
A Technique for Optimisation of SOC Test Data Transportation

Anders Larsson, Erik Larsson, Petru Eles and Zebo Peng

Embedded Systems Laboratory
Linköpings Universitet

SE-582 83 Linköping, Sweden

Abstract

We propose a Tabu-search-based technique for time-
constrained SOC (System-on-Chip) test data transportation.
The technique makes use of the existing bus structure, where
the advantage is, compared to adding dedicated test buses,
that no additional routing is needed. In order to speed up the
testing and to fulfill the time constraint, we introduce a
buffer at each core, which in combination with dividing tests
into smaller packages allows concurrent application of tests
on a sequential bus. Our technique minimizes the combined
cost of the added buffers and the test control logic. We have
implemented the technique, and experimental results
indicate that it produces high quality results at low
computational cost.

1. Introduction
The increasing test application times for SOC (system-on-

chip) designs is mainly due to the high amount of test data

required for testing. The test application time can be

minimized by an efficient organization of the test data

transportation. In general, the test data is transported on a

TAM (test access mechanism) which can be an added

dedicated infrastructure for testing purpose only, or an

existing functional structure, such as the system bus, for

example.

Several approaches assuming a dedicated TAM for test

data transportation have been proposed [1, 6, 9, 13]. Aerts

and Marinissen proposed three TAM structures for scan-

tested systems [1], and Varma and Bhatia [13], as well as

Marinissen et al. [9] suggested dedicated TAM structures.

Iyengar et al. defined a framework for TAM design and test

scheduling on dedicated TAMs [6]. Cota et al. proposed a

scheme for network-on-chip designs [3], and Nahvi and

Ivanov proposed a packet based TAM scheme [11]. Harrod

demonstrated the use of the AMBA-bus for test purpose [4].

We propose a buffer-based architecture that makes use of

the existing bus structure for test data transportation. The

advantage using the existing bus structure is that additional

wire routing is not needed, and the advantage of introducing

buffers is that we separate the transportation from the

application of test data. The scheme adds buffers at each

core and an additional controller. We, therefore, propose a

Tabu-search-based algorithm to minimize the size of the

buffers at each core, as well as the controller and, at the same

time not violating the test time constraint. Experiments

show that our approach produces results with high quality at

low computational cost.

The rest of the paper is organized as follows. Section 2

gives an overview of SOC test architecture. The problem is

formulated in Section 3, and the architecture is presented in

Section 4. The proposed algorithm is discussed in Section 5.

The experimental results are presented in Section 6, and

conclusions are drawn in Section 7.

2. SOC Test Architectures
In this section we discuss different types of architectures for

test data transportation.

A test architecture with a dedicated TAM is illustrated in

Figure 1. The cores are scan-tested and to ease interfacing

with the TAM, each core has a wrapper. The scanned

elements at a core (scan-chains and wrapper-cells) are

connected into wrapper chains, which are connected to TAM

wires. A dedicated TAM for the transportation of test data

has the advantage of high flexibility. It also offers the

possibility of a trade-off between the test time and the

number of wires used in the TAM. A high number of wires

requires extra silicon area to the design, but it enables

parallel transportation of test vectors, which will shorten the

test time.

A test schedule for the example design in Figure 1(a) is

depicted in Figure 1(b). Note, that the bus in the system is

not used at all during testing mode. Figure 2(a) shows an

architecture where buffers are introduced between the

existing bus and the cores, thus separating the transportation

of test data from the application. The application of a test

vector at a core, that is shift-in and capture, takes longer time

than sending the test vector from the ATE to the core. The

a) Test architecture with a dedicated TAM.

sc
sc

sc
sc

Core2Core1

Input
wrapper
cell

Output
wrapper
cell

wrapper

TAM

b) Test schedule using dedicated TAM

bus

Figure 1. A dedicated TAM and the test
scheduling.

Transportation
to Core1.of test

Transportation
to Core2.of test

bus

TAM

Test-time

idea with buffers at cores is combined with the division of

the test set for each core into small packages of test vectors.

It means that as soon as a package of test data has arrived to

a core, testing at the core can start. Since the test application

at a core takes longer than sending test data, the bus can be

used to fed test data to other cores. And, hence, the cores are

tested concurrently (Figure 2(b)), leading to a reduced test

application time.

3. Problem Formulation
In this section we formulate the problem. Given is a system

consisting of a set of cores C = {c1, c2, ..., cN}, where N is

the number of cores, and each core ci, has a buffer bfi where

bsi is the buffer size (initially bsi is not determined). The

maximal allowed test time for the system tmax is given as a

constraint. Also given is the set of tests T={T1, T2, ...,TN},

where Ti is a set of test vectors, which is to be applied to the

core ci. For each test Ti, the following information is given:

 • the application-time ti
appl is the time needed to apply

the test to core ci,

 • the transportation-time ti
send is the time needed to trans-

port Ti from the test source SRCT via the bus to core ci,

 • the size sTi (the number of test vectors) of the test Ti.

A test Ti, is divided into mTi
packages, each of the same

size sTi- p
. The package size sTi- p

for a test Ti is determined

as follows1:

The time ti
appl-p to apply a package belonging to test Ti is

calculated as:

Associated to each package pij of test Ti where

, are three time points, τstartij
, τsendij

, and τfinishij
. The time to send,τsendij

, represents the start of the

transmission of package, pij, on the bus. The time, τstartij
, is

the start time of the test at the core ci. Finally, τfinishij
is the

time when the whole package has been applied. The finish

time, τfinishij
, is given by the following formula:

The objective of our technique is to find τstartij
and τsendij

for each package in such way that the total cost is minimised

while satisfying the test time constraint, tmax. The total cost

for the test is computed by a cost function, that consists of

the system’s total buffer size and the complexity of the

controller given as follows:

where α and β are two coefficients used to set the weight of

the controller and the buffer cost. The cost of the buffers are

given as:

and the controller:

where the constants k1
C

and k1
B

are constants reflecting the

base cost, which is the basic cost for having a controller and

buffers, respectively, and k2
C

and k2
B

are design-specific

constants that represent the implementation cost parameters

for the number of states and the buffer size.

The total buffer size in the system is given by:

The complexity of the test-controller CTRLT in equivalent

two-input NAND gates is given by the following formula

described in[10]:

where Ni is the number of inputs, No the number of outputs,

Ns the number of states and Nt the number of transitions.

4. The Buffer-based Architecture
The example in Figure 3 shows a system consisting of three

cores, c1, c2, and c3, all connected to the bus b. Each core ci
is associated with a buffer bfi placed between the core and

the bus. Also connected to the bus are two test components,

SRCT and CTRLT. We assume that the tests are all produced

in the test-source SRCT and the test-controller CTRLT is

responsible for the invocation of transmissions of the tests

on the bus. The test-controller consists of a finite state

machine sending a signal si to each core indicating when it

will receive a package of test data. When the core has

received the package, it sends a signal ri to the controller,

indicating that the controller can continue to transmit

packages to another core. We assume that the core itself

handles the evaluation of the test results, by, for example, a

signature analyser.

Each test Ti can be divided into mTi
packages (a set of test

vectors). The size of the buffer does not have to be equal to

the size of the packages. This is explained by the fact that the

test data in a package can be applied immediately when it

arrives at the core. The buffer size bsi, associated to a core

ci, is calculated with the following formula:
1. This means that the last test package may have a smaller num-

ber of test vectors than ti
size-p. We assume that this package is

filled up with empty vectors.

a) Test architecture with buffers and signature

analyzers (MISR)

sc
sc

Core1

sc
sc

Core2

bf1
MISR

bf2
MISR

bus

application

bus
Test-time

Core1
Core2

Figure 2. Functional bus and buffers

b) Test scheduling and application with buffers

s
T i p–

s
T i mT i

⁄= (1)

ti
appl p–

ti
appl

mT i
⁄= (2)

j 1 mT i
,()∈

τ finishij
τstartij

ti
appl p–

+= (3)

CostTot α Cost× Controller β Cost× Buffer+= (4)

CostBuffer k
1

B
k

2

B
BufferSize×+= (5)

CostController k
1

C
k

2

C
CF1×+= (6)

BufferSize bsi
i 1=

N

∑= (7)

CF1 N i N o 2
2
Nlog

s
×+ +() N t×=

5+ ×
2
Nlog

s
}

(8)

bsi max ki τstartij
τsendij

–()× ∆i+() j 1 mT i
,()∈,=

where the constant ki represents the rate at which the core

can apply the test, the time τstartij
is the scheduled start time

of the application of the package j from test Ti at the core,

and τsendij
is the start time for sending the package on the

bus. The constant ∆i represents the leftover package size,

which is the size of the test vectors that remain in the buffer

after the transportation of the package terminates. This

constant ∆i is determined by the difference between ti
appl-

p
and ti

send-p
, which is multiplied by the constant ki.

The following example illustrates the minimisation of the

buffer size and the test controller complexity. We make use

of the example system in Figure 3,which are tested with

three tests, T1, T2, and T3 (Table 1). In this example the time

tmax is set to 90 time units. Two different schedules for the 8

packages derived from the three tests are illustrated in

Figure 4(a) and Figure 4(b). In Figure 4(a) the packages are

sent in such a way that the application of the previous

package has finished before a new one arrives. This leads to

small buffers since every package can be applied

immediately as they arrive, that is τstartij
-τsendij

=0 for all

packages. The buffer sizes for this schedule are, bs1 =10

(), bs2 =20, and bs3 =10. In the second

schedule, Figure 4(b), some packages are grouped together

in pairs, which will produce larger buffers, bs1 =20

(), bs2 =40, and bs3 =20.

5. The Tabu-search-based Algorithm
We have implemented a Tabu search based optimisation

heuristic for the problem described in Section 3. The

algorithm (Figure 5), consists of three steps: in step one an

initial schedule is built, which is further improved in step

two and step three. The algorithm takes as inputs the tests T,

a minimal test time possible for the tests, tmin, and the

maximum allowed test time, tmax. tmin is the theoritical

minimal time needed for transportation and application of

tests T, with unlimited buffer and controller cost. This value

can be computed by a CLP (Constraint Logic Programming)

model in very short time (none of the experiments we have

used needed more than 700 ms for computing this value).

In the initial step, the tests are sorted according to their

application time, ti
appl, and then the initial schedule is built.

The slack, which is the difference between the end time of

the schedule and tmax, is calculated. In step two, the initial

c1 c2 c3

bf1

SRCT

b

CTRLT

Core

Buffer

Test-

Bus

Test-
source

bf2 bf3

s1r1r2
r3

s2 s3

s1
r1

s2
r2

Figure 3. Bus-based architecture.

controller

bs1
1

1 0()× 10+=

bs1
1

1 70 60–()× 10+=

0 20 40 80 10060

τsendb

c3

c1

c2

0 20 40 80 10060

Test3

Test1

Test2

τsend

τstart

b

c3

c1

c2

s1 s8
s2 s4s3 s6 s7s5

s1 s2 s3
s4 s5

{

time

time

τstart

{

s1
s2

s5s2 s3 s4

s1 s2 s3 s4 s5 s6 s7 s8

Start

Start

r1 r2 r3 r1 r3 r2 r1

r1 r2 r3 r1

Figure 4. Scheduling examples

a) Schedule with small buffers but high number of
control states

b) Schedule with large buffersand few control states

Test Nr packages
Application-

time (Ti
appl)

Transportation-

time (Ti
send)

∆i

T1 3 60 30 10

T2 2 60 20 10

T3 3 60 30 10

 Table 1. Test characteristics

Figure 5. Algorithm for test cost minimisation

Step1: if tmax < tmin return Not schedulable
sort the tests T in increasing order of ti

appl

until all packages are applied do
apply package from Ti
until time < ti

appl-p do
apply package from Ti+1
time = time +ti+1

send-p

repeat
repeat
Step2:doMark()
do until Slack is 0

Delay package from MarkList
repeat
best_cost = compCost(Sched0)
Step3:start:
doMark()
for each pos in MarkList

build new schedule Schedi
delta_costi = best_cost - compCost(Schedi)

repeat
for each delta_costi< 0, in increasing order
of delta_costi do

if not tabu(pos) or tabu_aspirated(pos)
Sched0 = Schedi
goto accept

end if
repeat
for each pos in MarkList

delta_costi’ = delta_costi + penalty(pos)
repeat
for each delta_costi’ in increasing order of delta_costi’
do

if not tabu(pos) goto accept
repeat
accept:
if iterations since previous best solution < 10 goto start
return Sched0

schedule is improved by distributing the slack between the

packages, hence, decreasing the buffer size. The schedule is

then further improved in step three, were a Tabu search-

based strategy is used. Tabu search [12] is a form of local

neighborhood search, which at each step evaluates the

neighborhood of the current solution and the best solution is

selected as the new current solution. In our algorithm the

neighborhood is determined by the possible points of

improvements in the schedule. These can be points which

decrease the buffer size by splitting a package, or decrease

the controller cost by merging packages. Each improvement

point is defined as a move, which, after is has been applied,

is marked as a tabu. When the Tabu search terminates, the

solution with the lowest cost is returned.

6. Experimental results
In our experiments we have used the following four

designs; Ex1, ASIC Z, Kime and System L. The main

characteristics of the four designs are presented in Table 2,

and detailed information can be found in [8].

We have compared the results produced by our heuristic

with those generated by solving the same optimisation

problem using a Constraint Logic Programming

formulation. Such a formulation has been given by us in [7].

Using a CLP solver [5] we were able to obtain the

theoretical optimum for the smallest of our examples (Ex1).

For the other three examples the optimisation was

terminated after 5 hours without verifying the optimum. For

these cases we considered the best result so far produced by

the CLP solver.

The experimental results are collected in Table 3. As can

be seen from the last column, our heuristic produced results

which were only less then 8.6% worse then those produced

by the CLP-based approach. However, the heuristic

proposed in this paper take 3s for the largest example, while

the CLP-based solver was running up to 5 hours and

produced results that, on average, were only 4.4% better

7. Conclusions
Efficient test data transportation for SOC is becoming an

important problem to focus on due to the increasing amount

of test data. We propose a technique to make use of the

existing bus structure in the system for test data

transportation. The advantage is that a dedicated bus for test

purpose is not needed, hence we reduce the routing costs.

We insert buffers and divide the tests into packages, which

means that tests can be scheduled concurrently even if the

bus only allows sequential transportation. We have proposed

a Tabu-search-based algorithm where the test cost, given by

the controller and buffer cost, is minimized. We have

implemented and compared our technique with the results

from an CLP approach. The results indicate that our

technique produces high quality solutions at low

computational cost.

References
[1] J. Aerts and E. J. Marinissen, "Scan Chain Design for Test

Time Reduction in Core-Based ICs," Proceedings of the
International Test Conference (ITC), pp. 448-457, 1998.

[2] AMBA Specification Rev 2.0, ARM Ltd., 1999

[3] E. Cota, L. Carro, A. Orailoglu, and M. Lubaszewski, "Test

planning and Design Space Exploration in a Core-based

Environment," Proceedings of Design, Automation and Test
in Europe (DATE), pp. 478-485, 2001.

[4] P. Harrod, "Testing Reusable IP-a Case Study," Proceedings
of International Test Conference (ITC), pp. 493-498, 1999.

[5] P. Van Hentenryck, "The CLP language CHIP: constraint

solving and applications," Compcon Spring '91. Digest of
Papers , 25 Feb-1 Mar 1991 , pp. 382 -387, 1991.

[6] V. Iyengar, K. Chakrabarty, and E. J. Marinissen, “Test

Access Mechanism Optimization, Test Scheduling, and Test

Data Volume Reduction for System-on-Chip”, Transactions
on Computer, Vol. 52, No. 12, Dec. 2003.

[7] A. Larsson, E. Larsson, P. Eles, and Z. Peng, "Buffer and

Controller Minimisation for time-Constrained Testing of

System-on-Chip," Proceedings of International Symposium
on Defect and Fault Tolerance in VLSI Systems, pp. 385 - 392,

2003.

[8] E. Larsson, A. Larsson, and Z. Peng, "Linkoping University

SOC Test Site," http://www.ida.liu.se/labs/eslab/soctest/,
2003.

[9] E. J. Marinissen, R. G. J. Arendsen, G. Bos, H. Dingemanse,

M. Lousberg, and C. Wouters, "A Structured and Scalable

Mechanism for Test Access to Embedded Reusable cores,"

Proceedings of International Test Conference , pp. 284-293,

1998.

[10] B. Mitra, P.R. Panda, and P.P Chaudhuri, "Estimating the

Complexity of Synthesized Designs from FSM

Specifications," Design & Test of Computers, Vol 10, pp. 30-

35, 1993.

[11] M. Nahvi and A. Ivanov, "A Packet Switching

Communication-based Test Access Mechanism for System

Chips," Digest of Papers of European Test Workshop (ETW),
pp. 81-86, 2001.

[12] C. R. Reeves (Editor), “Modern Heuristic Techniques for

Combinatorial Problems”, Blackwell Scientific Publications,

ISBN 0-470-22079-1, 1993.

[13] P. Varma and B. Bhatia, "A Structured Test Re-use

Methodology for Core-based System Chips," Proceedings of
International Test Conference (ITC), pp. 294-302, 1998.

Design
Nr

Tests

Nr

Packages

 Min Buffer

size

Max Buffer

size

Ex1 3 8 40 100

Kime 6 20 93 340

ASIC Z 9 38 111 419

System L 13 39 280 988

 Table 2. Design characteristics

Design tmax

 Constraint Logic Programming Proposed Algorithm Cost

ComparisonCPU time (s) Total cost CPU time (s) Total cost

Ex1 111 160 62(opt) <1 62 0%

Kime 257 18000 275 2 290 +5,5%

Asic Z 294 18000 208 2 215 +3,4%

System L 623 18000 747 3 811 +8,6%

 Table 3. Experimental results.

