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ABSTRACT
We address in this paper the combination of static and
dynamic scheduling into an approach called quasi-static
scheduling, in the context of real-time systems composed of
hard and soft tasks. For the particular problem discussed
in this paper, a single static schedule is too pessimistic
while a purely dynamic scheduling approach causes a very
high on-line overhead. In the proposed quasi-static solu-
tion we compute at design-time a set of schedules, and
leave for run-time only the selection of a particular sched-
ule based on the actual execution times. We propose an
exact algorithm as well as heuristics that tackle the time
and memory complexity of the problem. The approach is
evaluated through synthetic examples.

1. INTRODUCTION
Digital computer-based systems have become ubiquitous.
These systems have many applications including automo-
tive and aircraft controllers, cellular phones, household ap-
pliances, network switches, medical devices, and consumer
electronics.

The remarkable development of computer systems is partly
due to the advances in semiconductor technology. But also,
to a great extent, new paradigms and design methodologies
have made it possible to deploy devices with extraordinary
computation capabilities. Innovative design frameworks
have thus exploited the rapid technological progress in or-
der to create more powerful computer systems at lower
cost.

The design of modern computer systems is a difficult task
as they must not only implement the desired functionality
but also must satisfy diverse constraints (power consump-
tion, performance, correctness, size, cost, flexibility) that
typically compete with each other [10]. Moreover, the ever
increasing complexity of computer systems combined with
small time-to-market windows poses interesting challenges
for the designers.

The designer must thus explore several design alternatives
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and trade off among the different design objectives. One
such trade-off dimension is the choice of static solutions
versus dynamic solutions. Let us take as example the prob-
lem of mapping in which the tasks or processes must be
assigned to the processing elements (processors and buses)
of the system. A static solution would correspond to de-
ciding at design-time which tasks are mapped onto which
processing elements, such that the very same mapping is
kept along the operational life of the system. A dynamic
solution would, on the other hand, allow the change of
mapping during run-time (a typical case is process mi-
gration). Dynamic solutions exploit relevant information
while the system executes but their overhead is usually
quite significant. Static solutions cause no on-line over-
head but have to make assumptions that in many cases
turn out to be very pessimistic.

In practice, the execution time of tasks in a system is not
fixed. It depends on the input data, the system state,
and the target architecture, among others. Thus the exe-
cution time of a certain task may differ from one activa-
tion of the system to another. Therefore, task execution
times are best modeled by time intervals. In this context,
real-time systems leave open design alternatives that range
from purely static solutions (where fixed execution times,
typically worst-case execution times, are assumed) to dy-
namic solutions (where the actual execution time is taken
into account at run-time).

We explore the combination of static and dynamic schedul-
ing, into an approach we call quasi-static scheduling, for
real-time systems where task execution times are given by
intervals. In this paper we focus on a particular prob-
lem, namely scheduling for real-time systems composed of
hard and soft tasks. Note, however, that the concept of
quasi-static scheduling, and in general the idea of combin-
ing static and dynamic techniques might well be applied to
other design problems. For example, slack management in
the context of energy and power minimization has recently
received renewed attention.

Many real-time systems are composed of tasks which are
characterized by distinct types of timing constraints. Hard
tasks have critical deadlines that must be met in every
possible scenario. Soft tasks have looser timing constraints
and soft deadline misses can be tolerated at the expense of
the quality of results.

Scheduling for hard/soft real-time systems has been ad-
dressed, for example, in the context of integrating multi-
media and hard real-time tasks [6], [1]. Most of the pre-
vious work on scheduling for hard/soft real-time systems
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assumes that hard tasks are periodic whereas soft tasks are
aperiodic. The problem is to find a schedule such that all
hard periodic tasks meet their deadlines and the response
time of soft aperiodic tasks is minimized. The problem
has been considered under both dynamic [2], [9] and fixed
priority assignments [5], [7]. It is usually assumed that the
sooner a soft task is served the better, but no distinction is
made among soft tasks. However, by differentiating among
soft tasks, processing resources can be allocated more ef-
ficiently. This is the case, for instance, in videoconference
applications where audio streams are deemed more impor-
tant than the video ones. We make use of utility functions
in order to capture the relative importance of soft tasks and
how the quality of results is influenced upon missing a soft
deadline. Value or utility functions were first suggested
by Locke [8] for representing significance and criticality of
tasks.

We consider monoprocessor systems where both hard and
soft tasks are periodic and there might exist data depen-
dencies among tasks. We aim at finding an execution se-
quence (actually a set of execution sequences as explained
later) such that the sum of individual utilities by soft tasks
is maximal and, at the same time, satisfaction of all hard
deadlines is guaranteed. Since the actual execution times
usually do not coincide with parameters like expected du-
rations or worst-case execution times (WCET), it is possi-
ble to exploit information regarding execution time inter-
vals in order to obtain schedules that yield higher utilities,
that is, improve the quality of results.

Earlier work generally uses only the WCET for scheduling
which leads to an excessive degree of pessimism (Abeni
and Buttazzo [1] do use mean values for serving soft tasks
and WCET for guaranteeing hard deadlines though). We
take into consideration the fact that the actual execution
time of a task is rarely its WCET. We use instead the
expected or mean duration of tasks when evaluating the
utility functions associated to soft tasks. Nevertheless, we
do consider the worst-case duration of tasks for ensuring
that hard time constraints are always met.

In the frame of the problem discussed in this paper, off-
line scheduling refers to obtaining at design-time one sin-
gle task execution order that makes the total utility maxi-
mal and guarantees the hard constraints. On-line schedul-
ing refers to finding at run-time, every time a task com-
pletes, a new task execution order such that the total util-
ity is maximized, yet guaranteeing that hard deadlines are
met, but considering the actual execution times of those
tasks which already completed. On the one hand, off-line
scheduling causes no overhead at run-time but, by pro-
ducing one static schedule, it can be too pessimistic since
the actual execution times might be far off from the time
values used to compute the schedule. On the other hand,
on-line scheduling exploits the information about actual
execution times and computes at run-time new schedules
that improve the quality of results. But, due to the high
complexity of the problem, the time and energy overhead
needed for computing on-line the dynamic schedules is un-
acceptable. In order to exploit the benefits of off-line and
on-line scheduling, and at the same time overcome their
drawbacks, we propose an approach in which the schedul-
ing problem is solved in two steps: first, we compute a
number of schedules at design-time; second, we leave for
run-time only the decision regarding which of the precom-

puted schedules to follow. Thus the problem we address in
this paper is that of quasi-static scheduling for monopro-
cessor hard/soft real-time systems.

We propose a method for computing at design-time a set of
schedules such that an ideal on-line scheduler (Section 4)
is matched by a quasi-static scheduler operating on this set
of schedules (Section 5). Since this problem is intractable,
we present heuristics that deal with the time and memory
complexity and produce suboptimal good-quality solutions
(Section 6).

2. PRELIMINARIES
We consider that the functionality of the system is repre-
sented by a directed acyclic graph G = (T,E) where the
nodes T correspond to tasks and data dependencies are
captured by the graph edges E.

The tasks that make up a system can be classified as non-
real-time, hard, or soft. H and S denote, respectively,
the subsets of hard and soft tasks. Non-real-time tasks
are neither hard nor soft, and have no timing constraints,
though they may influence other hard or soft tasks through
precedence constraints as defined by the task graph G =
(T,E). Both hard and soft tasks have deadlines. A hard
deadline di is the time by which a hard task Ti ∈ H must
be completed. A soft deadline di is the time by which a soft
task Ti ∈ S should be completed. Lateness of soft tasks
is acceptable though it decreases the quality of results. In
order to capture the relative importance among soft tasks
and how the quality of results is affected when missing a
soft deadline, we use a non-increasing utility function ui(ti)
for each soft task Ti ∈ S, where ti is the completion time
of Ti. Typical utility functions are depicted in Figure 1.
We consider that the delivered value or utility by a soft
task decreases after its deadline (for example, in an engine
controller, lateness of the task that computes the best fuel
injection rate, and accordingly adjusts the throttle, implies
a reduced fuel consumption efficiency), hence the use of
non-increasing functions. The total utility, denoted U , is
given by the expression U =

P
Ti∈S ui(ti).

The actual execution time of a task Ti at a certain activa-
tion of the system, denoted τi, lies in the interval bounded
by the best-case duration τbc

i and the worst-case duration
τwc

i of the task, that is τbc
i ≤ τi ≤ τwc

i (dense-time seman-
tics). The expected duration τ e

i of a task Ti is the mean
value of the possible execution times of the task.

We consider that tasks are non-preemptable. A sched-
ule gives the execution order for the tasks in the system.
We assume a single-rate semantics, that is, each task is
executed exactly once for every activation of the system.
Thus a schedule σ is bijection σ : T → {1, 2, . . . , |T|}
where |T| denotes the cardinality of T. We use the nota-
tion σ = T1T2 . . . Tn as shorthand for σ(T1) = 1, σ(T2) =
2, . . . , σ(Tn) = |T|. We assume that the system is acti-
vated periodically and that there exists an implicit hard
deadline equal to the period. This is easily modeled by
adding a hard task, that is successor of all other tasks,
which consumes no time and no resources. Handling tasks
with different periods is possible by generating several in-
stances of the tasks and building a graph that corresponds
to a set of tasks as they occur within their hyperperiod
(least common multiple of the periods of the involved tasks).
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Figure 1: Typical utility functions for soft tasks

For a given schedule, the starting and completion times
of a task Ti are denoted si and ti respectively, with ti =
si + τi. In the sequel, the starting and completion times
that we use are relative to the system activation instant.
For example, according to the schedule σ = T1T2 . . . Tn, T1

starts executing at time s1 = 0 and completes at t1 = τ1,
T2 starts at s2 = t1 and completes at t2 = τ1 + τ2, and so
forth.

We aim at finding off-line a set of schedules and conditions
under which the quasi-static scheduler decides on-line to
switch from one schedule to another. A switching point
defines when to switch from one to another schedule. A
switching point is characterized by a task and a time in-
terval, as well as the involved schedules. For example, the

switching point σ
Ti;[a,b]−−−−→ σ′ indicates that, while σ is the

current schedule, when the task Ti finishes and its com-
pletion time is a ≤ ti ≤ b, another schedule σ′ must be
followed as execution order for the remaining tasks.

3. MOTIVATIONAL EXAMPLE
Let us consider the system shown in Figure 2. The best-
case and worst-case duration of every task are shown in
Figure 2 in the form [τbc, τwc]. In this example we assume
that the execution time of every task Ti is uniformly dis-
tributed over its interval [τbc

i , τwc
i ]. The only hard task in

the system is T4 and its deadline is d4 = 30. Tasks T2 and
T3 are soft and their utility functions are given in Figure 2.

The best static schedule, that can be calculated off-line,
corresponds to the task execution order which, among all
the schedules that satisfy the hard constraints in the worst
case, maximizes the sum of individual contributions by soft
tasks when each utility function is evaluated at the task’s
expected completion time (completion time considering the
particular situation in which each task in the system lasts
its expected duration). For the system in Figure 2 such
a schedule is σ = T1T3T4T2T5. We have proved that the
problem of computing one such optimal schedule is NP-
hard [3].

Although σ = T1T3T4T2T5 is optimal in the static sense
discussed above, it is still pessimistic because the actual
execution times, which are unknown beforehand, might be
far off from the ones used to compute the static schedule.
This point is illustrated by the following situation. The
system starts execution according to σ, that is T1 starts at
s1 = 0. Assume that T1 completes at t1 = 7 and then T3

executes (τ3 = 3) and completes at t3 = 10. At this point,
taking advantage of the fact that we know the completion
time t3, we can compute the schedule that is consistent
with the tasks already executed, maximizes the total utility
(considering the actual execution times of T1 and T3—
already executed—and expected duration for T2, T4, T5—
remaining tasks), and also guarantees all hard deadlines

(even if all remaining tasks execute with their worst-case
duration). Such a schedule is σ′ = T1T3T2T4T5. In the case
τ1 = 7, τ3 = 3, and τi = τ e

i for i = 2, 4, 5, σ′ yields a total
utility U ′ = u2(16)+u3(10) = 3.83 which is higher than the
one given by the static schedule σ (U = u2(22) + u3(10) =
2.83). Since the decision to follow σ′ is taken after T3

completes and knowing its completion time, meeting the
hard deadlines is also guaranteed.

A purely on-line scheduler would compute, every time a
task completes, a new execution order for the tasks not
yet started such that the total utility is maximized for the
new conditions while guaranteeing that hard deadlines are
met. However, the complexity of the problem is so high
that the on-line computation of one such schedule is pro-
hibitively expensive. In our quasi-static solution, we com-
pute at design-time a number of schedules and switching
points, leaving only for run-time the decision to choose a
particular schedule based on the actual execution times.
Thus the on-line overhead by the quasi-static scheduler is
very low because it only compares the actual completion
time of a task with that of a predefined switching point and
selects accordingly the already computed execution order
for the remaining tasks.

We can define, for instance, a switching point σ
T3;[3,13]−−−−−→ σ′

for the example given in Figure 2, with σ = T1T3T4T2T5

and σ′ = T1T3T2T4T5, such that the system starts exe-
cuting according to the schedule σ; when T3 completes, if
3 ≤ t3 ≤ 13 the tasks not yet started execute in the order
given by σ′, else the execution order continues according to
σ. While the solution {σ, σ′}, as explained above, guaran-
tees meeting the hard deadlines, it provides a total utility
which is greater than the one given by the static schedule σ
in 83.3% of the cases, at a very low on-line overhead. Thus
the most important question in the quasi-static approach
discussed in this paper is how to compute, at design-time,
the set of schedules and switching points such that they
deliver the highest quality (utility). The rest of the paper
addresses this question and different issues that arise when
solving the problem.

4. IDEAL ON-LINE SCHEDULER AND
PROBLEM FORMULATION

4.1 Ideal On-Line Scheduler
In this paper we use a purely on-line scheduler as reference
point in our quasi-static approach. This means that, when
computing a number of schedules and switching points as
outlined in the previous section, our aim is to match an
ideal on-line scheduler in terms of the yielded total utility.
The formulation of this on-line scheduler is as follows:

On-Line Scheduler: The following is the problem that
the on-line scheduler would solve before the activation of
the system and every time a task completes (in the sequel
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Figure 2: Motivational example

we will refer to this problem as the one-schedule problem):

Find a schedule σ (a bijection σ : T → {1, 2, . . . , |T|})
that maximizes U =

P
Ti∈S ui(t

e
i ) where tei is the ex-

pected completion time1 of task Ti, subject to: twc
i ≤ di

for all Ti ∈ H, where twc
i is the worst-case completion

time2 of task Ti; σ(T ) < σ(T ′) for all (T, T ′) ∈ E; σ has
a prefix σx, with σx being the order of the tasks already
executed.

Ideal On-Line Scheduler: In an ideal case, where the
on-line scheduler solves the one-schedule problem in zero
time, for any set of execution times τ1, τ2, . . . , τn (each
known only when the corresponding task completes), the
total utility yielded by the on-line scheduler is denoted
U ideal
{τi} .

The total utility delivered by the ideal on-line scheduler,
as defined above, represents an upper bound on the util-
ity that can practically be produced without knowing in
advance the actual execution times and without accepting
risks regarding hard deadline violations. This is due to the
fact that the defined scheduler optimally solves the one-
schedule problem in zero time, it is aware of the actual
execution times of all completed tasks, and optimizes the
total utility assuming that the remaining tasks will run for
their expected (which is the most likely) execution time.
We note again that, although the optimization goal is the
total utility assuming expected duration for the remaining
tasks, this optimization is performed under the constraint
that hard deadlines are satisfied even in the situation of
worst-case duration for the remaining tasks.

4.2 Problem Formulation
Due to the NP-hardness of the one-schedule problem [3],
which the on-line scheduler must solve every time a task
completes, such an on-line scheduler causes an unaccept-
able overhead. We propose instead to prepare at design-
time schedules and switching points, where the selection of

1tei is given by

tei =


ei if σ(Ti) = 1,
tek + ei if σ(Ti) = σ(Tk) + 1.

where: ei = τi if Ti has completed, else ei = τ e
i .

2twc
i is given by

twc
i =


wci if σ(Ti) = 1,
twc
k + wci if σ(Ti) = σ(Tk) + 1.

where: wci = τi if Ti has completed, else wci = τwc
i .

the actual schedule is done at run-time, at a low cost, by
the so-called quasi-static scheduler. The aim is to match
the utility delivered by an ideal on-line scheduler. The
problem we concentrate on in the rest of this paper is for-
mulated as follows:

Multiple-Schedules Problem: Find a set of schedules
and switching points such that, for any set of execution
times τ1, τ2, . . . , τn, hard deadlines are guaranteed and the
total utility U{τi} yielded by the quasi-static scheduler is
equal to U ideal

{τi} .

5. COMPUTING THE OPTIMAL SET OF
SCHEDULES & SWITCHING POINTS

We present in this section a systematic procedure for com-
puting the optimal set of schedules and switching points
as formulated by the multiple-schedules problem. By op-
timal, in this context, we mean a solution which guaran-
tees hard deadlines and produces a total utility of U ideal

{τi} .
Note that the problem of obtaining such an optimal solu-
tion is intractable. Nonetheless, despite its complexity, the
optimal procedure described here has also theoretical rel-
evance: it shows that an infinite space of execution times
(the execution time of task Tj can be any value in the
interval [τbc

j , τwc
j ]) might be covered optimally by a finite

number of schedules, albeit it may be a very large number.

The key idea is to express the total utility, for every fea-
sible task execution order, as a function of the completion
time tk of a particular task Tk. Since different schedules
yield different utilities, the objective of the analysis is to
pick out the schedule that gives the highest utility and
also guarantees no hard deadline miss, depending on the
completion time tk.

We may thus determine (off-line) what is the schedule that
must be followed after completing task T at a particular
time t. For each schedule σi that satisfies the precedence
constraints and is consistent with the tasks so far executed,
we express the total utility Ui(t) as a function of the com-
pletion time t (considering the expected duration for ev-
ery task not yet started). Then, for every σi, we analyze
the schedulability of the system, that is, which values of t
imply potential hard deadline misses when σi is followed
(for this analysis, the worst-case execution times of tasks
not completed are considered). We introduce the auxiliary
function Ûi such that Ûi(t) = −∞ if following σi, after T
has completed at t, does not guarantee the hard deadlines,
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else Ûi(t) = Ui(t). Based on the functions Ûi(t) we select
the schedules that deliver the highest utility, yet guaran-
teeing the hard deadlines, at different completion times.
The interval of possible completion times gets thus parti-
tioned into subintervals and, for each of these, we get the
corresponding execution order to follow after T . We re-
fer to this as the interval-partitioning step. Observe that
such subintervals define the switching points we want to
compute.

For each of the newly computed schedules, the process is
repeated for a task T ′ that completes after T , this time
computing Ûi(t

′) for the interval of possible completion
times t′. Then the process is similarly repeated for the
new schedules and so forth. In this way we obtain the
optimal tree of schedules and switching points.

Let us consider the example shown in Figure 2. The static
schedule is in this case σ = T1T3T4T2T5. Due to the data
dependencies, there are three possible schedules that start
with T1, namely σa = T1T2T3T4T5, σb = T1T3T2T4T5, and
σc = T1T3T4T2T5. We compute the corresponding func-
tions Ua(t1), Ub(t1), and Uc(t1), 1 ≤ t1 ≤ 7, considering
the expected duration for T2, T3, T4, and T5. For example,
Ub(t1) = u2(t1+τ e

3+τ e
2 )+u3(t1+τ e

3 ) = u2(t1+12)+u3(t1+6).
We get the following functions:

Ua(t1) =

8>>><>>>:
5 if 1 ≤ t1 ≤ 3,
11

2
− t1

6
if 3 ≤ t1 ≤ 6,

15

2
− t1

2
if 6 ≤ t1 ≤ 7.

Ub(t1) =
9

2
− t1

6
if 1 ≤ t1 ≤ 7.

Uc(t1) = 7/2− t1/6 if 1 ≤ t1 ≤ 7.

The functions Ua(t1), Ub(t1), and Uc(t1), as given above,
are shown in Figure 4(a). Now, for each one of the sched-
ules σa, σb, and σc, we determine the latest completion
time t1 that guarantees meeting hard deadlines when that
schedule is followed. For example, if the execution order
given by σa = T1T2T3T4T5 is followed and the remain-
ing tasks take their maximum duration, the hard deadline
d4 is met only when t1 ≤ 3. A similar analysis shows
that σb guarantees meeting the hard deadline only when
t1 ≤ 3 while σc guarantees the hard deadline for any com-
pletion time t1 in the interval [1, 7]. Thus we get the func-
tions Ûi(t1) as depicted in Figure 4(b), from where we
conclude that σa = T1T2T3T4T5 yields the highest total
utility when T1 completes in the subinterval [1, 3] and that
σc = T1T3T4T2T5 yields the highest total utility when T1

completes in the subinterval (3, 7], guaranteeing the hard
deadline in both cases.

A similar procedure is followed, first for σa and then for
σc, considering the completion time of the second task in
these schedules. At the end, we get the set of schedules
{σ = T1T3T4T2T5, σ

′ = T1T2T3T4T5, σ
′′ = T1T3T2T4T5}

that works as follows (see Figure 3): once the system is
activated, it starts following the schedule σ; when T1 is
finished, its completion time t1 is read, and if t1 ≤ 3 the
schedule is switched to σ′ for the remaining tasks, else the

execution order continues according to σ; when T3 finishes,
while σ is the followed schedule, its completion time t3 is
compared with the time point 13: if t3 ≤ 13 the remaining
tasks are executed according to σ′′, else the schedule σ is
followed.

T1T 5T2T4T3T1T 42 3

;(13,17]T3;(5,13]T3

;(3,7]T1;[1,3]T1

T

42 5TTT

5T2T4T31TT

3

5TT

T1 5T2T4T3TT1T

Figure 3: Optimal tree of schedules and switching
points

When computing the optimal set of schedules and switch-
ing points, we partition the interval of possible completion
times ti for a task Ti into subintervals which define the
switching points and schedules to follow after executing
Ti. The interval-partitioning step requires O((|H| + |S|)!)
time in the worst case, therefore the multiple-schedules
problem is intractable. Moreover, the inherent nature of
the problem (finding a tree of schedules) makes it such
that it requires exponential time and exponential mem-
ory, even when using a polynomial-time heuristic in the
interval-partitioning step. An additional problem is that,
even if we can afford the time and memory budget for
computing the optimal tree of schedules (as this is done
off-line), the memory constraints of the target system still
impose a limit on the size of the tree, and hence a subop-
timal set of schedules must be chosen to fit in the system
memory. These issues are addressed in Section 6.

The set of schedules is stored in memory as an ordered tree.
Upon completing a task, the cost of selecting at run-time
the schedule for the remaining tasks is at most O(logN)
where N is the maximum number of children that a node
has in the tree of schedules. Such cost can be included by
augmenting accordingly the worst-case duration of tasks.

6. HEURISTIC METHODS AND EXPERI-
MENTAL EVALUATION

In this section we propose several heuristics that address
different complexity dimensions of the multiple-schedules
problem, namely the interval-partitioning step and the ex-
ponential growth of the tree size.

6.1 Interval Partitioning
In this subsection we discuss methods to avoid the com-
putation, in the interval-partitioning step, of Ûi(tn) for
all permutations of the remaining tasks that define possi-
ble schedules. In the first heuristic, named Lim, we ob-
tain solutions σL and σU to the one-schedule problem (see
Section 4), respectively, for the lower and upper limits tL
and tU of the interval In of possible completion times tn.
Then we compute ÛL(tn) and ÛU(tn) and partition In con-
sidering only these two (avoiding thus computing Ûi(tn)
corresponding to the possible schedules σi defined by per-
mutations of the remaining tasks). For completion times
tn ∈ In different from tL, σL is rather optimistic but it
might happen that it does not guarantee hard deadlines.
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Figure 4: Ui(t1) and Ûi(t1), 1 ≤ t1 ≤ 7

On the other hand, σU can be pessimistic but does guaran-
tee hard deadlines for all tn ∈ In. Thus, by combining the
optimism of σL with the guarantees provided by σU, good
quality solutions can be obtained.

For the example discussed in Sections 3 and 5, when parti-
tioning the interval I1 =[1, 7] of possible completion times
of the first task in the basis schedule, Lim solves the one-
schedule problem for tL = 1 and tU = 7, whose solutions
are σL = T1T2T3T4T5 and σU = T1T3T4T2T5 respectively.
Then ÛL(t1) and ÛU(t1) are computed as described in Sec-
tion 5 and only these two are used for partitioning the
interval. Referring to Figure 4(b), ÛL = Ûa and ÛU = Ûc,
and in this case Lim gives the same result as the optimal al-
gorithm. The rest of the procedure is repeated in a similar
way as explained in Section 5.

The second of the proposed heuristics, named LimCmp, is
based on the same ideas as Lim, that is, computing only
ÛL(tn) and ÛU(tn) that correspond to schedules σL and σU

which are in turn solutions to the one-schedule problem for
tL and tU, respectively. The difference lies in that, while
constructing the tree of schedules to follow after complet-
ing the n-th task in σ, if the n+1-th task of the schedule
σk (the one that yields the highest utility in the subin-
terval In

k ) is the same as the n+1-th task of the current
schedule σ, the schedule σ continues being followed instead
of adding σk to the tree. This leads to a tree with fewer
nodes.

In both Lim and LimCmp we must solve the one-schedule
problem. The problem is NP-hard and we have proposed
an optimal algorithm as well as different heuristics for it
[4]. In the experimental evaluation of the heuristics pro-
posed here, we use both the optimal algorithm as well as
a heuristic when solving the one-schedule problem. Thus
we get four different heuristics for the multiple-schedules
problem, namely LimA, LimB , LimCmpA, and LimCmpB .
The first and third make use of an exact algorithm when
solving the one-schedule problem while the other two make
use of a heuristic presented in [4].

In order to evaluate the heuristics discussed above, we have
generated a large number of synthetic examples. We con-
sidered systems with 50 tasks among which from 3 up to
25 hard and soft tasks. We generated 100 graphs for each
graph dimension. All the experiments were run on a Sun
Ultra 10 workstation.

Figure 5(a) shows the average size of the tree of schedules
as a function of the number of hard and soft tasks, for
the optimal algorithm as well as for the heuristics. Note
the exponential growth even in the heuristic cases which is
inherent to the problem of computing a tree of schedules.

The average execution time of the algorithms is shown in
Figure 5(b). The rapid growth rate of execution time for
the optimal algorithm makes it feasible to obtain the op-
timal tree only in the case of small numbers of hard and
soft tasks. Observe also that LimA takes much longer than
LimB , even though they yield trees with a similar number
of nodes. A similar situation is noted for LimCmpA and
LimCmpB . This is due to the long execution time of the
optimal algorithm for the one-schedule problem as com-
pared to the heuristic.

We have evaluated the quality of the trees of schedules
as given by the different algorithms with respect to the
optimal tree. For each one of the randomly generated
examples, we profiled the system for a large number of
cases. We generated execution times for each task accord-
ing to its probability distribution and, for each particu-
lar set of execution times, computed the total utility as
given by a certain tree of schedules. For each case, we
obtained the total utility yielded by a given tree and nor-
malized with respect to the one produced by the optimal
tree: ‖Ualg‖ = Ualg/Uopt. The results are plotted in Fig-
ure 5(c). We have included in this plot the case of a purely
off-line solution where only one schedule is used regard-
less of the actual execution times (SingleSch). This plot
shows LimA and LimCmpA as the best of the heuristics
discussed above, in terms of the total utility yielded by
the trees they produce. LimB and LimCmpB produce still
good results, not very far from the optimal, at a signifi-
cantly lower computational cost. Observe that having one
single static schedule leads to a significant quality loss.

6.2 Tree Size Restriction
Even if we could afford to compute the optimal tree of
schedules, the tree might be too large to fit in the available
target memory. Hence we must drop some nodes of the tree
at the expense of the solution quality (recall that we use the
total utility as quality criterion). The heuristics presented
in Subsection 6.1 reduce considerably both the time and
memory needed to construct a tree as compared to the
optimal algorithm, but still require exponential memory
and time. In this section, on top of the above heuristics,
we propose methods that construct a tree considering its
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Figure 5: Evaluation of different algorithms for computing a tree of schedules

size limit (imposed by the memory constraints of the target
system) in such a way that we can handle both the time
and memory complexity.

Given a memory limit, only a certain number of sched-
ules can be stored, so that the maximum tree size is M .
Thus the question is how to generate a tree of at most M
nodes which still delivers a good quality. We explore sev-
eral strategies which fall under the umbrella of a generic
framework with the following characteristics: (a) the algo-
rithm goes on until no more nodes may be generated, due
to the size limit M ; (b) the tree is generated in a depth-
first fashion; (c) in order to guarantee that hard deadlines
are still satisfied when constructing a tree, either all chil-
dren σk of a node σ (schedules σk to be followed after
completing a task in σ) or none are added to the tree.

For illustrative purposes, we use the example in Figure 6(a).
It represents a tree of schedules and we assume that it is
the optimal tree for a certain system. The intervals in the
figure are the time intervals corresponding to switching
points.

Initially we studied two simple heuristics to constructing
a tree, given a maximum size M . The first one, called
Early, gives priority to subtrees derived from early-com-
pletion-time nodes (e.g. left-most subtrees in Figure 6(a)).
If, for instance, we are constructing a tree with a size limit
M =10 for the system whose optimal tree is the one given
in Figure 6(a), we find out that σ2 and σ3 are the sched-
ules to follow after σ1 and we add them to the tree. Then,
when using Early, the size budget is assigned first to the
subtrees derived from σ2 and the process continues until
we obtain the tree shown in Figure 6(b). The second ap-

proach, Late, gives priority to nodes that correspond to
late completion times. The tree obtained when using Late
and having a size limit M =10 is shown in Figure 6(c). Ex-
perimental data (see Figure 7) shows that in average Late
outperforms significantly Early. A simple explanation is
that the system is more stressed in the case of late comple-
tion times and therefore the decisions (changes of schedule)
taken under these conditions have a greater impact.

A third, more elaborate, approach brings into the the pic-
ture the probability that a certain branch of the tree of
schedules is selected during run-time. Knowing the execu-
tion time probability distribution of each individual task,
we can get the probability distribution of a sequence of
tasks as the convolution of the individual distributions.
Thus, for a particular execution order, we may determine
the probability that a certain task completes in a given
interval, in particular the intervals defined by the switch-
ing points. In this way we can compute the probability
for each branch of the tree and exploit this information
when constructing the tree of schedules. The procedure
Prob gives higher precedence to those subtrees derived
from nodes that actually have higher probability of being
followed at run-time.

In order to evaluate the approaches so far presented, we
randomly generated 100 systems with a fix number of hard
and soft tasks and for each one of them we computed the
complete tree of schedules. Then we constructed the trees
for the same systems using the algorithms presented in
this section, for different size limits. For each of the exam-
ples we profiled the system for a large number of execution
times, and for each of these we obtained the total utility
yielded by a limited tree and normalized it with respect
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Figure 6: Trees of schedules

to the utility given by the complete tree (non-limited):
‖Ulim‖ = Ulim/Unon−lim. The plot in Figure 7 shows that
Prob is the algorithm that gives the best results in aver-
age.

We have further investigated the combination of Prob and
Late through a weighted function that assigns values to
the tree nodes. Such values correspond to the priority
given to nodes while constructing the tree. Each child of a
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weighted approach

certain node in the tree is assigned a value given by w1p+
(1−w1)b, where p is the probability of that node (schedule)
being selected among its siblings and b is a quantity that
captures how early/late are the completion times of that
node relative to its siblings. The particular cases w1 = 1
and w1 = 0 correspond to Prob and Late respectively.
The results of the weighted approach for different values
of w1 are illustrated in Figure 8. It is interesting to note
that we can get even better results than Prob for certain
weights, with w1 = 0.9 being the one that performs the
best.

7. CONCLUSIONS
One important dimension in the design space of computer
systems is the issue of selecting solutions that may or may
not vary during the operation of the system, that is, static
versus dynamic solutions. In many cases, quasi-static so-
lutions provide a good trade-off, exploiting information
known only at run-time and achieving low on-line over-
head.

We have presented an approach to the problem of schedul-
ing for monoprocessor real-time systems with periodic soft
and hard tasks. In order to distinguish among soft tasks,
we made use of utility functions, which capture both the
relative importance of soft tasks and how the quality of re-
sults is affected when a soft deadline is missed. We aimed
at finding task execution orders that produce maximal to-
tal utility and, at the same time, guarantee hard deadlines.

Since a single static schedule computed off-line is rather
pessimistic and a purely on-line solution entails a high
overhead, we have therefore proposed a quasi-static ap-
proach where a number of schedules and switching points
are prepared at design-time, so that at run-time the quasi-
static scheduler only has to select, depending on the actual
execution times, one of the precomputed schedules.
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