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Abstract
Both analysis and design optimization of real-time

systems has predominantly concentrated on considering
hard real-time constraints. For a large class of
applications, however, this is both unrealistic and leads to
unnecessarily expensive implementations. This paper
addresses the problem of task priority assignment and task
mapping in the context of multiprocessor applications with
stochastic execution times and in the presence of
constraints on the percentage of missed deadlines. We
propose a design space exploration strategy based on Tabu
Search together with a fast method for system performance
analysis. Experiments emphasize the efficiency of the
proposed analysis method and optimization heuristic in
generating high quality implementations of soft real-time
systems with stochastic task execution times and
constraints on deadline miss ratios.

1. Introduction

For the large majority of cases, if not all, the task exe-
cution times are variable. This variability may be caused by
application dependent factors (data dependent loops and
branches), architectural factors (unpredictable cache and
pipeline behavior), or environment dependent factors (net-
work load, for example). In the case of safety critical appli-
cations (avionics, automotive, medicine, nuclear plant
control systems), the designers have to deal with the worst
case scenario, in particular with worst case task execution
times (WCET). An impressive amount of research results,
both for analyzing and designing these systems has been
published [2].

Designing based on the worst-case execution time
(WCET) model guarantees that no timing requirement is
broken. However, for large classes of applications, the soft
real-time systems, breaking a timing requirement, though
not desirable, is tolerated provided that this happens with a
sufficiently low probability. Whereas in the case of safety
critical systems, the designers stress safety at the expense of
product cost, in the case of soft real-time systems, cost re-
duction is a strong incentive for using cheap architectures.

Let us consider a cheap processor and a task which runs
on it. The probability density function of the task execution
time (ETPDF) on the cheap processor is depicted in Figure

1a. If the imposed deadline of the task is t as shown in the
figure, then the cheap processor cannot guarantee that the
task will always meet its deadline, as the WCET of the task
exceeds the deadline. If no deadline misses were tolerated,
a faster and more expensive processor would be needed.
The ETPDF of the task on the faster processor is depicted in
Figure 1b. In this case, the more expensive processor guar-
antees that no deadlines are missed. However, if a miss
deadline ratio of at most 15% is tolerated, then even the
cheaper processor would suffice.

The problem of finding the deadline miss ratios, given
a hardware platform and an application, is not trivial and
has attracted relatively recent research work both for mono-
processor [5], [9], [12] and for multiprocessor systems [6],
[10].

This work, for the first time to our knowledge, address-
es the complementary problem: given a multiprocessor
hardware architecture and a functionality as a set of task
graphs, find a task mapping and priority assignment such
that the deadline miss ratios satisfy imposed constraints.

A naïve approach to this problem would be to use fixed
execution time models (average, median, worst case execu-
tion time, etc.) and to hope that the resulting designs would
be optimal or close to optimal also from the point of view of
the percentage of missed deadlines. The following example
illustrates the pitfalls of such an approach and emphasizes
the need for an optimization technique which considers the
stochastic execution times. Let us consider the application
in Figure 2a. The circles denote the tasks, their shades de-
note the processors they are mapped onto. The solid disks
show the inter-processor communication. The arrows be-
tween the tasks indicate their data dependencies. All the
tasks have period 20 and the deadline of the task graph is 18.
Tasks A, B, C, and D have constant execution times of 1, 6,
7, and 8 respectively. Task E has a variable execution time
whose probability is uniformly distributed between 0 and
12. Hence, the average (expected) execution time of E is 6.

Figure 1: Execution time probability density
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The inter-processor communication takes 1 time unit per
message. Let us consider the two mapping alternatives de-
picted in Figure 2a and b. The two Gantt diagrams in Figure
2c and d depict the execution scenarios corresponding to the
two considered mappings if the execution of task E took the
expected amount of time, that is 6. The shaded rectangles
depict the probabilistic execution of E. A mapping strategy
based on the average execution times would select the map-
ping in Figure 2a as it leads to a shorter response time (15
compared to 17). However, in this case, the worst case exe-
cution time of the task graph is 21. The deadline miss ratio
of the task graph is 3/12 = 25%. If we took into consider-
ation the stochastic nature of the execution time of task E,
we would prefer the second mapping alternative, because of
the better deadline miss ratio of 1/12=8.33%. If we consid-
ered worst case response times instead of average ones, then
we would chose the second mapping alternative, like a sto-
chastic approach. However, approaches based on worst
case execution times can be dismissed by means of very
simple counter-examples.

Let us consider a task τ which can be mapped on pro-
cessor P1 or on processor P2. P1 is a fast processor with a
very deep pipeline. Because of its pipeline depth, mispre-
dictions of target addresses of conditional jumps, though
rare, are severely penalized. If τ is mapped on P1, its ETP-
DF is shown in Figure 3a. The long and flat density tail cor-
responds to the rare but expensive jump target address
misprediction. If τ is mapped on processor P2, its ETPDF is
shown in Figure 3b. Processor P2 is slower with a shorter
pipeline. The WCET of task τ on processor P2 is smaller
than the WCET if τ ran on processor P1. Therefore, a design
space exploration tool based on the WCET would map task
τ on P2. However, as Figure 3 shows, the deadline miss ra-
tio in this case is larger than if task τ was mapped on pro-
cessor P1.

The remainder of the paper is structured as follows.
The next section presents our system model and gives the

problem formulation. Section 3 presents the design space
exploration strategy detailing on the neighborhood restric-
tion heuristic. Section 4 describes the fast approximate
method for system analysis. Section 5 presents a set of ex-
periments we conducted in order to evaluate and demon-
strate the efficiency of the proposed heuristic. Finally,
Section 6 draws the conclusions.

2. System model and problem formulation

This section presents the platform and functionality
models and gives the problem formulation. It concludes by
identifying the implied subproblems which will be dis-
cussed in the following sections.

2.1. System model

2.1.1. Hardware platform. The hardware platform is com-
posed of a set of processors which are interconnected by
means of buses. Processors and buses will be both referred
to as processing elements in the sequel of this paper.

2.1.2. Application model. The application consists of a set
of N processing tasks. Processing tasks are depicted as cir-
cles, as exemplified in Figure 2. Data dependencies be-
tween pairs of tasks are captured as arrows connecting the
dependent tasks, as seen in Figure 2. Data dependencies de-
fine precedence relationships between tasks. For example,
in Figure 2, there exists a data dependency between task A
and task B and A is a predecessor of B. The predecessors of
a task form its predecessor set. The transitive and symmet-
ric closure of the precedence relationship partitions the task
set into task graphs. For the example in Figure 2, the appli-
cation consists of one task graph.

A job is an instantiation of a task and (τ, j) denotes the
jth job of task τ. Jobs of any task τi, 1≤i≤N, are periodically
released with a task-specific period πi. The period πi of task
τi has to be a common integer multiple of the periods of the
tasks in the predecessor set of τi. Let kij=πj/πi, where τj de-
pends on τi, with the interpretation that each job of τj re-
ceives kij data items from kij jobs of τi. A job of task τ is
ready for execution only after it receives all the needed data
items, i.e. only after the corresponding jobs of all predeces-
sor tasks of τ have finished their execution. The least com-
mon multiple of the periods of the tasks belonging to a task
graph G is the task graph period of G.

The execution of jobs is considered to be non-preemp-
tive. If preemption is desired, the designer can define pre-
emption points by splitting a task in a chain of subtasks.

If a task τ is mapped on a processor PE, then all jobs of
τ execute on PE. If two communicating tasks are mapped on
the same processor, then the communication time is not ex-
plicitly specified but it is considered as part of the sender
task’s execution time. If they are mapped on different pro-
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cessors, the sender has to send a message on the bus linking
the two processors. Message transmission is modelled by
means of communication tasks mapped on buses. Commu-
nication tasks are depicted by means of solid disks in Figure
2. Unless explicitly stated, processing and communication
tasks will not be differently treated and will be referred to
as tasks in the sequel of this paper.

Each task τ can potentially be mapped on a set of pro-
cessing elements PEτ. The set PEτ represents the set of al-
lowed mappings of τ.

The execution (communication) times of tasks are as-
sumed to be varying. Therefore, they are specified by
means of execution time probability density functions (ET-
PDFs). There are no restrictions whatsoever on the class of
those functions. The task execution times are considered to
be statistically independent.

If several tasks (messages) compete for the processor
(bus), the task with the highest priority is chosen by a real-
time scheduler (or bus arbiter) to execute. The task priori-
ties are assumed to be static, i.e. invariant during the life-
time of the application. Based on these assumptions, we are
able to model any priority based bus arbitration protocol as,
for instance, CAN [1].

The real-time requirements on tasks are specified by
means of deadlines of tasks and task graphs. A job misses
its deadline if its completion time exceeds its deadline. The
long-term percentage of missed deadlines defines the dead-
line miss ratio (DMR) of a task. A task graph instance miss-
es its deadline if not all its jobs complete at the time of the
task graph deadline. These not completed jobs are said to be
late and they are immediately removed (discarded) from the
system. Similarly, the deadline miss ratio of a task graph is
defined as the long-term percentage of deadlines missed by
the task graph.

The designer can impose thresholds for deadline miss
ratios and can designate certain tasks or task graphs as being
critical. A task or a task graph is critical if its DMR is not
allowed to exceed the corresponding specified threshold.
We define the deviation (denoted dev) from the miss thresh-
old as follows:

2.2. Problem formulation

The problem addressed in this paper is formulated as
follows.

The problem input consists of
• the set of processors, the set of buses, and their con-

nection to processors,
• the set of task graphs,
• the set of task periods,
• the set of task deadlines,

• the set of task graph deadlines,
• the set PEτ of allowed mappings of τ for all tasks τ,
• the set of execution (communication) time probability

density functions corresponding to each processing
element p∈ PEτ for each task τ,

• the set of miss thresholds, and
• the set of critical tasks and task graphs.

The problem output consists of a mapping and priority
assignment such that the cost function

giving the sum of miss deviations is minimized. If a map-
ping and priority assignment is found such that Σ dev is fi-
nite, it is guaranteed that the DMRs of all critical tasks and
task graphs are below their imposed thresholds.

Because the defined problem is of NP-hard complexity
(see the complexity of the classical mapping problem [3]),
we have to rely on heuristic techniques for solving the for-
mulated problem. An accurate estimation of the miss devi-
ation, which is used as a cost function for the optimization
process, is in itself a complex and time consuming task [10].
Therefore, a fast approximation of the cost function value is
needed to guide the design space exploration. Hence, the
following subproblems have to be solved:
• find an efficient design space exploration strategy, and
• develop a fast and sufficiently accurate analysis, pro-

viding the needed indicators.
Section 3 discusses the first subproblems while Section

4 focuses on the system analysis we propose. Before that,
we will refresh and define some notions to be used in the
following sections.

2.3. Definition of various random variables

We refresh the notions of job arrival time, starting time,
and finishing time. The finishing time of the jth job of task
τ is the time moment when (τ, j) finishes its execution. We
denote it with Fτ,j. The deadline miss ratio of a job is the
probability that its finishing time exceeds its deadline:

The arrival time or ready time of (τ, j) is the time mo-
ment when (τ, j) is ready to execute, i.e. the maximum of the
finishing times of jobs in its predecessor set. We denote the
arrival time with Aτ,j and we write

The starting time of (τ, j) is the time moment when (τ,
j) starts executing. We denote it with Sτ,j. Obviously, the re-
lation Fτ,j=Sτ,j+Eτ,j holds between the starting and finishing
times of (τ, j), where Eτ,j denotes the execution time of (τ,
j). The arrival time and starting times of a job may differ be-
cause the processor might be busy at the time the job ar-
rives. The arrival, starting and finishing times are all
random variables.

devτ

∞ DMR threshold τ critical,>,
DMR threshold DMR threshold τ non-critical,>,–

0 DMR threshold≤,





=

dev,∑

DMRτ j, 1 P Fτ j, deadlineτ j,≤( )–=

Aτ j, maxσ Pred τ( )∈ Fσ j,=



3. Mapping and priority assignment heuristic

In this section, we propose a design space exploration
strategy which is based on the Tabu Search (TS) [4] meta-
heuristic.

Before presenting the details of the exploration strate-
gies, we define some notions we will use in the sequel. We
define the design space as the space of all allowed task map-
pings and priority assignments. Each task is characterized
by two attributes: its mapping and its priority. A move in the
design space is equivalent to changing one or both attributes
of one single task. Two points in the design space are neigh-
bors if one of them can be reached from the other by means
of one move, i.e. by remapping and/or reassigning the pri-
ority of one task. After a move M is performed, the reverse
move M is labelled as tabu for the next k iterations, where k
is the tabu tenure of M. Tabu moves may not be performed,
with few exceptional cases. Thus, it is ensured that the ef-
fect of a move M is not reversed and the exploration does
not stuck at local minima.

The exploration algorithm is shown in Figure 4. The
exploration starts from a random initial solution, labelled
also as the current solution and considered the globally best
solution so far. The cost function Σ dev is evaluated for the
current solution. The list TM of tabu moves is initially emp-
ty. A set S of candidate moves is defined and let N(S) be the
set of solutions which can be reached from the current solu-
tion by means of a move in S. The cost function is evaluated
for each solution in N(S). A move m∈ S is selected if
• it is non-tabu and leads to the solution with the lowest

cost among the solutions in N(S), or
• it is tabu but improves the globally best solution so far,

or
• all moves in S are tabu and m leads to the solution with

the lowest cost among those solutions in N(S).
The new solution is obtained by applying the chosen

move m on the current solution. The reverse of move m is
marked as tabu such that m will not be reversed in the next
few iterations. If it is the case, the new solution becomes
also the globally best solution reached so far. However, it
should be noted that the new solution could have a larger
cost than the current solution. This could happen if there are
no moves which would improve on the current solution or
all such moves would be tabu. The list TM of tabu moves
ensures that the heuristic does not get stuck in local minima.
If no global improvement has been noted for the past W it-
erations, the loop is interrupted. In this case, a diversifica-
tion phase follows in which a rarely used move is performed
in order to force the heuristic to explore different regions in
the design space. The whole procedure is repeated until the
heuristic iterated for a specified maximum number of itera-
tions.

The cost function is evaluated |S| times at each itera-
tion, where |S| is the cardinality of the set of candidate

moves. Let us consider that task τ, mapped on processor Pj,
is moved on processor Pi and there are qi tasks on processor
Pi. Task τ can take one of qi+1 priorities on processor Pi. If
task τ is not moved on a different processor, but only its pri-
ority is changed on processor Pj, then there are qj-1 possible
new priorities. If we consider all processors, there are N+P-
2 possible moves for each task τ, as shown in the equation
below, where N is the number of tasks and P is the number

of processors. Hence, if all possible moves are candidate
moves, N⋅(N+P–2) moves are possible at each iteration.
Therefore, a key to the efficiency of the algorithm is the in-
telligent selection of the set S of candidate moves. If S con-
tained only those moves which had a high chance to drive
the search towards good solutions, then fewer points would
be probed, leading to a speed up of the algorithm.

In our approach, the set S of candidate moves is com-
posed of all moves which operate on a subset of tasks. Tasks
are assigned scores and the chosen subset of tasks is com-
posed of the first K tasks with respect to their score.

We illustrate the way the scores are assigned to tasks
based on the example in Figure 2a. As a first step, we iden-
tify the critical paths and the non-critical branches of the ap-
plication. In general, we consider a path to be an ordered
sequence of tasks (τ1, τ2, …, τn) such that τi+1 is data depen-
dent on τi. The average execution time of a path is given by
the sum of the average execution times of the tasks belong-
ing to the path. A path is critical if its average execution

q j 1– qi 1+( )
i j≠
∑+ P 2– qi

i
∑+ P 2– N+= =

Figure 4: Design space exploration strategy

TM=∅
crt_sol = init_sol
global_best_cost = evaluate(crt_sol)
global_best_sol = crt_sol
since_last_improvement = 0
iteration_count = 0
S = set_of_candidate_moves(TM, crt_sol)
(chosen_move, next_cost) = choose_move(S)
while iteration_count < max_iterations do
     while since_last_improvement < W do
           next_sol = move(crt_sol, chosen_move)
           TM = TM ∪ {chosen_move}
           since_last_improvement++
           iteration_count++
           crt_sol = next_sol

    if next_cost < global_best_cost then
                  global_best_cost = next_cost
                  global_best_sol = crt_sol
                  since_last_improvement = 0

    endif
           S = set_of_candidate_moves(TM, crt_sol)
           (chosen_move, next_cost) = choose_move(S)
     done
     since_last_improvement = 0
     (chosen_move, next_cost) = diversify(TM, crt_sol)
     iteration_count++
done
return best_sol



time is the largest among the paths belonging to the same
task graph. For the example in Figure 2a, the critical path is
A→B→D, with an average execution time of 1+6+8=15. In
general, non-critical branches are those paths starting with
a root node or a task on a critical path, ending with a leaf
node or a task on a critical path and containing only tasks
which do not belong to any critical path. For the example in
Figure 2a, non-critical branches are A→C and B→E. For
each critical path or non-critical branch, a path mapping
vector is computed. The mapping vector is a P-dimensional
integer vector, where P is the number of processors. The
modulus of its projection along dimension pi is equal to the
number of tasks which are mapped on processor pi and
which belong to the considered path. For the example in
Figure 2a, the vectors corresponding to the paths A→B→D,
A→C and B→E are 3i+0j, 1i+1j, and 1i+1j respectively,
where i and j are the versors along the two dimensions.
Each task is characterized by its task mapping vector, which
has a modulus of 1 and is directed along the dimension cor-
responding to the processor on which the task is mapped.
For example, the task mapping vectors of A, B, C, D, and E
are 1i, 1i, 1j, 1i, and 1j respectively. Next, for each path and
for each task belonging to that path, the angle between the
path and the task mapping vectors is computed. For exam-
ple, the task mapping vectors of tasks A, B, and D form an
angle of 0° with the path mapping vector of critical path
A→B→D and the task mapping vectors of task A and C
form an angle of 45° with the path mapping vector of the
non-critical branch A→C. The score assigned to each task
is a weighted sum of angles between the task’s mapping
vector and the mapping vectors of the paths to whom the
task belongs. The weights are proportional to the relative
criticality of the path. Intuitively, this approach attempts to
map the tasks which belong to critical paths on the same
processor. In order to avoid processor overload, the scores
are penalized if the task is intended to be moved on highly
loaded processors.

Once scores have been assigned to tasks, the first K=N/
c tasks are selected according to their scores. In our experi-
ments, we use c=2. In order to further reduce the search
neighborhood, only 2 processors are considered as target
processors for each task. The selection of those two proces-
sors is made based on scores assigned to processors. These
scores are a weighted sum of potential reduction of inter-
processor communication and processor load. The proces-
sor load is weighted with a negative weight, in order to
penalize overload. For example, if we moved task C from
the shaded processor to the white processor, we would re-
duce the interprocessor communication with 100%. How-
ever, as the white processor has to cope with an average
work load of 15 units (the average execution times of tasks
A, B, and D), the 100% reduction would be penalized with
an amount proportional to 15.

On average, there will be N/P tasks on each processor.
Hence, if a task is moved on a processor, it may take N/P+1
possible priorities on its new processor. By considering
only N/2 tasks and only 2 processors for each task, we re-
strict the neighborhood to N/2⋅2⋅(1+N/P)=N⋅(1+N/P) candi-
date moves on average, i.e. approximately N⋅(N+P–2) /
(N⋅(1+N/P))≈P times. We will denote this method as the re-
stricted neighborhood search and we will compare it with
an exhaustive exploration of the neighborhood of design
space points in Section 5.

4. Analysis

The cost function which is driving the design space ex-
ploration is , where dev is the miss deviation as de-
fined in Section 2. Given the input data listed in Section 2.2
and given a task mapping and priority assignment, the anal-
ysis procedure computes an approximation of the miss de-
viation for each task.

In previous work [10], we proposed a performance
analysis method for multiprocessor applications with sto-
chastic task executions times. The method is based on the
Markovian analysis of the underlying stochastic process. As
the latter captures all possible behaviors of the system, the
method gives great insight regarding the system’s internals
and bottlenecks. However, its large analysis time makes its
use prohibitive inside an optimization loop setting as pre-
sented in the previous section. Therefore, we propose an ap-
proximate analysis method of polynomial complexity.

Let LCM denote the least common multiple of task pe-
riods and GCD their greatest common divisor. Because late
tasks are removed from the system, each LCM time units the
system returns to its initial state. Therefore, it is sufficient
to analyses the system over the time span [0, LCM). We de-
fine the discrete set of time moments T as the set

where h is the disc re tis at ion resolution of the interval [0,
LCM). The disc re tis at ion resolution is experimentally
chosen such that it leads to a satisfactory trade-off between
analysis time and accuracy. In order to speed up the analy-
sis, we approximate the starting and finishing time of jobs
with values in the discrete set T.

If the events that the predecessor tasks complete their
execution were independent, the probability that τ arrives
before or at time moment tn would be equal to the product
of the probabilities that the predecessor tasks complete their
execution prior or at time moment tn:

The independence assumption stated above generally
does not hold. However, the dependence is usually weak, as
the task completion events are influenced by so many dif-
ferent aspects. Therefore, in practice, Eq(1) is a good ap-

dev∑

T tn tn, n h 0 n≤ LCM h⁄<,⋅={ }=

P Aτ j, n≤( ) P Ft j, n≤( )
σ Pred τ( )∈

∏= (1)



proximation, as shown by Kleinrock [7] for computer
networks and by Li [8] for multiprocessor applications.

Let Lτ,j(n) be the event of (τ, j) running at time moment
tn. Its probability represents the instantaneous processor
load caused by (τ, j).

We depart from the observation that it is easy to deter-
mine the probabilities P(Fτ,j=n) and P(Lτ,j(n)) if we know
the starting time of (τ, j). In this case, the following equa-
tions hold:

It follows that the probabilities P(Fτ,j=n) and P(Lτ,j(n))
at time moment tn could be determined if P(Sτ,j=k) was
known for all moments tk prior to tn.

Let M(τ) denote the processor on which task τ is
mapped and let MT denote the set of all tasks which are
mapped on M(τ). The probability P(Sτ,j=n) that job j of task
τ starts executing at time moment tn is given by the equation

where Iτ,j(n) denotes the event that the processor M(τ) is
idle and no task of higher priority than τ is ready to execute.
Intuitively, if task τ starts in the present (Sτ,j=n) or if it ar-
rives in the future (Aτ,j>n) and the processor is free in the
present moment (Iτ,j(n)) then it follows that task τ starts in
the present or in the future and that the processor is free in
the present. Because P(Sτ,j≥n∩Iτ,j(n)) = P(Iτ,j(n)) –
P(Sτ,j<n∩Iτ,j(n)), the equation above can be rewritten as

Eq(3) is rewritten as

The complement of the event Iτ,j(n) is the event that
processor M(τ) is busy. Therefore

The event that a task σ∈ MT is running is not indepen-
dent of the event that (τ, j) arrived by a time moment tn, as
it can be seen in the following example. Let us consider the
application depicted in Figure 5. Task A has an average ex-
ecution time of 1/3s and its execution time probability is ex-
ponentially distributed. Task A is mapped on the shaded
processor while tasks B and C are mapped on the white pro-
cessor. Task B has a fixed execution time of 4s. Interproces-
sor message transmission take 0.5s. The message from task

A to task B is always sent before the message to task C.
Therefore, when task C becomes ready to run, it will always
find the processor already busy executing task B. Hence,
task C runs only after task B completes its execution. We are
interested in the strength of the dependence between arrival
of task C before time moment t and the event that task B is
running at time moment t. Differently stated, we would like
to know how well does P(LB(t)) approximate P(LB(t)|AC≤t).
Task B is running at time moment t if task A completed its
execution at a time moment in the interval (t-4.5, t-0.5].
Thus,

On the other hand, if we knew that task C arrived before
time moment t the probability of task B running at time mo-
ment t would be modified as below, without giving the actu-
al deduction.

We compute two values for the P(IC(t)|AC≤t): the exact val-
ue using P(LB(t)|AC≤t) and an approximation using
P(LB(t)) instead of P(LB(t)|AC≤t) in the right hand side of
Eq(5). The two resulting functions are plotted in Figure 6.
We observe that the two curves almost overlap for t>4.5.
However, we notice a “spike” at time 0.5 in the approximat-
ing curve. In the vicinity of this time moment, there is a
rather low probability that task B already started. This also
implies that the processor load is rather low. Hence, the ap-
proximate analysis assigns a high probability to the event
that the processor is free and no tasks of higher priority than
the priority of task C are ready to run. It ignores the fact that
no matter how unlikely the running of task B is, task C still
has to wait for task B to complete. The importance of the
spike artificially introduced by approximation is diminished

P Fτ j, n Sτ j,= k=( ) P Eτ j, n k–=( )=
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Figure 5: Example application
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Figure 6: Approximation of idle probability
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as task B “gains momentum”. In order to illustrate how the
approximation of P(IC(t)|AC≤t) influences the computed
value of the instantaneous processor load of task C, we plot-
ted the real processor load and the one reported by the ap-
proximate analysis in Figure 7. We observe that they are
close, especially towards the tail. This is important, as the
deadline miss ratio is a function of the load at the time of the
deadline.

In general, the dependence between arrival times of
tasks and the event that a task is running at a certain time is
the weaker the larger the number of tasks on a processor.
Hence, we can approximate Eq(5) with

Eq(6) is used also for approximating P(Iτ,j(n)|Sτ,j<n). It
follows that the probability that (τ, j) starts its execution at
time moment tn is approximated by

Considering the previous observation that P(Aτ,j≤n)
and P(Lσ,j(n)) can be determined if P(Sτ,j=k), k<n, are
known (Eq(1) and Eq(2)), and considering Eq(7), it follows
that the probability that (τ, j) starts its execution at time mo-
ment tn can be determined if the probabilities that it started
in the past are known. Hence, the algorithm for fast and ap-
proximate system analysis can be written as shown in Fig-
ure 8. The innermost loop is executed |T|⋅N times, where |T|
denotes the cardinality of the discrete set of time moments

T. The update function adjusts the probabilities of Fτ,j and
Lτ,j at |T| time moments in the worst case. Thus, the approx-
imate system analysis algorithm is of complexity class
O(|T|2⋅N).

In order to assess the accuracy of the proposed approx-
imate analysis (AA), we compared the processor load
curves obtained by AA with processor load curves obtained
by our previously developed performance analysis (PA)
[10]. The benchmark application consists of 20 processing
tasks mapped on 2 processors and 3 communication tasks
mapped on a bus connecting the two processors. Figure 9
gives a qualitative measure of the approximation. It depicts
the two processor load curves for a task in the benchmark
application. One of the curves was obtained with PA and the
other with the approximate analysis. The figure also shows
three error samples. A quantitative measure of the approxi-
mation is given in Table 1. We present only the extreme val-
ues for the average errors and standard deviations. Thus,
row 1 in the table, corresponding to task 19, shows the larg-
est obtained average error, while row 2, corresponding to
task 13, shows the smallest obtained average error. Row 3,
corresponding to task 5, shows the worst obtained standard
deviation, while row 4, corresponding to task 9, shows the
smallest obtained standard deviation. The average of stan-
dard deviations of errors over all tasks is around 0.065.
Thus, we can say with 95% confidence that AA approxi-
mates the processor load curves with an error of ±0.13.

P Iτ j, n( ) Aτ j, n≤( ) 1 P Lσ n( )( )
σ MT∈
∑–= (6)

Figure 7: Approximation processor load
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for tn in T do
for p∈ set of processors do

for τ∈ MT in decreasing priority order do
compute P(Sτ,j(n)) using Eq(7)

            update P(Fτ,j(u)) and P(Lτ,j(u)) for u≥n using Eq(2)
done

done
done

Figure 8: Approximate system analysis algorithm

P Sτ j, n=( ) P At j, n≤( ) P Sτ j, n<( )–( )

1 P Lσ n( )( )
σ MT∈
∑– 

 

⋅=

(7)

Table 1: Approximation accuracy

Task Average error
Standard

deviation of errors

19 0.056351194 0.040168796
13 0.001688039 0.102346107
5 0.029250265 0.178292338
9 0.016695770 0.008793487
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5. Experimental results

The proposed Tabu Search based method for task map-
ping and priority assignment has been experimentally eval-
uated on randomly generated benchmarks and on a real-life
example. This section presents the experimental setup and
comments on the obtained results. The experiments were
run on a desktop PC with one AMD Athlon processor
clocked at 1533MHz.

The benchmark set consisted of 396 applications. The
applications contained t tasks, clustered in g task graphs and
mapped on p processors, where t ∈ {20, 22, …, 40}, g ∈ {3,
4, 5}, and p ∈ {3, 4, …, 8}. For each combination of t, g,
and p, two applications were randomly generated. Three
mapping and priority assignment methods were run on each
application. All three implement a Tabu Search algorithm
with the same tabu tenure, termination criterion and number
of iterations after which a diversification phase occurs. In
each iteration, the first method selects the next point in the
design space while considering the entire neighborhood of
design space points. Therefore, we denote it ENS, exhaus-
tive neighborhood search. The second method considers
only a restricted neighborhood of design space points when
selecting the next design transformation. The restricted
neighborhood is defined as explained in Section 3. We call
the second method RNS, restricted neighborhood search.
Both ENS and RNS use the same cost function, defined in
Section 2 and calculated according to the approximate anal-
ysis described in Section 4. The third method considers only
fixed task execution times, equal to the average task execu-
tion times. It uses an exhaustive neighborhood search and
minimizes the value of the cost function , where laxτ
is defined as follows

The third method is abbreviated LO-AET, laxity opti-
mization based on average execution times. Once LO-AET
has produced a solution, the cost function defined in Section
2 is calculated and reported for the produced mapping and
priority assignment.

The first issue we look at is the quality of results ob-
tained with RNS compared to those produced by ENS. The
deviation of the cost function obtained from RNS relative to
the cost function obtained by ENS is defined as (costRNS-
costENS)/costENS. Figure 10 depicts the histogram of the de-
viation over the 396 benchmark applications. The relative
deviation of the cost function appears on the x-axis. The
value on the y-axis corresponding to a value x on the x-axis
indicates the percentage of the 396 benchmarks which have
a cost function deviation equal to x. On average, RNS is
only 1.65% worse than ENS. In 19% of the cases, the ob-
tained deviation was between 0 and 0.1%. Note that RNS
can obtain better results than ENS (negative deviation).

This is due to the intrinsically heuristic nature of Tabu
Search.

As a second issue, we compared the run times of RNS,
ENS, and LO-AET. Figure 11 shows the average times
needed to perform one iteration in the design space explo-
ration algorithms RNS, ENS, and LO-AET. It can be seen
that RNS runs on average 5.16÷5.6 times faster than ENS.
This corresponds to the theoretical prediction, made at the
end of Section 3, stating that the neighborhood size of RNS
is P times smaller than the one of ENS, where P is the num-
ber of processors. In our benchmark suite, P is between 3
and 8 averaging to 5.5. We also observe that the analysis
time is close to quadratic in the number of tasks, which
again corresponds to the theoretical result that the size of
the search neighborhood is quadratic in N, the number of
tasks.

We finish the Tabu Search when 40N iterations have
executed, where N is the number of tasks. In order to obtain
the execution times of the three algorithms, one needs to
multiply the numbers on the ordinate in Figure 11 with 40N.
For example, for 40 tasks, RNS takes circa 26 minutes
while ENS takes roughly 2h12’.
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Figure 10: Cost obtained by RNS vs. ENS
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The LO-AET method is marginally faster than RNS.
However, as shown in Figure 12, the value of the cost func-
tion obtained by LO-AET is on average almost an order of
magnitude worse (9.09 times) than the one obtained by
RNS. This supports one of the main messages of this paper,
namely that considering a fixed execution time model for
optimization of systems is completely unsuitable if deadline
miss ratios are to be improved. Although LO-AET is able to
find a good implementation in terms of average execution
times, it turns out that this implementation is very poor from
the point of view of deadline miss ratios. What is needed is
a heuristic like RNS, which is explicitly driven by deadline
miss ratios during design space exploration.

Last, we considered an industrial-scale real-life exam-
ple from the telecommunication area, namely a smart GSM
cellular phone [11], containing voice encoder and decoder,
an MP3 decoder, as well as a JPEG encoder and decoder.
We focused on the voice decoding part, consisting of one
task graph of 34 tasks mapped on two processors. They
have been profiled to extract the execution characteristics of
each task [11]. All tasks have the same period. Two tasks
are critical. The restricted neighborhood search method im-
proved the cost function from an initial value of 0.42 to
0.0255 (16 times), probing 729,662 potential task mappings
and priority assignments in 1h31’.

6. Conclusions

In this paper, we addressed the problem of design opti-
mization of soft real-time systems with stochastic task exe-
cution times under deadline miss ratio constraints. We have
shown that methods considering fixed execution time mod-
els are unsuited for this problem. Therefore, we proposed a
design space exploration heuristic guided by a fast approx-
imate analysis. Experiments demonstrated the efficiency of
the proposed approach.
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