
ABSTRACT
There is an important trend towards design processes based on the
reuse of predesigned components. We propose a formal verification
approach which smoothly integrates with a component based sys-
tem-level design methodology. Once a timed Petri Net model corre-
sponding to the interface logic has been produced the correctness of
the system can be formally verified. The verification is based on the
interface properties of the connected components and on abstract
models of their functionality, without assuming any knowledge
regarding their implementation. We have both developed the theo-
retical framework underlying the methodology and implemented an
experimental environment using model checking techniques.
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aided design (CAD)
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1.  INTRODUCTION
One of the important current trends is towards a design process
based on the reuse of predesigned blocks [1]. Such blocks can be
both hardware and software components. With such a design pro-
cess, also called ”interface based design” [2], the focus is on the
interaction of components and, in particular, on interfaces, proto-
cols and glue logics which interconnect independent blocks.

Once a design alternative has been produced, one crucial aspect
is the verification of interfaces and of the global system functional-
ity. There are several aspects which make this task very difficult.
One is the complexity of the systems, which makes simulation
based techniques very time consuming. On the other hand, formal
verification of such systems suffers from state explosion. Another
problem is the lack of information about the internals of prede-
signed blocks. However, it can often be assumed that the design of
each individual component has been verified and can be supposed
to be correct [3]. What remains to be verified is the interface logic
(hardware or software). Such an approach can handle both the com-
plexity aspects (by a divide and conquer strategy) and the lack of
information concerning the internals of predefined components.

Although several approaches have been proposed tackling
aspects of component based design, there exists, to our knowledge,
no work concerning the integration of such a design process with
formal verification.

As a main contribution, in this paper we propose a formal veri-
fication approach which smoothly integrates with a component
based system-level design methodology for embedded systems.
The approach is based on a timed Petri Net notation. Once the
model corresponding to the interface logic has been produced, the

correctness of the system can be formally verified. The verification
is based on the interface properties of the interconnected compo-
nents and on abstract models of their functionality, without assum-
ing any knowledge regarding their implementation. We have
developed both the theoretical framework underlying the methodol-
ogy and implemented an experimental environment for its applica-
tion, using model checking techniques. Our approach represents a
contribution towards increasing both design and verification effi-
ciency in the context of a methodology based on component reuse.

Section 2 of the paper introduces the design representation, fol-
lowed by a preliminary discussion in Section 3. The verification
technique is presented in Section 4 where we both develop the theo-
retical framework and discuss some examples. Experiments are pre-
sented in Section 5 and the conclusions are given in Section 6.

2.  PRES+: THE DESIGN REPRESENTATION
In order to support our modeling approach, we have defined a Petri
Net based representation called PRES+ [4]. The following exten-
sions to classical Petri Nets are the most important in the context of
this paper (see Figure 1):
1. A token has values and timestamps, where is the

value and  is the timestamp.
2. A transition has a function and a time delay interval associated

to it. When a transition fires, the value of the new token is com-
puted by the function, using the values of the tokenswhich ena-
bled the transition as arguments. Thetimestamp is increased by an
arbitrary value from the time delay interval. In Figure 1, the
functions are marked on the outgoing edges from the transitions.

3. The PRES+ net is forced to be safe, i.e. one place can at most
accommodate one token. A token in an output place of a transi-
tion disables the transition.

4. The transitions may have guards. A transition can only be ena-
bled if the value of its guard is true (see transitions  and ).

5. The preset (postset ) of a transition is the set of all places
from which there are arcs to (from) transition . Similar defini-
tions can be formulated for the preset (postset) of places. In
Figure 1,  and .
We will now define three concepts which are critical to our

methodology, in the context of the PRES+ notation.
Definition 1. Component. A component is a subgraph of the

graph of the whole system ( is the set of places and
is the set of transitions) such that:
1. Two components , may only overlap with their

ports (Definition 2), , where
.

2. The pre- and postsets ( and ) of all transitions must be
entirely contained within the component , .
Definition 2. Port. A place is an out-port of component if

or an in-port of if .
is a port of  if it is either an in-port or an out-port of .

Definition 3. Interface. An interface of component is a set of
ports  where .
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Figure 1.  A simple PRES+ net
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PRES+ can model the behaviour of a component at different
levels of granularity. A component can be drawn as a box sur-
rounded by its ports, as illustrated in Figure 2(a). Modelled in this
way, it can be replaced with a PRES+ net as indicated by Figure 2(b).

3.  PRELIMINARIES
Our verification methodology, presented in Section 4, can be used
when the system is composed of preverified components con-
nected by a socalled glue logic, as indicated in Figure 3. Such a glue
logic is sometimes called a wrapper. All boxes which represent
components are abstractions of PRES+ nets in the way described
above. The glue logics connecting the components are also mod-
elled in PRES+.

An example of a glue logic is provided in Figure 4. The glue
logic connects a componentRadar to a component which imple-
ments a connection-based communication protocol. Component
Radar emits a token containing radar information at regular rate.

Since we use a connection-based protocol, a fact which com-
ponentRadaris not aware of, the functionality related to establish-
ing and maintaining a connection has to be implemented by the
glue logic. In this and the following examples, the time delay inter-
vals on the transitions are not shown for the sake of readability of
figures. The transition connected to both the porttarget_update
and the portin cannot be enabled until the protocol reported that it
successfully has been connected. In this case, the token value
<sd, <MCC, m>> will be passed to the protocol component. The
first element of the tuple is a command to the protocol (”sd” is a
shorthand for ”send”) and the second element is an argument to the
command. Here the argument is a tuple of the destination and the
message itself. If, however, the connection failed, the glue logic
will continue to attempt to connect, at most five times1.

4.  VERIFICATION
When all glue logics are constructed and all components are in
place, it is time to verify that the components are assembled and
interconnected correctly. Since the model is built with reusable
components, we assume that they have been verified by the provid-
ers. What remains to be verified is the glue logic and the way it has
adapted the various interfaces to work together. In our methodol-
ogy, formal verification is performed using model checking [5].
4.1  Formulas and stubs
According to our methodology, the user acquires a verified compo-
nent with a well-defined interface. For each such component, it is
supposed that the following tasks have been previously performed:
1. Verify the component.
2. Provide (T)CTL [5] formulas as constraints on the inputs.
3. Provide stubs as description of the characteristics of outputs.

CTL (Computation Tree Logic) [5] is a logic language in
which the possibility of events happening in different computation
paths (futures) can be expressed. There are two computation path
quantifiers, A (universal) and E (existential), and four operators on
time, G (globally, in every computation step), F (some time in the
future), U (until), R (releases). has the meaning that is
always true in all possible computation paths. means that in
at least one computation path holds at some point in the future.

denotes that in all computation paths, holds until
becomes true at some point in the future, while means

that holds until becomes true or, if never becomes true,
will hold globally. It is possible to explicitly include time in the
formulas in which case the logic is called timed CTL or TCTL [7].
A TCTL formula could look like , which means that must
always hold in the future within 5 time units. For the sake of sim-
plicity we will use CTL formulas in our examples throughout the
paper. However, the theoretical discussion as well as the verifica-
tion methodology are valid for both CTL and TCTL.

The (T)CTL formulas associated to components impose con-
straints on the environment in which the component is placed.
These constraints are expressed only in terms of the in- and out-
ports of the component.

Review the example introduced in Section 3. The connection-
based protocol component (Figure 4) comes together with (T)CTL
formulas which describe the expected input on each interface of
the component. Two of these formulas are:

(eq. 1)

(eq. 2)

(eq. 1) states that the protocol can never receive a send com-
mand when it is disconnected at a certain protocol-port . (eq. 2)
requires that, as long as the protocol is already connected at proto-
col-port , it is prohibited to connect again.

For the verification process of the glue logic, the (T)CTL for-
mulas define the requirements on the input ports of the connected
components. However, information regarding the output produced
by these components is also needed for the verification process.
For this purpose, the concept of a stub is introduced. Before defin-
ing a stub, some auxiliary concepts have to be defined.

Definition 4. Interface compatibility. Interfaces and are
compatible iff there exists a bijection such that if

, then  and  are both either in-ports or out-ports.
Definition 5. Event. Anappearing eventis a tuple ,

where is a place and is a token. Appearing events rep-
resent the fact that a token with value is put in place at time
moment . Adisappearing eventis a tuple where is a
place and is a timestamp. Disappearing events represent the fact
that a token in place is removed at time . Observe that for dis-
appearing events we are not interested in the token value. Anevent

 is either an appearing event or a disappearing event.
Definition 6. Observation. An observation is a set of events

. Given observation and an interface , the
restricted observation . An
inputobservation is an observation which only contains appear-
ing events defined on in-ports and disappearing events defined on
out-ports. Anoutputobservation is an observation which only
contains appearing events defined on out-ports and disappearing
events defined on in-ports.

Definition 7. Operation. Consider an arbitrary input observa-
tion of component . If events occur in the way described by

, we can obtain the output observation by executing the
PRES+ net. For each , several different observations are pos-
sible. The set of all possible output observations of being

1 Inhibitor arcs are drawn with a circle instead of an arrow in one end. The
function of inhibitor arcs is to disable otherwise enabled transitions. In
PRES+, inhibitor arcs are only syntactic sugar for a more complex structure.
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the result of applying the input observation to component , is
called the operation of component from and is labelled

. Given an operation and an interface
of component , the restricted operation

.
Definition 8. Stub. Let us consider two components, and .
is the interface of containing all ports of . is any inter-

face of .  is a stub of  with respect to interface  iff:
1. Interface  is compatible with interface .
2. For any possible input observation of component ,

.

Note that it is not important what happens on other interfaces
than . Figure 5 gives an example of a stub of a connection-based
protocol component with respect to the interface

. Since not all ports are part of the interface, the
stub cannot avoid to express a non-deterministic behaviour. For
instance, if the stub receives aconnectrequest, it can issue non-
deterministically either arej (rejected) orcon(connected) message
as an answer to this request. However, in the full component this
choice is deterministic, depending on the data exchange on the
portssendandrec with the rest of the system. The degree of non-
determinism of a stub depends on the number of component ports
which are not included in the interface of the stub.

Definition 9. Top-level interface. The top-level interface of a
component , with respect to a glue logic , is the set of ports of the
component to which the glue logic is connected, . We
will use the simple notation , if it is either not important or it is
clear from the context, to which component and glue logic we refer.

The ports of a component , connected to the glue logic ,
can be divided into interfaces in many different ways. More pre-
cisely, every subset of can be considered an interface for
which a stub can be constructed. Figure 6 presents a partial order
(lattice) of interfaces and hence also of stubs of a component con-
nected to a glue logic through two in-ports (I1 and I2) and two out-
ports (O1 and O2). The lattice induces distinct levels of generality
of the stubs. The top-level stub (the stub for the top-level inter-
face), with interface , exhibits exactly the same
behaviour as its corresponding component. However, the imple-
mentation is not bound to be the same. In the bottom of the lattice,
we have the empty interface, for which there does not exist any
stub and which is only of theoretical interest. If, for a certain verifi-
cation, no stubs situated at level 1 or higher are applied at a certain
port, then a so called empty stub is connected to that port. In the
case of in-ports, the empty stub, , denotes the stub that con-

sumes any token at any point in time. Similarly, the empty stub,
, denotes the stub that generates tokens with random values

at any point in time. The models of these stubs are presented in
Figure 7. It is useful to introduce the notation to denote the
empty stub at port . Whether is equal to or to
depends on whether is an in-port or an out-port. We further elab-
orate on the use of empty stubs in Section 4.3. Between and

, stubs of different levels of generality can be found.
On level 1, stubs for one-port interfaces can be found. If the

interface only contains an in-port, the functionality of the stub is to
consume the token at random times which, however, correspond to
times when the full component could be able to consume the
token, if it would be consumed at all. If it only contains an out-
port, the functionality is to issue a new token with random value at
random occasions. The value and time are random to the extent
that the issued values could, in some circumstance, be issued by
the full component at the time in question (note the difference
between these stubs and  and , respectively).

If higher level (level > 1) stubs contain both in-ports and out-
ports, a certain degree of causality is introduced. The out-ports can
no longer produce any arbitrary value on the tokens, but rather any
value still consistent with the token values arriving at the in-ports
given the behaviour of the full component. Hence, for instance, in
Figure 5 no token on portout can be issued unless the stub has
received a connection or listen request at portin and accepted it. If
there are other in-ports of the component, not represented in the
interface of the stub, the output is considered non-deterministic
from the point of view of the absent in-port, as in the case with the
non-deterministic issuing ofrej andconas an answer to aconnect
request described previously in Figure 5.
4.2  The verification process
Our verification approach is illustrated in Figure 8. To verify the
glue logic we need to integrate its model with stubs of the compo-
nents it is connected to. These stubs capture the characteristics of
the outputs of the components and, by this, they provide the envi-
ronment for the glue logic to be verified. The net composed of one
or more stubs and the glue logic itself is then passed to the model
checker together with (T)CTL formulas corresponding to the
involved interfaces of the components. It should be mentioned that,
in order to perform the model checking, PRES+ has to be trans-
lated into the input language of the particular model checker used.
We have discussed the problems related to such a translation into
timed automata [5] for the UPPAAL model checking environment
[6] in [4]. In addition to the formulas provided together with the
components, the designer can add formulas invented by himself to
the verification process.

In order to illustrate the verification process, a small example
is provided in Figure 9.Doubler accepts a token with an integer
value at in-portarg. In response, it will issue a token at out-port
outputwith the value two times the value it received. Component
Strangewill issue one token on out-portactionas an answer to each
token it receives on in-portinput. These two components are con-
nected through the glue logic in the figure. The glue logic will pro-
vide the Doubler with an argument, starting with value 0 and
increasing each time by one. The reply of theDoubler is given to
Strangewhich will acknowledge by issuing a token on out-port
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action, which in turn will cause a new integer to eventually be pro-
vided to theDoubler.

Figure 10 shows the stubs corresponding to the example in
Figure 9. Let us elaborate on how different levels of stubs can be
used for verification considering the following formulas:

To check (eq. 3) (if there is a token in placeinput, then the value
of that token must be an even number), only the stubs for the inter-
faces {output} and { input} are needed. (eq. 4) (if one argument is
received byDoubler, another argument may not arrive until the
result of the first one is produced), requires top-level stubs at both
sides. (eq. 5) (if there is a token in placearg, then the value of that
token is positive) can be checked with only empty stubs. Let us look
at (eq. 6) (there is always a possibility that a negative value may
arrive at portinput) which obviously is not satisfied. However, if
empty stubs are used, the verification will indicate that the formula is
satisfied. But if the stub {arg, output} is used, the verification will
point out that the property is not true, which is the correct conclusion.

It is obvious that using top-level stubs for all components we
will get a correct verification for properties specified by any for-
mula. However, we have a whole lattice of stubs for each compo-
nent. Thus, the following question has to be answered: Do we
always have to use the top-level stubs in order to verify a certain
formula? If the answer is ”no”, then which stub or combination of
stubs to use for verification? These questions are of both theoreti-
cal and practical importance. From the practical point of view,
selecting a certain combination of stubs can reduce the complexity
of the verification process and, by this, the verification time. On the
other hand, it can happen that certain stubs, possibly the top-level
ones, are not available. Thus, it is important to provide a theoreti-
cal platform which allows to decide if it is possible to perform a
correct verification with a certain combination of available stubs.
This theoretical framework will be developed in Section 4.3.
4.3  Properties and relationships of stubs

Definition 10. Interface partition. An interface partition is a
set of non-empty interfaces such that
for any  and , .

It should be pointed out that each port can at most belong to
one interface in every partition. As a consequence of Definition 3,
all ports in the same interface must belong to the same component.
By convenience, the set of all ports belonging to the interfaces in
partition  is denoted .

Definition 11. Partition precedence. Partition precedes par-
tition , , iff .

For every , there exists at most one that satisfies the
subset relation. This is due to the fact that every port can at most
belong to one interface in the partition.

Returning to the example in Figure 9, some possible partitions
are: , and

. , since all interfaces in
are subsets of an interface in . It is also true that and

. However, it isnot the case that . Intuitively, the inter-
faces in are more accurate than those in or , since they cap-
ture more of the causalities and dependencies between their ports.

Because of lack of space, we have omitted the relatively
straight-forward proofs of the following two theorems:

Theorem 1.The partition precedence relation is a partial order.
Theorem 2.The partition precedence relation is a lattice with

top element , including the top-level interfaces of all con-
nected components, and bottom element .

Definition 12. Environment. The environment corresponding to a
partition with respect to a set of ports where

, is defined as
where each is the

stub for interface , and  is the empty stub attached to port1.
Let us consider the example in Figure 9 with the stubs of the

components in Figure 10. With ,
Figure 11(a) shows the environment

. Since portoutput is not included
in the partition, the empty stub (see Figure 7) has been
added. Figure 11(b) shows a similar example for

. In Figure 11(c), no empty stub needs to
be added for , since all
ports in  are included in the partition.

If all the individual stubs in together are viewed as one
single component, we obtain the environment corresponding to
partition with respect to the set of ports . The name stems from
the fact that such a component acts as the environment of the glue
logic, connected to the ports in , in the verification process.
Based on Theorem 2, it is possible to construct a lattice of parti-
tions, i.e. environments, similar to that done with individual stubs
and their interfaces (Figure 6). Figure 12 introduces a very simple
example consisting of two interconnected components. InFigure
12(b), we show the interface (stub) lattice corresponding to each of the
components. Figure 12(c) depicts the partition (environment) lattice.

Theorem 3.Given an input observation , two partitions
and , , and a set of ports where ,
then .
Proof.Assume an observation . This means that
is a possible output observation given the input observation . By
definition of partition precedence, . Hence
the restriction operator in (see Definition 8)
filters out more elements from the unrestricted operation when

than when . Consequently must also
pass the filter of and can be an output of , i.e.

. ❏

Definition 13. Generalized operation. The generalized opera-
tion for component is the union of all operations for every
possible input observation, .

(eq. 3)
(eq. 4)

(eq. 5)
(eq. 6)
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According to Definition 7, an operation is the set of all possible
outputs given a certain input. The generalized operation is the set of
all possible outputs no matter what the input is. The generalized oper-
ation allows us to generalize Theorem 3 into the following corollary.

Corollary 1. Given partitions and , , and a set of
ports  where , then .
Proof.Follows directly from Theorem 3 and Definition 13.❏

Definition 14. State sequence generator. A state, in this con-
text, is a marking of ports. A state sequence generator is a function

, where is an observation and is an initial state. The
observation may only contain appearing events and disappearing
events on ports. The result of the function is a sequence of states
obtained by iteratively applying the events in to the previously
obtained state (initially ) in the order indicated by their timestamps.

Let denote the timestamp of an event . Assume
or , depending on whether it is an appear-

ing or disappearing event, and , i.e. the set
of events with the lowest timestamp in . Then Definition 14 can
be recursively reformulated as ,
where denotes the head, , and the tail, , of a sequence,
and denotes the resulting state (marking) after applying all
events in on the initial state (marking) . The basis of the
recursion is .

The definitions given so far provide the necessary means to
express the semantics of CTL formulas in the context of the theo-
retical framework we have introduced. First, recall the classical
definitions [5] for the two example formulas and for
any CTL formula ( means that formula holds in state ,
and  denotes equivalence between two formulas):

(eq. 7)
(eq. 8)

denotes the set of all possible sequences of states in
model where the first state is . It should be noted that in
these equations does not refer to the state sequence generator intro-
duced in Definition 14, but is a quantified variable. From these
sample equations it is possible to extract how the state path quanti-
fiers (A, E) and the time quantifiers (G, F) translate into the seman-
tics of our theoretical framework. The difference between this
model and ours, is that all definitions in our model are based on
events, not states. The link between these two views of the world, is
based on the state sequence generator in Definition 14. (eq. 9) and
(eq. 10), where is the set of all possible input observations of
component , express the same semantics as (eq. 7) and (eq. 8) in
terms of observations and operations.

(eq. 9)
(eq. 10)

The union is taken of both all possible input observations,
, and all possible output observations, , and passed to

the state sequence generator to be used as in the classical defini-
tions. The observations are quantified in the same way as the state
sequences would have been done in (eq. 7) and (eq. 8).

In [7] equivalent formulas to (eq. 7) and (eq. 8) are given for
TCTL. Based on the discussion above, they can be trivially
extended to formulas similar to (eq. 9) and (eq. 10).

Before presenting Theorem 4, it is necessary to introduce a
subcategory of CTL formulas, namely ACTL. ACTL formulas are
formulas which only contain universal path quantifiers. Moreover,
the use of negations is restricted to only be allowed in front of
atomic propositions1. For example, and

are ACTL formulas while and
are not. ACTL formulas can be extended with time

in a similar way as for CTL formulas, whereby TACTL formulas
are obtained.

Theorem 4.Assume the partitions and , , a set of
ports where , an initial marking on the

ports in and a (T)ACTL formula, e.g. , also expressed only
on the ports in . If for component , then it is
also true that  for component .
Proof. ,
where is the set of all input observations on ports in the parti-
tions. As a consequence of Corollary 1 and the fact that and are
universally quantified, it is possible to conclude

. ❏
The key point in the proof is the universal quantifiers of the

observations and . For this reason the theorem only applies to
(T)ACTL formulas, since they are exactly those formulas which
can guarantee the universal quantifier.
4.4  Discussion
Section 4.3, in particular Theorem 4, provides the answer to the
questions identified at the end of Section 4.2. Let us assume that we
have a setC of two or more components which have been intercon-
nected by a glue logic. It has to be verified that a certain property,
expressed as a (T)CTL formula , holds. The following situations
can occur:
1. Formula is not a (T)ACTL formula. In this case the verifica-

tion has to be performed with top-level stubs for all connected
components.

2. Formula is a (T)ACTL formula. In this case, if the formula is
satisfied using stubs at any level, the property can be considered as
satisfied (this is a direct consequence of Theorem 4 and of the fact
that, according to Theorem 2, for any partition and top-level
partition , ).
Case 2 above is important, as it offers a certain degree of liberty

for the verification with (T)ACTL formulas. If some top-level stubs
are not available, but the property can be verified with lower-level
stubs, this is sufficient for validation of the system. On the other
hand, for reasons of complexity, the designer can choose to perform
the verification with simpler low-level stubs. If the property is satis-
fied, such a verification is sufficient. If not, however, the verifica-
tion using high-level stubs can still satisfy the property and thus
demonstrate that the system is correct.

5.  EXPERIMENTAL RESULTS
The following experiments concern the verification of systems

resulted after the interconnection of components. In the first set of
experiments we have verified the glue logic in Figure 4, which
interconnects theRadarandProtocolcomponents of a General avi-
onics platform (GAP) [8]. We illustrate the verification of four
properties. Property A is (the tokens in portupdate
will always be consumed). Property D is (the tokens in
portoutwill always be consumed). Properties B and C are identical
to (eq. 1) and (eq. 2). Consequently, all these formulas are ACTL.
Three possible partitions were used whose relationships are shown
in the lattice in Figure 13(a). The results of the verification are
shown in Table 1. It can be observed that all four properties
imposed by the interconnected components are satisfied with the
actual glue logic. For property D, the verification can be done using
the lowest level of the three partitions (as the property is expressed
by an ACTL formula, point 2 in Section 4.4 applies).

The second example refers to a split transaction bus (STB) in a
multiprocessor DSP [9]. An overview of the system is shown in
Figure 14. Each processing element contains one 32-b V8 SPARC
RISC Core with a co-processor and reconfigurable L-1 cache mem-
ory. The STB consists of two buses, the address bus and the data
bus. When the protocol wants to send data, on request from the pro-

1 An atomic proposition is the lowest level of a formula which does not con-
tain any subformula.
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cessing element, it must first request access to the address bus.
After acknowledgment of the address bus, the protocol suggests an
identifier for the message transfer and associates it with the address
of the recipient. This identifier is broadcast to all protocol compo-
nents connected to the bus in order to notify them about used iden-
tifiers. The next step is to request access to the data bus. When the
data bus has acknowledged the request, the identifier is sent fol-
lowed by some portion (restricted in size by the bus) of the data.
Then, the data bus is again requested and the same procedure con-
tinues until the whole block of data has been transmitted. One
functionality of the glue logic being verified is to deliver messages
from the protocol to the correct bus. Another aspect is to process
the results and acknowledgments so that they can correctly be
treated by the protocol. For instance, in the case of an identifier
broadcast, the protocol component expects two different com-
mands from the address bus, depending on which of the following
two situations occurred: (1) the protocol component currently in
hold of the address bus is the component connected to this particu-
lar glue logic or (2) the broadcast is the result of another compo-
nent proposing an identifier.

Table 2 shows the verification results with the STB example.
The high number of ports yields a large lattice of partitions. In
Figure 13(b) only those which are involved in this particular exper-
iment are included. Partition 12 consists of the top-level stubs for
all three connected components. Partition 1 consists of interfaces
containing only out-ports.

In order to give a better understanding of the properties, we will
have a closer look at two of them. Property B concerns with the fact
that the glue logic must issue different commands to the protocol
component when the address bus broadcasts the identifiers, depend-
ing on the source causing this event to happen. It is formulated as

where TRAN (tran-
saction) is the command to be received by the protocol component
when the source causing the event is the one connected to the glue
logic under verification. It should not be possible to receive such an
event when the address is different from the one of the current compo-
nent. Property I includes also timing aspects (it is a TCTL formula):

. When the address bus has sent an acknowledgment, it expects the
command DRVADD to arrive within 10 time units.

Properties A to G are expressed as ACTL formulas, while prop-
erty H is not (it is a general CTL formula). The last three properties
include timing aspects. I and J are TACTL formulas while K also
includes existential quantifiers. It can be noticed that property C is
not satisfied in the system. The verification result for that property
is false, no matter which environment is used. On the other extreme
we find properties B, E and J which are satisfied even with the low-
est level environment. Hence, being expressed as (T)ACTL formu-
las, the properties are satisfied with any environment. Property G,

also expressed as an ACTL formula, is also satisfied. This can be
verified by using the top-level environment, but also by verifying
with environment 2. According to point 2 in Section 4.4, the verifi-
cation performed with environment 2 also guarantees that the prop-
erty is satisfied with environments 4, 5, 6, 7, 8, 9, 10, 11 and 12,
which means the complete system. This is, of course, not the case
with properties H and K which are expressed by non-(T)ACTL for-
mulas. Verification with low-level environments is not relevant.
The only valid verification is using the top-level environment.

Let us have a look at verification times. For the different prop-
erties and environments they are in the range 0.12-689 seconds.
For a given property the verification times are small for the very
low-level stubs and for the top-level stubs. This is due to the sim-
plicity of the low-level stubs, on the one side, and the high degree
of determinism of the top-level stubs (which reduces the state
space) on the other side. Between these two limits we can observe
a, sometimes very sharp, increase of verification times for the stubs
which are at a level close to the top. If they are available, one can
perform the verification using the top-level stubs. For non-
(T)ACTL formulas, this is the only alternative. However, (T)ACTL
formulas could be verified even if the top-level stubs are not at
hand. In this case, a good strategy could be to start with the lowest
level stubs, going upwards until the property is satisfied.

6.  CONCLUSIONS
We have introduced a methodology to perform formal verification
of embedded systems in the context of component reuse. A timed
Petri Net based design representation is used.

The verification technique smoothly integrates with communi-
cation based design and component reuse. The verification is per-
formed against a set of (T)CTL formulas associated to the
components and is based on abstract models of the interconnected
components, without assuming any knowledge regarding their
implementation. The theoretical framework underlying the meth-
odology has been presented together with examples and experi-
mental results.
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Figure 14.  Schematic view of the STB example
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Table 1: Experimental results for GAP example
Partition/Property 1 2 3

A F 1.97 F 4.1 T 0.24
B F 0.39 F 0.69 T 0.12
C F 0.43 F 0.75 T 0.13
D T 0.21 T 0.36 T 0.12

F - property is unsatisfied in the corresponding environment, T - property is satisfied in the corresponding environment. Verification times are given in seconds.

Table 2: Experimental results for STB example
Partition/Property 1 2 3 4 5 6 7 8 9 10 11 12

A F 0.41 F 3.28 F 0.34 F 162 T 156 F 345 F 330 F 68.2 T 17.7 F 636 T 30.4 T 12.6
B T 0.14 T 0.41 T 0.16 T 17.6 T 24.8 T 16.9 T 23.6 T 1.69 T 1.38 T 26.9 T 1.54 T 1.29
C F 0.23 F 0.74 F 0.23 F 19.7 F 29.7 F 18.6 F 28.8 F 3.25 F 3.27 F 32.7 F 4.09 F 4.01
D F 0.38 F 0.89 F 0.37 F 129 F 45.9 F 97.7 F 313 F 20.1 T 3.32 F 292 T 10.2 T 7.04
E T 0.20 T 0.58 T 0.21 T 28.1 T 54.2 T 29.2 T 48.9 T 2.80 T 1.20 T 53.3 T 4.48 T 4.39
F F 0.34 F 0.68 F 0.31 T 18.7 T 26.2 T 16.5 T 25.2 F 6.51 F 2.85 T 28.8 T 1.76 T 1.36
G F 0.41 T 0.43 F 0.44 T 18.5 T 26.3 T 17.0 T 26.7 T 2.47 T 0.94 T 30.0 T 2.36 T 1.94
H T 0.21 T 1.30 T 0.22 F 167 F 438 F 344 F 325 F 66.4 F 11.9 F 689 F 87.2 F 38.0
I F 1.4 F 1.7 F 1.5 F 2.5 F 1.2 F 3.2 F 2.6 F 2.3 T 148 F 1.8 T 93.6 T 7.5
J T 9.4 T 12.4 T 10.0 T 12.5 T 7.0 T 8.0 T 19.0 T 17.7 T 10.7 T 11.4 T 9.7 T 4.0
K T 0.5 T 0.7 T 0.4 T 0.4 F 54.8 T 0.4 T 0.3 T 0.4 F 24.2 T 0.3 F 26.1 F 5.1


