetic examples. We generated two sets of control flow graphs: Set1 contains 20 CFGs
with ∼ 100 nodes on average (between 67 and 126) and Set2 contains 20 CFGs with ∼ 200
nodes on average (between 142 and 268).

The software execution time for each node was randomly generated in the range of 10
to 100 time units. A fraction of all the nodes (between 15% and 25%) were then chosen
to become hardware candidates, and their software execution time was generated β times
bigger than their hardware execution time. The coefficient β was chosen from the uniform
distribution on the interval [3, 7], in order to model the variability of hardware speedups over
software. We also generated the size of the hardware modules, which in turn determined
their reconfiguration time.

The size of the PDR region available for placement of hardware modules was varied
as follows: we summed up all the areas for all hardware modules of a certain application:
MAX HW =

∑
m∈H area(m). Then we generated problem instances by considering the

size of the available reconfigurable region corresponding to different fractions of MAX HW :
15%, 25%, 35%, 45%, and 55%. As a result, we obtained a total of 2 × 20 × 5 = 200
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Figure 5: Comparison with State-of-Art [13]: Synthetic Benchmarks

experimental settings. All experiments were run on a PC with CPU frequency 2.83 GHz, 8
GB of RAM, and running Windows Vista.

For each experimental setting, we first generated a placement for all the hardware mod-
ules, which determined the area conflict relationship between them. Then, for each applica-
tion we inserted the configuration prefetches in the control flow graph. Finally, we have eval-
uated the result using the simulator described in Sec. 7.1 that produces the average execution
time of the application considering the architectural assumptions described in Sec. 3.1, 3.3
and 3.4. We have determined the result with an accuracy of ±1% with confidence 99.9%.

As a baseline we have considered the average execution time of the application (denoted
as baseline) in case all the hardware candidates are placed on FPGA from the beginning
and, thus, no prefetch is necessary. Please note that this is an absolute lower bound on the
execution time; this ideal value might be unachievable even by the optimal static prefetch,
because it might happen that it is impossible to hide all the reconfiguration overhead for a
particular application.

First of all we were interested to see how our approach compares to the current state-
of-art [13]. Thus, we have simulated each application using the prefetch queues generated
by our approach and those generated by [13]. Let us denote the average execution times
obtained with exG for our approach, and exPAP for [13]. Then we computed the performance
loss over the baseline for our approach, PLG = exG−baseline

baseline ; similarly we calculate PLPAP .
Fig. 5a and 5c show the results obtained (averaged over all CFGs in Set1 and in Set2). As
can be seen, for all FPGA sizes, our approach achieves better results compared to [13]: for
Set1, the performance loss over ideal is between 10% and 11.5% for our method, while for
[13] it is between 15.5% and 20% (Fig. 5a). In other words, we are between 27% and 42.6%
closer to the ideal baseline than [13]. For Set2, we also manage to get from 28% to 41%
closer to the ideal baseline than [13] (Fig. 5c).

One other metric suited to evaluate prefetch policies is the total time spent by the
application waiting for FPGA reconfigurations to finish (in case the reconfiguration overhead
was not entirely hidden). One major difference between the approach proposed in this
report and that in [13] is that we also execute candidates from H in software (if this is more
profitable than reconfiguring and executing on FPGA), while under the assumptions in [13]
all candidates from H are executed only on FPGA. Considering this, for each execution in
software of a candidate m ∈ H, we have no waiting time, but we do not execute m on FPGA
either. In this cases, in order to make the comparison to [13] fair, we penalize our approach
with sw(m)−hw(m). Let us define the reconfiguration penalty (RP): for [13] RPPAP is the
sum of all waiting times incurred during simulation, and for our approach RPG is the sum
of all waiting times plus the sum of penalties sw(m) − hw(m) whenever a module m ∈ H
is executed in software during simulation. Fig. 5b and 5d show the reconfiguration penalty
reduction RPR = RPPAP−RPG

RPPAP
, averaged over all CFGs in Set1 and in Set2. As we can

see, by intelligently generating the prefetches we manage to significantly reduce the penalty
(with up to 40%, for both experimental sets), compared to [13].

Concerning the running times of the heuristics, our approach took longer time than [13] to
generate the prefetches: from just 1.6× longer in the best case, up to 12× longer in the worst
case, incurring on average 4.5× more optimization time. For example, for the 15% FPGA
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Figure 6: Comparison with State-of-Art [13]: Case Study - GSM Encoder

fraction, for the biggest CFG in Set2 (with 268 nodes), the running time of our approach
was 3832 seconds, compared to 813 seconds for [13]; for CFGs with a smaller size and a less
complex structure we generated a solution in as low as 6 seconds (vs 2 seconds for [13]).

7.3 Case Study - GSM Encoder

We also tested our approach on a GSM encoder, which implements the European GSM
06.10 provisional standard for full-rate speech transcoding. This application can be de-
composed into 10 functions executed in a sequential order: Init, GetAudioInput, Prepro-
cess, LPC Analysis, ShortTermAnalysisFilter, LongTermPredictor, RPE Encoding, Add,
Encode, Output. The execution times were derived using the MPARM cycle accurate sim-
ulator, considering an ARM processor with an operational frequency of 60 MHz. We have
identified through profiling the most computation intensive parts of the application, and
then these parts were synthesized as hardware modules for an XC5VLX50 Virtex-5 device,
using the Xilinx ISE WebPack. The resulting overall CFG of the application contains 30
nodes. The reconfiguration times were estimated considering a 60 MHz configuration clock
frequency and the ICAP 32-bit width configuration interface.

The CFG for the GSM Encoder, as well as the profiling information, was generated using
the LLVM suite [6] as follows: llvm-gcc was first used to generate LLVM bytecode from the
C files. The opt tool was then used to instrument the bytecode with edge and basic block
profiling instructions. The bytecode was next run using lli, and then the execution profile
was generated using llvm-prof. Finally, opt-analyze was used to print the CFGs to .dot files.
Profiling was run considering several audio files (.au) as input.

Fig. 8a shows the detailed control flow graph (CFG) for our GSM encoder case study.
Nodes are labeled with their ID, their execution time (for example, for node with id = 1,
the execution time is 10 time units) and their type: root, sink, control nodes, loop header
nodes, basic nodes and hardware candidates (denoted with HW and represented with shaded
boxes). We have used two scenarios: one considering 5 nodes as hardware candidates (namely
modules with IDs 6, 9, 12, 15 and 22), and another scenario considering 9 nodes as hardware
candidates (depicted in Fig. 8a).

We have used the same methodology as for the synthetic examples and compared the
results using the same metrics defined above in Sec. 7.2, i.e. performance loss over ideal and
reconfiguration penalty reduction (presented in Fig. 6). As can be seen, for the scenario
with 5 candidate modules, the performance loss over ideal is between 10.5% and 14.8% for
our approach, while for [13] it is between 25.5% and 32.9% (Fig. 6a). Thus, we were from
50% up to 65% closer to the ideal baseline than [13]. The reconfiguration penalty reduction
obtained is as high as 58.9% (Fig. 6b). For the setting with 9 hardware candidates, the
performance loss over ideal is between 50% and 56% for our approach, while for [13] it is
between 117% and 135% (Fig. 6c). Thus we manage to get from 52% up to 59% closer to
the ideal baseline than [13]. This is also reflected in the reconfiguration penalty reduction
of up to 60% (Fig. 6d). The prefetches were generated in 27 seconds by our approach and
in 11 seconds by [13].
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Figure 7: Comparison with State-of-Art [13]: Case Study - Floating Point Benchmark

7.4 Case Study - Floating Point Benchmark

Our second case study was a SPECfp benchmark (FP-5 from [19]), characteristic for scien-
tific and computation-intensive applications. Modern FPGAs, coupled with floating-point
tools and IP, provide performance levels much higher than software-only solutions for such
applications [17]. In order to obtain the inputs needed for our experiments, we used the
framework and traces provided for the first Championship Branch Prediction competition
[19]. The given instruction trace consists of 30 million instructions, obtained by profiling
the program with representative inputs.

We have used the provided framework to reconstruct the control flow graph (CFG) of
the FP-5 application based on the given trace. We have obtained a CFG with 65 nodes,
after inlining the functions and pruning all control flow edges with a probability lower than
10−5. Then we used the traces to identify the parts of the CFG that have a high execution
time (mainly loops).

Fig. 8b shows the detailed control flow graph (CFG) for our second case study: the
floating point benchmark from SPECfp. Nodes are represented as discussed in Sec. 7.3.
The software execution times for the basic blocks were obtained by considering the follow-
ing cycles per instruction (CPI) values for each instruction: for calls, returns and floating
point instructions CPI = 3, for load, store and branch instructions CPI = 2, and for other
instructions CPI = 1. Similar to the previous experimental sections, we considered the
hardware execution time β times smaller than the software one, where β was chosen from
the uniform distribution on the interval [3, 7].

We have used two scenarios: one considering as hardware candidates the top 9 nodes with
the highest software execution times (namely modules with IDs 5, 11, 17, 21, 22, 32, 42, 45
and 56), and another scenario considering the top 25 nodes (depicted in Fig. 8b). Following
the same methodology as described in Sec. 7.2, we compared our approach with [13]. The
results are presented in Fig. 7. For example, for the scenario with 9 candidate modules, the
performance loss over ideal is between 77% and 90% for our approach, while for [13] it is
between 107% and 118% (Fig. 7a). Thus, we are from 20% up to 28% closer to the ideal
baseline than [13]. The reconfiguration penalty reduction is as high as 28% (Fig. 7b). For
the setting with 25 hardware candidates the reconfiguration penalty reduction increases, up
to 31.1% (Fig. 7d). As we can see, for both case studies our approach produces significant
improvements compared to the state-of-art. The prefetches for FP-5 were generated in 53
seconds by our approach and in 32 seconds by [13].

8 Conclusion

In this report we presented a speculative approach to prefetching for FPGA reconfigurations.
Based on profiling information, and taking into account the placement of hardware modules
on the FPGA, we compute the probabilities to reach each candidate module from every node
in the CFG, as well as the distributions of execution time gain obtained by starting a certain
prefetch at a certain node. Using this knowledge, we statically schedule the appropriate
prefetches (and implicitly do HW/SW partitioning of the candidate hardware modules)
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such that the expected execution time of the application is minimized. Experiments have
shown significant improvement over the state-of-art.

One direction of future work is to develop dynamic prefetching algorithms, that would
also capture correlations, for the case when the profile information is either unavailable, or
inaccurate. Another direction is to develop an approach sensitive to the execution context,
for applications that exhibit execution phases, in which the branch probabilities differ greatly
from the average case.
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(a) CFG for GSM Encoder (b) CFG for FP-5 Benchmark

Figure 8: CFGs for Case Studies
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