
Context-Aware Speculative Prefetch
for Soft Real-Time Applications

Adrian Lifa, Petru Eles and Zebo Peng
Linköping University, Linköping, Sweden
{adrian.alin.lifa, petru.eles, zebo.peng}@liu.se

Abstract—Dynamically reconfigurable computing devices have
the ability to adapt their hardware to application demands,
providing the performance of hardware acceleration, as well as
high flexibility, at competitive costs. For these reasons, FPGA-
based reconfigurable systems are becoming popular in many
application domains, including soft real-time computing. Unfortu-
nately, one of their biggest limitations is the high reconfiguration
overhead. One method to overcome this problem is configuration
prefetching, which tries to reduce the reconfiguration penalty by
preloading modules on the FPGA before they are needed, and
overlapping the reconfiguration with useful computation. In this
paper we present a speculative approach to context-aware inter-
procedural configuration prefetching that provides statistical
guarantees by minimizing the α-percentile of the execution time
distribution of a soft real-time application. Our method uses
profile information and takes into account the calling context of
a procedure in order to generate better prefetch solutions. We
also propose a middleware needed to apply the context-dependent
prefetches at run-time. Our experiments show that the developed
algorithm outperforms the previous state-of-art.

I. INTRODUCTION

In recent years, FPGA-based reconfigurable systems have
been employed for a large class of applications, because they
provide both the performance of hardware acceleration, and
high flexibility and adaptability [13]. Modern FPGAs provide
support for partial dynamic reconfiguration [19], which means
that parts of the FPGA may be reconfigured at run-time, while
other parts remain fully functional. Unfortunately, one of their
main drawbacks is the high reconfiguration overhead.

One technique to cope with this problem is configuration
prefetching1 [4], [7], [11], [12], [17], [8]. The main idea is
to preload configurations on FPGA before they are needed,
overlapping as much as possible the reconfiguration over-
head with useful computation. All of the previous work on
configuration prefetching tries to minimize either the average
execution time of an application (statistical mean), or the case
that happens most frequently (statistical mode). For a large
class of applications (e.g., soft real-time, multimedia) it is not
enough to have a short execution time on average, or in the
most probable cases, but instead it is desirable to have some
statistical guarantees on the execution time.

In this paper we propose a speculative approach to inter-
procedural configuration prefetching that minimizes the α-
percentile of the execution time distribution of a soft real-

1Configuration compression and caching [6] are two complementary tech-
niques that can be used in conjunction with prefetching, but they are not
explicitly addressed in this paper.

time application. Even in the simpler cases when the mean
or the mode of the execution time are minimized, the high
reconfiguration overheads make prefetching a challenging task.
The configurations to be prefetched should be the ones with
the highest potential to provide a performance improvement
and they should be predicted early enough to overlap the
reconfiguration with useful computation. Therefore, intelligent
prefetch scheduling is the key to high performance of such
systems, especially when statistical guarantees are required.

II. PREVIOUS WORK

One line of previous work related to ours was done in the
area of partitioning and statically scheduling task graphs for
FPGA-based architectures. Several articles proposed either ex-
act solutions (based on integer linear programming), or heuris-
tic static approaches to solve the problem [3], [2]. The authors
of [14] present a hybrid design/run-time prefetch scheduling
heuristic that prepares several schedules (corresponding to
different scenarios) at design-time, and then, at run-time it
chooses one of them based on the actual conditions. There are
two main differences between such solutions and the one we
are proposing in this article: The first difference is that all the
above papers address the optimization problem at a task level,
and for a large class of applications (e.g. those that consist of
a single sequential task) using such a task-level coarse granu-
larity is not appropriate. Instead, it is necessary to analyze the
internal structure and properties of tasks. The second differ-
ence is that none of these papers offer any statistical guarantees
and, thus, they are not appropriate for soft real-time systems.

The author of [6] proposes a dynamic heuristic to minimize
the execution time, based on a markov predictor, that performs
all the prefetch scheduling computations at run-time. The same
author also developed a hybrid heuristic, that aims at comple-
menting the run-time predictor with static profile information
for the target application. One disadvantage of these methods
is that they use only probabilities to guide prefetching.

Unlike the dynamic approaches mentioned above, static
prefetching has one major advantage: It requires no additional
special-purpose hardware and it generates minimal run-time
overhead. Moreover, the solutions generated are good as long
as the profile information known at compile time is accurate.

To our knowledge, the works most closely related to the
one we present in this paper are [11], [12], [7], [17] and [8].

Panainte et al. proposed both an intra-procedural [11] and
an inter-procedural [12] static approach to prefetch scheduling,

taking into account FPGA area placement conflicts. In order
to hide the reconfiguration overhead they try to anticipate
the hardware reconfigurations, either in the intra-procedural
control flow graph [11], or in the inter-procedural call graph
[12]. Based on data-flow analysis, they first determine the
regions not shared between any two conflicting hardware
modules, and then insert prefetches at the beginning of each
such region. This solution is too conservative and a more ag-
gressive speculation could hide more reconfiguration overhead.
Also, since the main goal of the approach is to minimize the
number of reconfigurations, execution time minimization is
not explicitly modeled in the optimization goal (it is only
indirectly modeled as they try to overlap the reconfiguration
with useful computation).

Based on the pioneering work of Hauck [4] in configuration
prefetching, Li et al. proposed in [7] a method to compute the
probabilities to reach any hardware module in an application,
based on profiling information. Their algorithm is applied
on the control flow graph, but only after all the loops are
identified and collapsed into dummy nodes. The probabilities
to reach the hardware modules are used to rank them, and
prefetches are issued at each basic block based on this ranking.
As a result, the execution time of the most frequent trace
through the application is minimized (the statistical mode).
One limitation of this method is that it works on the intra-
procedural control flow graph and it removes all loops, which
leads to loss of path information. Also, since this approach was
developed for FPGAs with relocation and defragmentation, it
does not account for placement conflicts between modules.

In [17], Sim et al. propose an algorithm for static configura-
tion prefetching for partially reconfigurable FPGAs. Their goal
is to minimize the overall execution time of an application,
taking into account FPGA area placement conflicts. They
work on the inter-procedural control flow graph and compute,
based on profiling information, ‘placement-aware’ probabili-
ties (PAPs). They represent the probability to reach a hardware
module from a certain basic block without encountering any
conflicting hardware modules on the way. Similar to [7], the
authors use the ‘placement-aware’ probabilities to rank the
modules and generate prefetch queues, which are inserted by
the compiler in the inter-procedural control flow graph of the
application. One limitation of this work (also common for the
approaches mentioned above), is that it uses only probability
information to guide prefetch scheduling. As it was shown
in [8], it is possible to generate better prefetches (and, thus,
further reduce the execution time of the application) if the ex-
ecution time distributions, correlated with the reconfiguration
time of each hardware module, are also taken into account.

In [8], the authors proposed a speculative approach that
schedules prefetches at design time and simultaneously per-
forms HW/SW partitioning, in order to minimize the ex-
pected execution time of an application. In order to choose
the configurations that will provide the highest performance
improvement, the method also considers the execution time
distributions, beside probabilities. The hardware candidates
are ranked according to a cost function at each node in the

Memory

Partially

Dynamically

Reconfigurable

(PDR) Region

Reconfiguration

CPU

Memory Reconfiguration
Controller

Bus FPGA

Fig. 1: Architecture Model

control flow graph of the application. The cost function tries
to estimate the overall impact of a certain prefetch decision
on the average execution time.

One drawback, common to all the related works mentioned
in this section, is that none of them offers any guarantees
on the execution time. In other words, since their goal is
to minimize either the average execution time (statistical
mean), or the most common case (statistical mode), or they
do not even model the execution time minimization as an
optimization goal, they are not appropriate in the case of
soft real-time applications. Such applications require statistical
guarantees on their execution time, and in this paper we will
present an inter-procedural approach that tries to minimize the
α-percentile of an application’s execution time distribution.

III. CONTRIBUTIONS

The main contributions of this paper are the following:
• We propose a static inter-procedural configuration

prefetching technique that provides statistical guarantees
on the execution time of soft real-time applications.

• We develop a method to take into account the calling
context of a procedure in the process of designing the
configuration prefetch, in order to obtain better solutions.

• We present a new middleware that is needed in order to
apply our context-aware inter-procedural prefetch tech-
nique at run-time.

IV. SYSTEM MODEL

A. Architecture Model

Architectures that use FPGAs as hardware accelerators
(coprocessors) become more and more common in modern
systems. Due to the recent advances in FPGA technology, one
scenario often employed is the following (illustrated in Fig. 1):
The FPGA is partitioned into a static region and a partially
dynamically reconfigurable (PDR) region. On the static part,
a microprocessor is instantiated, along with a reconfiguration
controller (that takes care of reconfiguring the PDR region),
and other application modules that need not change at run-time
(if any). The PDR region is usually partitioned into slots (the
granularity varies) where the application’s hardware modules
will reside. The reconfiguration controller can load one single

module at a time on the PDR region, but the execution of the
modules not affected by the current reconfiguration can go
on in parallel. This is a realistic model that supports modern
FPGAs (like, e.g., the Xilinx Virtex or Altera Stratix families).

Given such an architecture and an application to run on
it, one solution would be to partition the application into a
software part (to be executed by the CPU) and a number
of hardware modules (that are computationally expensive in
software and are suitable for hardware implementation). Since
modern embedded systems have tight cost constraints, it is
reasonable to assume that the PDR region on the FPGA is
limited and cannot host all the application modules simulta-
neously. Nevertheless, since the application does not need all
its hardware modules at the same time, it is interesting to
consider reusing the FPGA area and dynamically loading at
run-time the modules that the application currently needs. The
reconfiguration controller will configure the PDR region by
loading the bitstreams from the memory, upon CPU requests.

We model the PDR region as a rectangular matrix of
configurable logic blocks. Each hardware module occupies
a contiguous rectangular area of this matrix. Although it is
possible for the hardware modules to be relocated on the PDR
region of the FPGA at run-time, this operation is known to be
computationally expensive [16]. Thus, similar to the assump-
tions of Panainte [11] and Sim [17], we also consider that the
placement of the hardware modules is decided at design time
and any two hardware modules that have overlapping areas
are in ‘placement conflict’.

B. Application Model

We model our application as a program composed of several
procedures. We consider only structured programs [1], and
since any non-structured program is equivalent to some struc-
tured one, our assumption loses no generality. Each procedure
is modeled as a control flow graph (CFG) that captures
all potential execution paths and contains two distinguished
nodes, entry and exit, corresponding to the entry and the exit
of the procedure2. The entire program is modeled as an inter-
procedural control flow graph (ICFG) [18], Gicf (Nicf , Eicf),
and we augment it with two special nodes, root and sink,
corresponding to the single entry and the single exit of
the program3. The set of nodes in the graph is defined as
Nicf = C ∪ I ∪ O ∪ R ∪ S ∪ H, where C represents the
call sites, I the procedure entry nodes, O the procedure exit
nodes, R the nodes where control returns after procedure calls
(there exists one return node corresponding to each call site), S
the regular basic blocks (defined as straight-line sequences of
instructions) and H represents the set of hardware candidates
(to be potentially executed on the FPGA). The set of edges in
the ICFG, defined as Eicf = Y ∪ X ∪ E , corresponds to the
possible flow of control within the program. We distinguish

2If a procedure contains several return statements, then we add a dummy
exit node (with zero execution time), and the corresponding edges such that
the single dummy exit node is the successor of all the original return nodes.

3In case of multiple exit points, we proceed similar to the case of multiple
procedure return statements.

between procedure entry edges (Y), procedure exit edges (X)
and regular edges (E).

The function prob : E∪Y → [0, 1] represents the probability
of each regular and procedure entry edge in the ICFG to
be taken, and it is obtained by profiling the application.
Please note that procedure exit edges have probability one.
In case call sites have only one single outgoing edge, then the
corresponding procedure entry edges will also have probability
one. Nevertheless, if pointers to functions are used, then
a call site can have several outgoing edges with different
probabilities (that together sum up to one).

We denote the set of hardware candidates with H ⊂ Nicf
and any two modules that have placement conflicts with
m1 ./ m2. We assume that all hardware modules in H have
both a hardware implementation and a corresponding software
implementation. Since sometimes it might be impossible to
hide enough of the reconfiguration overhead for all candidates
in H, our technique will try to decide at design time which
are the most profitable modules to insert prefetches for (at
a certain point in the ICFG). Thus, for some candidates, it
might be better to execute the module in software, instead of
inserting a prefetch too close to its location (because waiting
for the reconfiguration to finish and then executing the module
on the FPGA is slower than executing it in software). The set
H can be determined automatically (or by the designer) and
might contain, for example, the computation intensive parts of
the application, identified after profiling.

For each loop header n we denote with iter probn : N→
[0, 1] the probability mass function of the discrete distribution
of loop iterations. For each node n ∈ Nicf we assume that
we know its software execution time, given by the function
sw : Nicf → R+. For each hardware candidate m ∈ H, we
also know its hardware execution time, given by the function
hw : H → R+. The function area : H → N, specifies the area
that hardware modules require, size : H → N×N gives their
size, and pos : H → N× N specifies the position where they
were placed on the reconfigurable region. Since all hardware
candidates are synthesized and placed on the FPGA at design
time, we also know their reconfiguration time, given by the
function rec : H → R+.

C. Reconfiguration Support

The architecture described in Sec. IV-A supports preemp-
tion and resumption of hardware reconfigurations. In order
to enable the software control of the FPGA configurations,
we adopt the reconfiguration library described in [16]. The
library defines an interface to the reconfiguration controller,
and contains the following functions to support initialization,
preemption and resumption of dynamic reconfigurations:

• load(m): Non-blocking call that requests the controller
to start or resume loading the bitstream of module m.

• currently reconfiguring(): Returns the ID of the mod-
ule being currently reconfigured, or -1 otherwise.

• is loaded(m): Returns true if the hardware module m
is already loaded on the FPGA, or false otherwise.

• execute(m): Blocking call that returns only after the
execution of hardware module m has finished.

D. Middleware and Execution Model

Let us assume that at each node n ∈ Nicf the hardware
modules to be prefetched have been ranked at design time
(according to some strategy) and placed in a table with entries
of type context:loadQ(n). Here, the label context consists of
a sequence of c call sites that have led to the current node n.
The field loadQ contains a list of candidate hardware modules,
ordered according to their impact on the α-percentile of the
execution time distribution. As we explain below, the exact
hardware module to be prefetched will be determined at run-
time (by the middleware, using the reconfiguration API), since
it depends on the run-time conditions.

In order to perform the context-dependent prefetches at
run-time, the middleware manages a call stack CTX . When a
call site is reached, it is pushed onto the CTX stack, and on
every return edge the corresponding call site is popped off the
stack. At every node n that has associated a prefetch table,
the middleware will apply the prefetches from the loadQ
whose context label matches the top c call sites registered in
the CTX stack.

For a certain context, if the module with the highest priority
(the head of loadQ) is not yet loaded and is not being currently
reconfigured, it will be loaded at that particular node. If the
head of loadQ is already on FPGA, the module with the next
priority that is not yet on the FPGA will be loaded, but only if
the reconfiguration controller is idle. Finally, if a reconfigura-
tion is ongoing, it will be preempted only in case a hardware
module with a priority higher than that of the module being
reconfigured is found in the current list of candidates (loadQ).

Once a hardware module m ∈ H is reached during the
execution, the middleware checks whether m is already fully
loaded on the FPGA, and in this case it will be executed
there. Otherwise, m will be reconfigured, and then executed
on the FPGA, but only if this generates a shorter execution
time than the software execution. If none of the above are true,
the software version of m will be executed.

V. MOTIVATION

Sim et al. propose in [17] a method for inter-procedural
prefetch, but their approach has two limitations: First of
all, it uses only the ‘placement-aware’ probabilities (PAPs)
to guide configuration prefetching, and secondly, it does
not prefetch inside a procedure the hardware modules from
outside it, due to the uncertainty of the call context. In [8] it
was shown, for the case of minimizing the average execution
time, that better results can be obtained by a method that
also takes into account the execution time distributions,
correlated with the reconfiguration time of each hardware
module. In this paper we will extend the previous work to the
inter-procedural case of minimizing the α-percentile of the
execution time distribution of a soft real-time application. We
will improve on the method presented in [17] for computing
the ‘placement-aware’ probabilities in order to make it

r

a

Software

part 1

b

c

f
m1

m2

hw=20

sw=175

hw=18

sw=158

proc.

compute

proc.

main

call compute

loadQ=m1

loadQ=m2

loadQ=m1

call context b:loadQ=m2

call context h:loadQ=m3

3

2

2

2

d

e

g

h

s

m3 hw=22

sw=162

Software

part 2
Software

part 3

i

call compute

return(h)

return(b)

loadQ=m1

loadQ=m3

call context h:loadQ=m3

4

2

2

4

3

Fig. 2: Motivational Example 1

context-aware, and we will propose a new middleware
capable of handling context-dependent prefetches.

A. Context Awareness
Let us first illustrate the importance of context-aware inter-

procedural configuration prefetching. For this, consider the
inter-procedural control flow graph (ICFG) in Fig. 2, where
software nodes are represented with circles and candidate
hardware modules with rectangles. Call edges are represented
with thick lines and return edges with dashed lines. This is a
very simple example composed of only two procedures, the
main program, and procedure compute, which is called twice
from the main procedure. The software and hardware execu-
tion times are illustrated on the figure. The reconfiguration
times are rec(m1) = 184, rec(m2) = 192, rec(m3) = 188,
and modules m1 m2 and m3 are all in a placement conflict
(i.e. m1 ./ m2, m1 ./ m3 and m2 ./ m3).

If we generate prefetches using the method from [17],
the prefetch for m1 will be anticipated at the root of the
ICFG, and its reconfiguration will be overlapped with the
computation done in software part 1 (which we assume is

r

b

c d

80% 20%

15

2

56

m
2 hw=20

sw=110
m

1hw=10

sw=90

a
68

s

(a) CFG

r

b

c d

80% 20%

15

2

56

m
2 hw=20

sw=110
m

1hw=10

sw=90

a
68

s

loadQ=m1

loadQ=m2

(b) Average Minimized

r

b

c d

80% 20%

15

2

56

m
2 hw=20

sw=110
m

1hw=10

sw=90

a
68

s

loadQ=m2

loadQ=m1

(c) 95-percentile Minimized

Fig. 3: Motivational Example 2

long enough to hide the reconfiguration overhead). Due to
the way in which the authors compute the ‘placement-aware’
probabilities4 (PAPs), the probability to reach m2 from any
node before m1 is zero (since m1 and m2 are conflicting).
Furthermore, the authors will consider that the probability to
reach m2 from inside procedure compute is zero (due to the
uncertainty of the call context5). As a result, module m2 will
be prefetched at node f , and almost no reconfiguration can be
hidden for it. As can be seen from the example, if we would
account for the call context, we could safely prefetch m2 at
node d, and, thus, overlap all of its reconfiguration overhead
with the execution of software part 2. For the second call of
procedure compute, a similar reasoning applies for module m3.

Both module m2 and module m3 are reachable with nonzero
probability from node d. If we do not distinguish the call con-
text at run-time, the best we can do is to prefetch either m2 or
m3 at node d, thus missing important prefetch opportunities. A
context-aware prefetch technique could do better: i.e. prefetch
m2 at node d when procedure compute is called from node b,
and prefetch m3 at node d when procedure compute is called
from node h.

B. Statistical Guarantees

We will now discuss the problem of configuration prefetch-
ing in the context of soft real-time systems. To our knowledge,
this paper is the first to address this issue. Most of the previous
papers focused on minimizing the average execution time of a
program [8], [17] or the most common case [7]. Unfortunately,
while suitable for the area of high performance computing,
these methods are not appropriate for soft real-time appli-

4We remind the reader that these are the probabilities to reach a hardware
module from a certain point, without encountering any conflicting modules
on the way (whose placement intersects with the module in discussion).

5Please note that the reachable modules from inside the procedure compute
depend on the call context: for the first call, m2 is reachable, and for the
second call, m3 is reachable.

cations, since in this case statistical guarantees are required.
Minimizing the average execution time might actually lead
to more deadline misses for such applications, because of an
unwanted stretch in the tail of the execution time distribution.
We will illustrate the issue on the example presented in Fig.
3. Let us consider that the control flow graph from Fig. 3a
corresponds to a soft real-time application that will provide
the required quality of service as long as at least 95% of its
executions satisfy a given deadline. In such a case, instead of
minimizing the average, we are interested in minimizing the
95-percentile of the execution time distribution, because this
will maximize the chances to satisfy the deadline and fulfill
the required guarantees.

As in the previous example, the software nodes are rep-
resented with circles and the hardware candidates with rect-
angles. Software and hardware execution times, as well as
the edge probabilities, are illustrated on the figure. Reconfig-
uration times are rec(m1) = 90 and rec(m2) = 140, and
the two modules are in placement conflict, m1 ./ m2. The
deadline that the application is required to satisfy in at least
95% of executions is 200 time units. For this example, by using
either the method described in [17] or the one proposed in [8],
the generated prefetches are identical (presented in Fig. 3b):
module m1 is prefetched at node r, and module m2 at node d.
This will generate the execution time distribution shown in Fig.
4a, with an average avg1 = 126 time units, but a 95-percentile
of 230 time units (i.e. 95% of executions will complete in 230
time units or less). As can be seen, the deadline is missed in
20% of the cases (when at most a 5% deadline miss rate was
allowed).

Considering the above discussion, we notice that in this case
it is actually better to issue the prefetches illustrated in Fig. 3c:
module m2 at node r and module m1 at node c. The resulting
execution time distribution is shown in Fig. 4b. Although its
average is avg2 = 168 time units (bigger than avg1), the 95-

p[%]

20%
avg1

80%

deadline

95-percentile1

100 126 200 230 time units

(a) Average Minimized

p[%]

20%

avg2

80%

95-percentile2

deadline

160 170 200

168

time units

(b) 95-percentile Minimized

Fig. 4: Execution Time Distributions

percentile is only 170 time units. In this case, the deadline is
always met, and the soft real-time requirements are satisfied.

In this paper we will propose a method to perform spec-
ulative inter-procedural configuration prefetch, taking into
account the soft real-time requirements of applications.

VI. PROBLEM FORMULATION

Given a soft real-time application composed of multiple
procedures (as described in Sec. IV-B), intended to run
on the reconfigurable hardware platform described in Sec.
IV-A, our main goal is to minimize the α-percentile of the
execution time distribution of the application. In order to
do this, we aim to determine, at each node n ∈ Nicf , the
context-dependent loadQ to be used by the middleware (as
described in Sec. IV-D).

VII. INTER-PROCEDURAL CONFIGURATION PREFETCHING

As we have shown in the Motivation section (V), it is
important to consider the calling context of procedures when
performing inter-procedural prefetching. In this paper we will
extend the previous work on configuration prefetching [8], in
which the main idea is to rank all the reachable hardware
candidates from a certain point in the program according to a
cost function. This cost function takes into account both the
‘placement-aware’ probabilities (PAPs) to reach the hardware
candidates, as well as the execution time distributions from

the prefetch point up to the candidates. The goal is to prefetch
those hardware modules that will minimize the α-percentile of
the execution time distribution of the application.

A. Soft Real-Time Constraints

As we have mentioned before, we address the real-time
constraints by minimizing the α-percentile of the application’s
execution time distribution. Given a distribution and a number
α(0 ≤ α ≤ 100), the α-percentile of the distribution is defined
as the value below which α% of the observations fall. Thus, for
a soft real-time application, the α-percentile of its execution
time distribution is the value that gives a statistical guarantee
(on the steady-state behavior) that no more than (100−α)% of
the executions will exceed it. Similar approaches to modelling
of the soft real-time constraints can be found, for example, in
[9] or [15].

Our objective in this paper is to choose the hardware
candidates with the highest improvement potential and to
schedule their prefetches such that the α-percentile for the
obtained execution time distribution is as small as possible.
As an example, let us consider a GSM codec application, for
which it is necessary that at least 95% of the frames will be
decoded before a given deadline, in order to provide a certain
quality of service (no major disruptions in the voice signal).
In such a case, we will minimize the 95-percentile of the
execution time distribution, in order to maximize the chance
of meeting the deadline (for at least 95% of the frames) and
delivering the required quality of service.

B. Configuration Queues

At any node n ∈ Nicf , we try to intelligently assign
priorities to the reachable candidate modules and determine
the context-dependent table context:loadQ(n) to be used by
the middleware (as described in Sec. IV-D). One important
observation here is that the set of reachable hardware modules
from a certain location inside a procedure depends on the call
context of that procedure. As a result, we have a context-
dependent loadQ at every node n, where the context label
previously mentioned consists of a sequence of c call sites
that have led to node n.

The number of context labels at a location is (potentially)
exponential in the number of nested call sites for a procedure.
For example, if procedure A is called from 5 locations inside
another procedure B, and B is itself called 5 times from the
main program, then the number of context labels for the nodes
inside procedure A is 5 × 5 = 25. In order to deal with this
problem, we have resorted to two solutions. First of all, our
experiments have shown that we can limit the length of the
context labels to at most c = 2 call sites, without sacrificing
too much the performance of the prefetch algorithm. The
intuition behind this is that it is usually not necessary to start a
prefetch too early before a module will be used (but only early
enough to overlap its reconfiguration overhead with useful
computation). Another empirical observation was that many
context labels had the same reachable modules with the same

Algorithm 1 Generating context-dependent prefetch queues
1: procedure GENERATEPREFETCHQ
2: for all n ∈ Nicf do
3: for all l ∈ ContextLabels(n) do
4: for all {m ∈ H|PAP l(n,m) 6= 0} do
5: SGnm ← subgraph between n and m
6: MGn ←MGn ∪ SGnm . merge subgraphs
7: end for
8: add a sink node to MGn

9: for all {m ∈ H|PAP l(n,m) 6= 0} do
10: Cl

nm ← ComputeCostFct(n,m, l,MGn)
11: end for
12: l : loadQ(n)← modules sorted ascending by Cl

nm

13: remove modules with area conflicts
14: end for
15: end for
16: eliminate redundant prefetches
17: end procedure

probabilities. In this case, it is possible to merge those labels,
and, thus, reduce their overall number.

Our overall strategy to generate the prefetch queues is
shown in Algorithm 1. Given the reachable modules from node
n ∈ Nicf , we want to rank them and prepare the prefQ to be
used at run-time (line 12). In order to do this, for each context
label l at node n, we compute the cost function Clnm (line 10),
which tries to estimate at design time what is the impact of
reconfiguring a certain module m on the α-percentile of the ex-
ecution time distribution. After the context:loadQ(n) has been
generated for a certain node and a certain context, we remove
all the lower priority modules that have area conflicts with
higher priority ones (line 13). Once all the prefetch queues
have been generated, we eliminate redundant prefetches, sim-
ilar to [7], [17] or [8]. This means that all consecutive candi-
dates at a child node that are a starting sub-sequence at all its
parents in the ICFG, for the same context label, are eliminated
(line 16). The exact hardware module to be prefetched will be
determined at run-time, as explained in Sec. IV-D.

In order to compute our cost function, we first construct the
subgraph (MGn) containing the nodes between n and all the
reachable candidate modules from node n (lines 4-6). In line
4, PAP l(n,m) represents the ‘placement-aware’ probability
to reach module m from node n, given the context l, without
encountering any conflicting hardware modules on the way
(the computation of PAP l(n,m) is discussed in Sec. VII-D).
Please note that we add a sink node (line 8) to MGn, as a
successor of all candidate modules m in the subgraphs SGnm;
as a result MGn is a control flow graph with entry node n
and exit node sink. Next, we want to estimate what is the
execution time distribution of this merged subgraph (MGn).
Depending on the candidates that we decide to prefetch, the
hardware modules will have different execution times and,
thus, the execution time distribution of MGn will depend
on the prefetch decisions. We are interested to estimate the
α-percentile of the execution time distribution of MGn, and
we will prefetch those hardware candidates that generate the
minimum α-percentile for it.

Algorithm 2 Computing the cost function
1: procedure COMPUTECOSTFCT(n, m, l, MG)

2: Xm ←
{
sw(m) : sw(m) < Wnm + hw(m)
Wnm + hw(m) : otherwise

3: for all {k ∈MutEx(m)|PAP l(n,m) 6= 0} do

4: Xk ←
{
sw(k) : sw(k) < Wsk + hw(k)
Wsk + hw(k) : otherwise

5: end for
6: for all {k /∈MutEx(m)|PAP l(n,m) 6= 0} do

7: Xk ←
{
sw(k) : sw(k) < W k

nm + hw(k)
W k

nm + hw(k) : otherwise
8: end for
9: fcdtMG ← forward control dependence tree of MG

10: distnm ← compute execution time distribution of MG,
based on fcdtMG and using the execution time estimates Xi

for hardware candidate modules
11: Cl

nm ← α-percentile of distnm

12: return Cl
nm

13: end procedure

C. The Prefetch Cost Function Clnm
The detailed method to compute the cost function is pre-

sented in Algorithm 2. In the above algorithm, Xi represents
the random variable associated with the execution time of
hardware candidate module i; Wnm denotes the random
variable expressing the waiting time for module m, given its
reconfiguration is started at node n (this is the time when the
processor must stall waiting for the reconfiguration of m to
finish, before the application could continue its execution with
m); MutEx(m) denotes the set of hardware modules that
are executed mutually exclusive with m; the index s in Wsk

represents the node where the paths leading from n to m and
k split; and W k

nm represents the random variable expressing
the waiting time for module k, given that its reconfiguration is
started immediately after the one for m. Sec. VII-E discusses
the computation of the waiting time distributions Wnm.

As we said earlier, in order to compute the execution time
distribution of the merged subgraph MG, we first need to
estimate the execution time distributions (represented by Xi)
of the hardware candidates, given that reconfiguration for
module m is started at node n. For those hardware modules
that will be executed mutually exclusive with m we estimate
their potential waiting time considering that we start their
reconfiguration at the node (denoted with s) where their
paths split (lines 3-4). For the modules that are not mutually
exclusive with m, we estimate their potential waiting time
considering that their reconfiguration starts immediately after
the one for m finished (lines 6-7). Then, given these waiting
time distributions, we compute the execution time distributions
by adding the waiting times with the hardware execution times
(hw(m)); in those cases when the software execution time
(sw(m)) is smaller, we use that instead (see lines 2, 4 and 7).
This is done because sometimes it might be better to execute a
candidate in software, when its reconfiguration overhead could
not be overlapped with useful computation.

The next step is to construct the forward control dependence
tree (FCDT) [1] for the merged subgraph MG (line 9). Then,
based on fcdtMG and using the execution time estimates Xi

for hardware candidate modules, we compute the execution
time distribution of MG (line 10). In order to do this, we
apply the algorithm described in [8]. In summary, the basic
idea is to apply a recursive procedure that convolutes the
execution time of n with the execution time distributions of
all its children in the FCDT. For nodes with no children in
the FCDT, the procedure returns the node’s execution time.
For control nodes, the approach computes the execution time
distribution for all the children control dependent on the ‘true’
branch and scales this distribution with the probability of the
‘true’ branch. Similarly, it computes the distribution for the
‘false’ branch and then it superposes the two distributions.
Finally, for loop headers, the method computes the execution
time distribution of one iteration through the loop. Then it uses
the distribution of loop iterations (iter probn) to convolute
the execution time distribution of the loop body with itself as
many times as indicated by iter probn.

Once the execution time distribution of MG is computed,
the cost function Clnm is the α-percentile of this distribution
(line 11). The cost function tries to capture the contribution
of the candidate module m, as well as the impact that its
reconfiguration will produce on the other reachable modules
and, implicitly, on the α-percentile.

D. Computing Context-Dependent Probabilities PAP l(n,m)

The authors of [17] have presented a method to compute the
inter-procedural ‘placement-aware’ probabilities (PAPs), but
their approach has an important limitation: Inside a procedure,
it does not compute the probabilities to reach the candidates
after the procedure exit node (or, to be precise, it considers
that these probabilities are zero), due to the uncertainty of the
call context. Unfortunately, such an approach has an important
negative implication (as we have shown in section V): many
prefetch opportunities are lost. One straight-forward way to
deal with this issue would be to ignore the call context and
to associate the corresponding probabilities to the procedure
exit edges. Thus, inside the procedure, we will issue the same
prefetches, regardless of the calling context. We consider such
an approach to be too naive, and in this paper we propose
a new context-aware prefetch technique and a middleware to
apply it.

Our approach extends the method presented in [17], which
computes the probabilities to reach the hardware candidates
using a fixed point iterative algorithm that starts from the
hardware nodes. In order to compute context-dependent prob-
abilities (PAP l(n,m)), we annotate each procedure return
edge with the corresponding call site. Then, in the iterative
process of estimating the probabilities, whenever we consider
a return edge, we propagate upwards on this edge only those
modules whose context label contains less than c = 2 call
sites. Otherwise, we consider their probability zero. In case
a module’s probability is propagated from the return node of
a procedure to its exit node, we add the annotated call site
from the return edge to the context label. When we propagate
probabilities from procedure entry nodes to call sites, we
remove the call site from all the context labels. After the fixed

point method has stabilized, if there exist nodes in a procedure
that have identical reach probabilities for all candidate modules
and all the call contexts of the procedure, then we merge all
the context labels into a single one (containing a “don’t care”
in place of the procedure’s call site).

E. Estimating the Waiting Time Distributions Wnm

Let us consider that we want to prefetch a candidate module
m ∈ H at node n ∈ Nicf . If the reconfiguration of m does
not finish before the execution reaches it, then the application
might have to wait for the reconfiguration to be completed,
before continuing execution with m. We are interested to
compute the waiting time distribution (Wnm) that might be in-
curred if the reconfiguration of module m is started at node n.

In order to estimate the waiting time distribution we use
the method presented in [8]. The main idea is to first compute
the distance (in time) between n and m. We are only inter-
ested in that part of the distribution that is smaller than the
reconfiguration time of m (because only those components of
the distribution will generate waiting time). This computation
is performed on the forward control dependence tree [1]
of the subgraph containing only the nodes between n and
m (the method is briefly summarized in the end of Sec.
VII-C and details are available in [8]). Once we have the
distribution of execution time (distance) between n and m,
it is straightforward to compute the waiting time distribution
(Wnm) as the difference between the reconfiguration time of
m and the distance in time between n and m.

VIII. EXPERIMENTAL EVALUATION

A. Monte Carlo Simulation

1) Sampling: In order to evaluate the quality of our prefetch
solutions we have used an in-house developed Monte Carlo
simulator that produces the execution time distribution of
an application considering the architectural assumptions de-
scribed in Sec. IV-A, IV-C and IV-D. Each simulation gener-
ates a trace through the inter-procedural control flow graph,
starting at the root node, and ending at the sink node (and we
record the length of these traces). Whenever a branch node
is encountered, we perform a Bernoulli draw (based on the
probabilities of the outgoing edges) to decide if the branch
is taken or not. At loop header nodes we perform random
sampling from the discrete distribution of loop iterations
(iter probn) to decide how many times to loop.

For control nodes, if correlations between two or more
branches are known, then they could be captured through joint
probability tables. In such a case, whenever we perform a
draw from the marginal Bernoulli distribution for a branch, we
can compute the conditional probabilities for all the branches
correlated with it, based on the joint probability table. Later
in the simulation, when the correlated branches are reached,
we do not sample their marginal distribution, but instead we
sample their conditional distribution based on the outcome of
the first branch.

2) Accuracy Analysis: We stop the Monte Carlo simulation
once we reach a satisfactory accuracy for the α-percentile
of the execution time distribution. We describe the desired
accuracy in the following way: “The α-percentile of the output
distribution should be accurate to within ±ε with confidence
κ”. The accuracy can be arbitrarily precise at the expense
of longer simulation times. We will next present an analysis
based on confidence intervals [5], to determine the number of
samples to run in order to achieve the required accuracy.

We determine the percentile Pz of the output distribution
associated with a value z by determining what fraction of
the samples fell at or below z. Let us assume that z is the
actual α-percentile of the true output distribution. Then, for
the Monte Carlo simulation, the value generated in each run
independently has an α% probability of falling below z: this is
a binomial process with probability of success p = α%. Thus,
if we have N samples so far and S of those have fallen at
or below z, the uncertainty associated with the true percentile
we should associate with z is described by the distribution
Beta(S + 1, N − S + 1)[5].

For large enough number of samples N , we can use the
Normal approximation to the Beta distribution:
Beta(S + 1, N − S + 1) ≈ Beta(S,N − S) ≈

≈ Normal
(
S
N ,
√

S(N−S)
N3

)
= Normal

(
P̂z,

√
P̂z(1−P̂z)

N

)
In the above equation P̂z = S

N is the best guess estimate for
Pz . By considering the required accuracy for our percentile
estimate and performing a transformation to the standard
Normal distribution (i.e. with mean 0 and standard deviation
1), we can obtain the following relationship [5]:

ε =
√

Pz(1−Pz)
N Φ−1

(
1+κ

2

)
The function Φ−1(•) is the inverse of the standard Normal

cumulative distribution function. By rearranging the terms and
considering that we want to achieve at least this accuracy we
obtain the minimum value for the number of samples N :

N > Pz(1− Pz)
(

Φ−1(1+κ
2)

ε

)2

For example, in order to obtain the 99-percentile with an
accuracy of ±1% with confidence 99.9%, we need to perform
at least N > 1072 iterations of the Monte Carlo simulation.

B. Synthetic Examples

To study the improvement that can be achieved by our
algorithm, we first used the CFG generator tool from [10] to
generate 40 inter-procedural control flow graphs with ∼ 200
nodes on average (between 134 and 247). The software
execution time for each node was generated randomly from
the interval 10 to 100 time units. A fraction of all the nodes
(between 15% and 25%) were chosen as hardware candidates,
and their software execution time was generated approximately
five times bigger than their hardware execution time (similar
to the assumptions of [17]). The size and the reconfiguration
time for the hardware modules was also generated.

We varied the size of the partially dynamically reconfig-
urable (PDR) region available for placement of hardware
modules, taking fractions of 15%, 35%, and 55% from the total

area needed for all the hardware candidates in the application,
MAX HW =

∑
m∈H area(m). As a result, we obtained a

total of 40× 3 = 120 experimental settings.
For each experimental setting, we generated a placement for

all the hardware modules, which determined the area conflict
relationship between them. Then, for each application we have
produced prefetches using three methods: The first is the one
from [17] (denoted with PAP), that performs inter-procedural
placement-aware prefetch for minimizing the average
reconfiguration overhead. The second is the method described
in [8] (denoted with AVG), that minimizes the average
execution time. Finally, we used the method proposed in the
current paper (denoted with α-P) to generate prefetches that
minimize the α-percentile of the execution time distribution.

For each method, we have performed Monte Carlo sim-
ulation (as described in Sec. VIII-A) in order to estimate
the α-percentile of the resulting execution time distribution,
accurate to within ±1% with confidence 99.9%. We have
evaluated three percentiles: α = 90%, α = 95% and α = 99%.
Please note that the methods PAP and AVG generate the same
prefetches, regardless of the required statistical guarantees
represented by α. Thus, we only perform one Monte Carlo
simulation, and then read the different percentiles from the
obtained distribution. On the other hand, our α-P algorithm
generates prefetches customized to the particular value of α.

Let us denote the values of the obtained α-percentiles for the
three methods with ZPAP , ZAVG and Zα−P respectively. We
are interested to evaluate the relative percentile improvement
(RPI) achieved by our current method compared to the two
previous ones. Thus, we compute RPIα−PPAP = ZPAP−Zα−P

ZPAP

and, similarly, RPIα−PAV G. The vertical axis in Fig. 5 shows the
relative improvements averaged over all applications consid-
ered. For each hardware fraction (illustrated on the horizontal
axis), we present the improvements achieved by α-P over PAP
and AVG, considering different α-percentiles.

As can be seen, the improvements over PAP are in the range
11%-28%, and those over AVG are between 9%-22%, for
different hardware fractions. An interesting observation is that
the improvements obtained for high percentiles (α = 99%)
are constantly higher than the impovements obtained for lower
percentiles. This happens because the methods optimizing for
the average execution time (PAP and AVG) easily neglect the
far tail of the execution time distribution, while our method
(α-P) generates prefetches such that the required α-percentile
is minimized. Please note that soft real-time applications
typically require high guarantees (i.e. high α) on the execution
time. For α = 99% we obtain significant improvements, of up
to 28% over PAP and up to 22% over AVG.

All experiments were run on a Windows Vista PC with
CPU frequency 2.83 GHz and 8 GB of RAM. Concerning
the running times of our method, it incurred on average 2.2×
more optimization time than AVG and 4.1× more than PAP.
Nevertheless, the running times are not prohibitive (≈ 1.5
hours in the worst case, for the biggest ICFG) and are jus-
tifiable considering the improvements achieved over existing
solutions.

0

5

10

15

20

25

30

15% 35% 55%

A
ve

ra
g

e

R
P

I
(%

)

FPGA size (%MAX_HW)

Improvement over PAP

90%

95%

99%

α

(a) Comparison with PAP

0

5

10

15

20

25

15% 35% 55%

A
ve

ra
g

e

R
P

I
(%

)

FPGA size (%MAX_HW)

Improvement over AVG

90%

95%

99%

α

(b) Comparison with AVG

Fig. 5: Relative Improvement of α-P over PAP and AVG

0

5

10

15

20

25

15% 35% 55%

A
ve

ra
g

e

R
P

I
(%

)

FPGA size (%MAX_HW)

Improvement over PAP

90%

95%

99%

α

(a) Comparison with PAP

0

5

10

15

20

25

30

15% 35% 55%

A
ve

ra
g

e

R
P

I
(%

)

FPGA size (%MAX_HW)

Improvement over AVG

90%

95%

99%

α

(b) Comparison with AVG

Fig. 6: Relative Percentile Improvement: Case Study

C. Case Study – GSM Decoder

We also tested our approach on the inter-procedural con-
trol flow graph (ICFG) derived from a real-life example, a
GSM decoder, which implements the European GSM 06.10
provisional standard for full-rate speech transcoding. The ap-
plication contains 8 procedures: Init, GetAudioInput, Decode,
RPE Decoding, LongTermSynthesis, ShortTermSynthesisFil-
ter, Postprocessing, Output. We estimated the execution times
using the MPARM cycle accurate simulator, considering an
ARM processor running at 60 MHz. We have identified
through profiling the computation intensive parts of the ap-
plication, which were considered as hardware candidates (to
be synthesized for a Virtex-6 device). In order to estimate
the reconfiguration times, we considered a 60 MHz clock
frequency and the ICAP 32-bit configuration interface.

We have computed RPIα−PPAP and RPIα−PAV G using the same
methodology as in Sec. VIII-B. The results are presented in
Fig. 6. As can be seen, the improvements are similar to the
ones achieved for the synthetic cases. For example, with a
hardware fraction of only 15%, our method reduced the 99-
percentile with 24% compared to PAP and with 26% compared
to AVG. The reduction (of around 15%) for the 95-percentile
is satisfactory as well. The running time of our algorithm was
18 minutes in the worst case, compared to 12 minutes for AVG
and 7 minutes for PAP.

IX. CONCLUSION AND FUTURE WORK

The contribution of this paper is threefold: First of all, to our
knowledge, this is the first work that addresses the problem of
static inter-procedural configuration prefetching, with the goal
to provide statistical guarantees on the execution time of soft
real-time applications. Secondly, we have developed a context-
aware method to generate the inter-procedural speculative
prefetches at design time. Finally, we have proposed a new

middleware that is needed to perform the context-aware inter-
procedural prefetching at run-time.

In summary, we first compute the context-dependent
‘placement-aware’ probabilities to reach each hardware mod-
ule from every node in the inter-procedural control flow graph.
Next, we determine the distributions of waiting time incurred
by starting a certain prefetch at a node. Then, we use this
information in order to statically schedule the appropriate
prefetches, such that we minimize the α-percentile of the
execution time distribution of a soft real-time application. At
run-time, the middleware decides which prefetches to issue
based on the actual context.

For future work, we plan to extend the ideas presented here
in order to develop dynamic prefetching algorithms, that will
also capture correlations. The main advantage of using such
techniques would be that the prefetch will not rely on profile
information anymore, but the approach would dynamically
react and adapt to changes in the application behavior.

REFERENCES

[1] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman, Compilers: Principles,
Techniques, and Tools. Addison Wesley, 2006.

[2] S. Banerjee, E. Bozorgzadeh, and N. Dutt, “Physically-aware HW-
SW partitioning for reconfigurable architectures with partial dynamic
reconfiguration,” Design Automation Conference, 2005.

[3] R. Cordone et al., “Partitioning and scheduling of task graphs on
partially dynamically reconfigurable FPGAs,” IEEE Trans. Comput.-
Aided Design Integr. Circuits Syst., vol. 28, no. 5, 2009.

[4] S. Hauck, “Configuration prefetch for single context reconfigurable
coprocessors,” Intl. Symp. on Field Programmable Gate Arrays, 1998.

[5] M. Hollander and D. A. Wolfe, Nonparametric Statistical Methods, 2nd
Edition. Wiley-Interscience, 1999.

[6] Z. Li, “Configuration management techniques for reconfigurable com-
puting,” 2002, PhD thesis, Northwestern Univ., Evanston, IL.

[7] Z. Li and S. Hauck, “Configuration prefetching techniques for partial
reconfigurable coprocessor with relocation and defragmentation,” Intl.
Symp. on Field Programmable Gate Arrays, 2002.

[8] A. Lifa, P. Eles, and Z. Peng, “Execution time minimization based on
hardware/software partitioning and speculative prefetch,” under submis-
sion, 2012.

[9] S. Manolache, P. Eles, and Z. Peng, “Schedulability analysis of applica-
tions with stochastic task execution times,” ACM Trans. Embed. Comput.
Syst., vol. 3, no. 4, 2004.

[10] C.-F. Neikter, “Cache prediction and execution time analysis on real-
time MPSoC,” 2008, MSc thesis, Linköping Univ., Sweden.

[11] E. Panainte, K. Bertels, and S. Vassiliadis, “Instruction scheduling for
dynamic hardware configurations,” Design, Automation, and Test in
Europe, 2005.

[12] E. Panainte, K. Bertels, and S. Vassiliadis, “Interprocedural compiler
optimization for partial run-time reconfiguration,” The Journal of VLSI
Signal Processing, vol. 43, no. 2, 2006.

[13] M. Platzner, J. Teich, and N. Wehn, Eds., Dynamically Reconfigurable
Systems. Springer, 2010.

[14] J. Resano, D. Mozos, and F. Catthoor, “A hybrid prefetch scheduling
heuristic to minimize at run-time the reconfiguration overhead of dy-
namically reconfigurable hardware,” Design, Automation, and Test in
Europe, 2005.

[15] N. R. Satish, K. Ravindran, and K. Keutzer, “Scheduling task depen-
dence graphs with variable task execution times onto heterogeneous
multiprocessors,” Intl. Conf. on Embedded Software, 2008.

[16] J. E. Sim, “Hardware-software codesign for run-time reconfigurable
FPGA-based systems,” 2010, PhD thesis, National Univ. of Singapore.

[17] J. E. Sim et al., “Interprocedural placement-aware configura-
tion prefetching for FPGA-based systems,” IEEE Symp. on Field-
Programmable Custom Computing Machines, 2010.

[18] S. Sinha, M. J. Harrold, and G. Rothermel, “Interprocedural control
dependence,” ACM Trans. Softw. Eng. Methodol., vol. 10, no. 2, 2001.

[19] Xilinx, “Early access partial reconfiguration user guide UG208,” 2006.

