
High-Level Test Synthesis with Hierarchical Test Generation

Gert Jervan1, Petru Eles1, Zebo Peng1, Jaan Raik2, Raimund Ubar2,

1 Dept. of Computer and Information Science, Linköping University, Sweden
2 Dept. of Computer Engineering, Tallinn Technical University, Estonia

Abstract: A novel full design and test generation system with combined High-Level Synthesis (HLS)
and automated Hierarchical Test Pattern Generation (HTPG) was developed and experimented. The
high-level synthesis is based on representation model called Extended Timed Petri Net (ETPN). In the
test generator both register-transfer (RT) and gate-level descriptions are used, and Decision diagrams
(DD) are exploited as a uniform model for describing systems at both levels. In addition to the
synthesis and test generator tools, interfaces to behavioral and RT-level VHDL and EDIF netlist
formats have been implemented. In the paper, an overview of the implementation is given and
experimental data showing the viability of the approach and the efficiency of respective tools are
provided.

1. Introduction
Recently, more-and-more high-level synthesis tools have become available. These tools are used by
designers to automatically generate Register-Transfer Level (RTL) descriptions from a behavioral
description. The HLS tools take into account several constraints, e.g. speed, area, or testability, and
allow the designer to quickly compare the trade-offs between alternative RTL implementations. The
usual disadvantage of existing HLS tools is that they miss automated testability analysis and test
generation capabilities. The test synthesis system presented in this paper was implemented to address
the above shortcoming.

Behavioral description
(VHDL)

RT-level description
(VHDL)

Gate-level netlist
(EDIF)

Hierarchical
test pattern
generation

High-level synthesis

Logic-level synthesis
(e.g. SYNOPSYS)

Fig. 1. Test synthesis flow

Fig. 1 presents the test synthesis flow used in the proposed approach. The system described in this
paper is denoted by a surrounding dashed line. It includes the high-level synthesis tool CAMAD [1]
(created at Linköping University), a hierarchical test pattern generation DECIDER [2] (implemented
at Tallinn Technical University) and appropriate interfaces from VHDL and EDIF formats. In the
following, different parts of the system are described in detail.

2. High-Level Synthesis with CAMAD

The CAMAD high-level synthesis system is built around an internal design representation, called
ETPN (Extended Timed Petri Net), which has been developed to capture the intermediate results
during the high-level synthesis process. The use of Petri nets provides a natural description of
concurrency and synchronization of the operations and processes of a hardware system. It gives thus a
natural platform to represent and manipulate concurrent processes of VHDL specifications.

ETPN is a formal representation model derived from Petri net theory and consisting of separate but
related models for control and data path. The datapath is represented as a directed graph with nodes
and arcs. The nodes are used to capture data manipulation units (data storages, arithmetic operators,
etc.). The arcs represent the connections of the nodes. The control part of ETPN, on the other hand, is
captured as a timed Petri net with restricted transition firing rules. These two parts are related by the
control signals coming from the control part to the datapath, and the conditional signals traveling in
the opposite direction.

Y X

Inp

+ >

Out C1 C1

"0"

"0" "1"

(b) Data path

P2
P7 P4

P5
P5

P5
P3 P3

P3 P3

P6

P0

... --/P0/
X := 1; --/P7/
Y := 0; --/P2/
while X>0 loop --/P3/
 X := Inp; --/P4/
 Y := Y + X; --/P5/
 ...
end loop;
Out := y; --/P6/
... --/P1/

P2 P7

C1

P6

P3

P4

C1

P1 P5

.

.

.

.

.

(a) Control Petri net (c) VHDL description

Fig. 2. An example of ETPN representation and its corresponding VHDL description

A simple example of ETPN is illustrated in Fig. 2. Fig. 2(b) shows the datapath where each datapath
node is depicted as a rectangle with a label indicating the basic operation or storage identifier of the
node. The arcs of the data path represent the data flow between the nodes. Flow of data from one node
to another is controlled by the control signals coming from the control part. The control relation is
indicated by using control place names to guard the arcs. When a control place in the Petri net holds a
token, its associated arcs in the data path (arcs guarded by the corresponding label) will be open for
data to flow. Fig. 2(a) depicts the Petri net which represents the control flow of the example. A control
state is represented as a marking of the Petri net, i.e., the possession of tokens in a subset of the places
of the Petri net which are depicted as circles. The changes of control states are carried out as firings of
one or several transitions of the Petri net which are depicted as bars. To express that the control flow
can be guarded by results of internal computations, we use conditional signals to guard the control
flow. A transition may be guarded by one or several conditions produced from the datapath. A
transition may be fired when it is enabled (all its input places have a token) and the guarding condition
is true. If a transition has more than one guarding condition and at least one of them is true, the
transition’s guarding condition is true. The ETPN example is generated by CAMAD as the
compilation output of the input VHDL specification given in Fig 2(c).

The main feature of the ETPN design representation is its ability to capture the intermediate result of a
design explicitly so as to allow the design algorithm to make accurate design decisions. For example,
if several operations are not data-dependent and can thus be executed concurrently, the situation can
be captured precisely by giving their associated control places in the Petri net a potential to hold
tokens simultaneously. That is, the set of Petri net places corresponding to the operations will not have
any partial ordering relation between them. For example, in Fig. 2, P2 and P7 control the loading of
data to register X and Y respectively, which are independent operations. Therefore, P2 and P7 can hold
tokens simultaneously. When it is, however, discovered later during synthesis that the potential
parallelism will not be able to be implemented (because of resource restrictions for example),
additional partial ordering relations can be introduced by performing a place-stretch transformation.

ETPN is used as a unified design representation which captures the intermediate designs of the high-
level synthesis process, and thus allows the synthesis algorithm to employ an iterative improvement
approach to carry out the synthesis task. The basic idea is that once the VHDL specification is
translated into the initial design representation, it can be viewed as a primitive implementation.
Correctness-preserving transformations can then be used to successively transform the initial design
into an efficient implementation. CAMAD integrates the operation scheduling, data path allocation,
control allocation and, to some degree, module binding sub- tasks of high-level synthesis. This is
achieved by developing a set of basic transformations of the design representation which deals
simultaneously with partial scheduling and local data path/control allocation. An optimization
algorithm is then used to analyze the (global) design and select transformations during each step of the
iterative improvement process.

VHDL
Compiler &
Parallelizer

VHDL
Specification

Scheduling
Allocation

Optimization

Simulation
and

Verification

RT-level
Design

Netlist
Generation

Controller
Implementation

ETPN
ControlPart

ETPN
Data Path

Fig. 3. Overview of CAMAD

Fig. 3 illustrates the basic structure of the CAMAD system. The first step of CAMAD is to map the
VHDL specification into ETPN and to perform automatic parallelism extraction. After the
transformation steps a RTL hardware implementation is generated which consists of a data path net-
list and a controller specified in the form of a finite state machine. The final RTL implementation can
be converted into structural VHDL which, as well as the input system specification, can be simulated
for verification.

3. DECIDER: Automatic Test Pattern Generation for Sequential Circuits

As a hierarchical input to the test generator are descriptions where the architecture of the circuit is
described at the Register-Transfer Level (RTL) and the low-level structure is given at the gate-level.
Both these levels can be described by means of Decision Diagram (DD) models [3]. At the RT-level,
the design is partitioned into a datapath and a control part. At present, we assume that all the
functional units are combinational and that single-clocked circuits are considered.

Datapath can be represented by a system of DDs, where for each primary output, fanout signal and
register a DD corresponds. In addition, multiplexers that are connected to an input of an FU are repre-
sented by a separate DD. In datapath DD models, the non-terminal nodes correspond to control signals
(e.g. multiplexer addresses and register enable signals) and terminal nodes represent operations.
Register transfers and constant assignments are treated as special cases of operations. Values of the
control signals labeling the nonterminal nodes of the DD activate the main path that determines, which
operation is assigned to the variable whose value is calculated by that DD. Figure 4 shows an example
of a DD representation for a datapath register.

Fig. 4. DD model of a datapath fragment.

Control part of an RTL is represented by a DD that calculates the values for a vector consisting of the
state variable and control signals. In the DD, the non-terminal nodes correspond to current state and
conditions (FSM inputs) and terminal nodes hold vectors with the values of next state and control
signals (FSM outputs). Figure 5 shows an example of a fragment of an FSM state table and the
corresponding DD representation. In the DD, q denotes the next state and q’ denotes the current state
value. Variables out1, out2, out3 and out4 are output signals of the FSM. The DD in Figure 5
describes the behavior of the FSM when the current state is equal to s5.

Fig. 5. Converting a state table to a DD.

In current approach, gate-level descriptions of Functional Units (FU) are transformed into Structurally
Synthesized BDD (SSBDD) models [3, 4]. Differently from traditional BDDs [5], which represent
function only, SSBDDs support test generation for gate-level structural faults in terms of signal paths
without representing these faults explicitly. Furthermore, the worst case complexity and memory
requirements for generating SSBDD models for FFRs are linear in respect to the number of logic gates
in the circuit, while for traditional BDDs the total storage space exceeds 2n bits for an n-input
combinational circuit [6]. Hence, SSBDDs for an arbitrary realistic-sized digital circuit can be
generated very rapidly.

In Fig. 6, the structure of the DECIDER test pattern generation system is presented. The test flow
takes place as follows. From the CAMAD high-level synthesis, a VHDL RT-Level (RTL) description
of the design is obtained. The VHDL description is converted to DD models that are used as a high-
level input representation for the test generation. The RTL VHDL description and the library
describing the behavior of the FUs is applied to logic synthesis. (At present, we use Design Compiler

Fig. 6. Data flow of DECIDER

from Synopsys Inc. for logic synthesis).
As the result of the synthesis we obtain
gate-level EDIF netlists of the entire
flattened design as well as for each FU
separately. Subsequently, these netlists
are converted into Structurally
Synthesized BDD (SSBDD) models by
the EDIF interface of the DECIDER
system. SSBDD models provide the
logic-level input description for the
hierarchical test pattern generator.

The Automatic Test Pattern Generator
(ATPG) of the system uses the
following approach. Tests are generated
for each FU of the system separately.
Symbolic path for propagating fault
through the network of components is
activated and corresponding constraints
are extracted at the high level. These
constraints are reduced to inputs, input
values for the FU are calculated and
gate-level fault simulation is applied to
the FU using these values.
Subsequently, final test patterns for the
whole circuit are compiled.

These test patterns are the input stimuli for the RTL design. However, as the test generation
implements high-level fault models, we do not know the precise gate-level stuck-at fault coverage of
the tests. Therefore, the test patterns have to be converted to correspond to the stimuli for the gate-
level netlist of the entire design. This is required for gate-level stuck at fault simulation of the design
in order to measure the quality of generated tests.

4. Experimental Data

Table 1 shows comparison of DECIDER with two other state-of-the-art ATPG tools. These are
GATEST [7] and HITEC [8], respectively. GATEST is a genetic algorithm based test generator.
HITEC is a deterministic gate-level ATPG. Both of the tools have been developed at the University of
Illinois at Urbana-Champaign. The experiments were run on a 300 MHz SUN UltraSPARC 10
workstation with 128 MB RAM under SOLARIS 2.6 operating system. Actual stuck-at fault
coverages of the test patterns generated by all the three tools were measured by the fault simulator
from TURBO TESTER tools [9]. As it can be seen from Table 1, HITEC offers the poorest
performance, both, in terms of fault coverage and test generation time on all the three example
circuits. Fault coverages achieved by GATEST and DECIDER are almost equal. GATEST reaches 1.2
% higher fault coverage for the gcd circuit and only 0.2 % higher coverage for diffeq. DECIDER in
turn has a 2.1 % advantage in the case of mult8x8 example. However, the test generation times of the
two tools differ greatly. DECIDER spends 26 - 615 times less CPU time for test pattern generation
process than GATEST.

Table 1. Test generation results.

DECIDER GATEST [7] HITEC [8]
Fault cover, % Time, s Fault cover, % Time, s Fault cover, % Time, s

gcd 91.0 3.4 92.2 89.8 89.3 195.6
mult8x8 79.4 13.6 77.3 1585 63.5 1793
diffeq 95.8 15.8 96.0 9,720 95.1 N. A.

5. Conclusions
A novel high-level synthesis system with integrated hierarchical ATPG is presented. The high-level
synthesis system CAMAD is built around the ETPN representation. The use of Petri nets provides a
natural description of concurrency and synchronization of the operations and processes of a hardware
system. It provides a natural platform to represent and manipulate concurrent processes of VHDL
specifications. In the ATPG, differently from known methods of test generation, both higher and lower
abstraction levels, and both control and datapath parts are handled by a uniform approach. This joint
formal basis allowed to adopt and generalize gate-level simulation and test generation methods and
tools to higher level ones. Appropriate interfaces to behavioral and RT-level VHDL and EDIF netlist
formats have been implemented. In the paper, an overview of the implementation is given and
experimental data showing the viability of the approach and the efficiency of test generation are
provided.

References

1. Z. Peng and K. Kuchcinski: Automated Transformation of Algorithms into Register-Transfer Level
Implementations, IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, Vol. 13, 150-
166, 1994.

2. J.Raik, R.Ubar, “Sequential Circuit Test Generation Using Decision Diagram Models”, Proc. of DATE
Conf., 1999.

3. R. Ubar, “Test Synthesis with Alternative Graphs”, IEEE Design & Test of Comp., Spring 1996.

4. R. Ubar, “Test Generation for Digital Circuits Using Alternative Graphs”, Proc. of Tallinn Technical
University, Estonia, No. 409, pp. 75-81 (in Russian), 1976.

5. S.B.Akers, “Binary Decision Diagrams”, IEEE Trans. Computers, Vol. 27, pp.509-516, June 1978.

6. H.-T. Liaw, C.-S. Lin, “On the OBDD-Representation of General Boolean Functions”, IEEE Trans.
Computers, Vol. 41, pp. 661-664, June 1992.

7. T. M. Niermann, J. H. Patel, “HITEC: A Test Generation Package for Sequential Circuits”, Proc. European Conf.
Design Automation, pp. 214-218, 1991.

8. E. M. Rudnick, J. H. Patel, G. S. Greenstein, T. M. Niermann, “Sequential Circuit Test Generation in a Genetic
Algorithm framework”, Proc. Design Automation Conf., pp. 698-704, 1994.

9. G.Jervan et al., “Turbo Tester: A CAD System for Teaching Digital Test”, Microelectronics Education,
Kluwer Academic Publishers, Dordrecht/Boston/London, pp.287-290, 1998.

