
Combining Theorem Proving and Continuous

Models in Synchronous Design

Simin Nadjm-Tehrani1 and Ove �Akerlund2

1 simin@ida.liu.se, Dept. of Computer and Information Science, Link�oping University
S-581 83 Link�oping, Sweden

2 ove.akerlund@saab.se, Saab AB, S-581 88 Link�oping, Sweden

Abstract. Support for system speci�cation in terms of modelling and
simulation environments has become a common practice in safety-critical
applications. Also, a current trend is the automatic code-generation, and
integration with formal methods tools in terms of translators from a high
level design { often using common intermediate languages.
What is missing from current formal methods tools is a well-founded inte-
gration of models for di�erent parts of a system, being software/hardware
or control-intensive/data-intensive. By hardware we mean here the full
range of domains in engineering systems including mechanics, hydraulics,
electronics. Thus, there is a methodological gap for proving system prop-
erties from semantically well-de�ned descriptions of the parts.
We report on the progress achieved with the European SYRF project
with regard to veri�cation of integrated analog/discrete systems. The
project pursues the development of new theories, application to case
studies, and tool development in parallel. We use a ventilation control
system, a case study provided by Saab Aerospace, to illustrate the work
in progress on how hardware and software models used by engineers
can be derived, composed and analysed for satisfaction of safety and
timeliness properties.

Keywords: control system, synchronous languages, theorem proving,
hybrid system, proof methodology

1 Introduction

Many applications of formal methods in system development are in the require-
ments speci�cation phase { often formalising a subset of requirements corre-
sponding to functional behaviour of the system [9, 6]. In embedded systems,
these requirements commonly refer to the component which is under design {
typically the controller for some physical devices (realised either as software or
electronics). However, there is a class of properties arising as a result of inter-
action between the controller and the controlled environment, the veri�cation
of which requires an explicit model of the environment. This paper addresses



veri�cation methodologies for such types of requirements in the context of syn-
chronous languages.

A growingly popular approach to controller design or programming uses the
family of synchronous languages (Lustre, Esterel, Signal and statecharts) [7, 8].
One reason for choosing such languages is the support provided in the develop-
ment environments: the controller can be analysed to eliminate causal inconsis-
tencies, and to detect nondeterminism in the reactive software. The clock calculii
in Lustre and Signal, as well as constructive semantics in Esterel can be seen
as veri�cation support provided directly by the compiler (comparable to several
properties veri�ed by model checking in [5]). Most of the works reported within
this community, however, apply veri�cation techniques to check the controller
on its own.

Modelling the controlled environment is common in control engineering. How-
ever, the analysis tools within this �eld primarily provide support for continuous
system simulation, and are less adequate for proving properties of programs with
discrete mode changes and (or) complex non-linear dynamics in the plant.

Within the Esprit project SYRF (on SYnchronous Reactive Formalisms), we
present an approach whereby modelling tools used for analysis of analog systems
can be used to substantiate the properties of the environment when formally ver-
ifying a closed loop system. We use the continuous model of the environment
in two di�erent settings. In the �rst approach, compositional veri�cation is per-
formed across di�erent modelling platforms [14]. A required property is split
into a number of conjuncts (proof obligations). Some of these are discharged by
proofs in the discrete platform, using the controller properties. Others are veri-
�ed in the environment model by simulation and extreme case analysis. Certain
properties are re�ned in several steps before they are reduced to dischargable
components.

In the second approach we model (aspects of) the continuous subsystem in
the same (discrete) proof environment as the controller. Here, the restrictions in
the physical model provide a su�cient condition: The proof of the property in the
closed loop model holds provided that the restrictions leading to the discretised
model holds.

A case study provided by Saab Aerospace is used to illustrate the alternative
approaches, the properties for which they are appropriate, and some veri�cation
results obtained. However, some comparative studies are still in progress, and
will be conclusively presented in the �nal report of the project.

2 The air control case study

The case study consists of a climatic chamber. A control system regulates and
monitors the ow and the temperature of air which is circulating in the chamber.
Originally, it was developed as a demo system which demonstrates the kind of
problems appearing in developing realistic subsystems such as the ventilation
system in the JAS 39 Gripen aircraft. It was presented to the project partners in



terms of a 4 page textual speci�cation and an implemented code for a controller
in hierarchical block diagrams with state machines at the lowest level.

Flow
Sensor

Temperature
Sensor

Fan

Inlet Outlet

Heater

Fig. 1. The hardware components of the air control system.

The chamber is to be ventilated through the inlet and outlet and has a given
volume. It has two sensors for measuring the internal air temperature and the
air ow. Figure 1 presents the component model of the chamber, while Figure 2
shows the interface between the system and the operator. The external interface
primarily consists of an on-o� button, two analog knobs for setting the values
for required temperature and ow (reference values), as well as warning signals
in terms of a light and a sound. It also includes lights for showing some of its
internal modes of operation.

Reference

Wait Work Block

Actual 
Temperature

Flow
Actual

Light Sound

User input System output

ON/OFF

Reference
Temperature

Flow

Mode

Warnings

Fig. 2. The external interface to the system.

The controller has three modes while it is on. It has an initialising "wait"
mode in which the heater and the fan are used to bring the chamber temperature
and ow within a given scope. It also has two active modes in which more
accurate regulation is achieved. One is the "solution" mode in which the actual



temperature and ow values are brought to levels close to the reference values.
The other, the "work" mode in which the actual values are maintained in the
required region (within � of the reference values). The �nal mode, denoted as
the \block" mode, is devoted to abnormal situations and it is intended as a
shut-down mode. It is brought about when the earlier sound and light warnings
have not led to changes in the reference values by the operator, or when the
actual values fall outside the allowed scope despite manual intervention (for
example due to unforeseen changes in unmodelled inputs, e.g. the incoming air
temperature).

2.1 Requirements speci�cations

The textual description mentioned above has a prescriptive nature. It describes
how a controller should be implemented, giving some details about what should
happen in each mode. To focus the formal veri�cation work we had to deduce the
overall goals of the control system: those requirements which are to be enforced
by the suggested design.

The result of this study has been identi�cation of the following global re-
quirements.

{ Keeping the reference values constant,
� the work light will be lit within a time bound from the start of the
system, and

� the system will be stable in the work mode.
{ Chamber temperature never exceeds a given (hazardous) limit.
{ Whenever the reference values are (re)set, the system will (re)stablise within
a time bound or warnings are issued.

Note that these are not properties of the controller on its own. Note also
that our formulations are intended to �t in a framework where di�erent proof
techniques are applied where they suit best. Although \being stable in the work
mode" can be seen as a safety property (the conditions for leaving the mode
will not be true), it is most expedient to use control theory methods for proving
this property. This is due to the fact that not all inputs to the system are kept
constant (see the result of the physical modelling step). Hence, it is formulated
as a stability property.

Another aspect to point out is on the second (safety) property. Here we
look beyond the functional demand on the system to monitor and warn when
the temperature falls outside given intervals. We rather attempt to see what is
the goal of devising such intervals and mode changes and envisage as a (mode-
independent) goal of the system that the air is never heated to a hazardous level
(even in the block mode and after warnings are issued).

3 Model of the controller

The controller has been modelled in several synchronous languages both in the
data ow style (Lustre), and the control ow style (Esterel, statecharts). It



represents the typical case where it is most naturally described in a combination
of these paradigms. Thus, mode automata [12] and the synchronie workbench
[1] use this as a demonstrator system. Also, a multi-formalism representation of
the example used for distributed code generation can be found in [3].

Having models which reect the nature of the computations naturally, surely
avoids some development errors. Moreover, once the models are analysed with
respect to the required properties they can be automatically translated to in-
termediate and lower layer programming languages. For example from mode-
automata to Lustre, to DC, and to C (see work package 2 in the project [17]).
Note that code generation is also available in tools which support analysis of
continuous systems and analog (periodic) controllers (e.g. Matlab and MatrixX
[10]). However, these are not targeted for cases with complex software with hi-
erarchical structure and do not support formal veri�cation.

It is also essential to obtain integration with analysis tools if the detailed
design is to be formally veri�ed prior to code generation. This is much more ob-
vious where the controller has a hierarchical description, discrete mode changes,
and complex control structures. Here, the work in the project is still in prelim-
inary stages. Prototype translators from Lustre to PVS [16], and Lustre to the
�rst order theorem prover NP-Tools by Prover technology have been developed
(see work package 3.4 in [17]). However, the applications are still in progress.

Here we report on one such translator used in the case study: the proto-
type developed by Prover technology which translates a subset of the Statemate
languages (with a synchronous interpretation) to NP-Tools with integer arith-
metic [4]. The model of the controller in statecharts is too large for being pre-
sented here. However, the size of the translated NP-Tools model provides a feel
for the size. The insect-like macro resulting from the translation to NP-Tools
has 96 input variables and 88 output variables (seen as a circuit).

3.1 Lessons learnt

Our experience with the modelling activities for climatic chamber controller can
be summarised as follows. The NP-Tools [18] environment should obviously be
seen as an analysis environment, not a primary modelling environment. The de-
scription of the controller at the circuit level loses much of the inherent structure
and does not provide an overview when compared with the statechart model.
On the other hand, using statecharts alone was not ideal for description of such
a controller either. The model we developed prior to translation to NP-Tools
used only a subset of the Statemate (statechart) notation. In particular, activ-
ity charts could not be used. Thus, all (continuous) control activities which are
ideally described in a language like Lustre give rise to several self-loops within
every active regulation mode, each loop having its own enabling condition.

The result of the translation from statecharts to NP-Tools was a macro with
all the inner logic hidden. Each dynamic variable was modelled as an in-pin
representing the value before each step, and an out-pin for the value after the
step (additional pins for initial values are also provided). During the veri�cation
step counter-models presented by the theorem prover showed errors in the design



model. However, after every modi�cation to the design (in the statechart model),
one needed to recompile to the NPTool format, which soon became impractical.

As a result of the childhood problems with the translators, we have so far
attempted all our closed loop veri�cations on models directly developed in NP-
Tools and a physical environment model. When modelling in NP-Tools we have
used a similar style to modelling (variable naming conventions for values before
and after a step, etc), as if the model was the result of translation from the
statechart model.

The experience here shows, however, that much of the value in high level
modelling is lost. To show, for example, that the control system is only in one
mode at any time produced a number of counter examples and several modi�-
cations to the model. This is trivially achieved by competent compilers (e.g. the
Esterel compiler based on constructive semantics [2]).

We are currently experimenting with the Lucifer tool which is a similar trans-
lator from Lustre to NP-Tools (see SYRF deliverable 2.2 [17]). Here, translation
provides an improvement. The hierarchical structure of the Lustre program, not
so visible in the textual language, becomes more visible in the NP-Tools ver-
sion. This is due to preservation of the structure at the Lustre "node" level (one
NP-Tools macro for each Lustre node).

4 Models of the physical environment

The physical model developed for the climatic chamber case study and the un-
derlying assumptions were detailed in [14]. In the simplest form, the continuous
model for the example, as derived from engineering models, has one di�erential
equation describing changes in the chamber temperature as a function of three
inputs: the incoming air temperature, the applied voltage, and the air ow in
the chamber.

An initial hybrid model for this part (under the given assumptions) is seem-
ingly simple: consisting of one discrete mode and one equation. The di�erential
equation, in which ui are inputs, x is the only state variable, and a; b and c are
constants, has the following form:

_x = au1x+ bu2 + cu1u3

Here, u1 denotes the air ow [m2=s], u2 is the square of the controller-applied
voltage [V ], and u3 is the temperature for the incoming air [K]. x denotes the
chamber temperature which is prescribed to be within allowed ranges in di�erent
modes by the requirements/design document. Namely, the document refers to
the chamber temperature being \within � of the reference temperature", or
being \ within 2� the reference temperature" as part of the transition condition
between various modes.

4.1 Transformations on the model

Ideally we would like to combine this model and the synchronous controllers
described above, and perform analysis on the closed loop system. However, pro-



totypical analysis environments in which hybrid models can be analysed are
much more restrictive. Note that despite simplifying assumptions this model
is still non-linear, and in particular the evolutions in state are not linear in
time. We therefore propose a number of transformations on the model which
makes some speci�c instances of it analysable. Two obvious \specialisations"
are transformation to hybrid automata (HA) and transformation to a discrete
time model.

Thus, we look at certain restrictions to the model which yield a \simpler"
representation. Though simplicitymight mean a larger number of discrete modes
with simpler dynamics in each mode.

Another reason for looking at these restrictions is that the environmentmodel
above is an open system. One of the \simpler"models, hybrid automata, requires
us to give invariances over every mode and di�erential equations describing each
variable of the system. The distinction between state and input is thus removed,
and the model is expected to incorporate full information both about control
signals (here the voltage), and the disturbances (here the incoming air temper-
ature).

On the other hand, we wish to keep a modular version of the environment
(although simpler). We would like to plug and play with di�erent control pro-
grams and verify each property in that context. Thus, there is a conict between
making the model simpler (e.g. turning it into HA) and keeping it modular.

We therefore propose a number of restrictions which can be applied with as
little impact on modularity as possible. In particular, we distinguish between
restricting:

{ unmodelled inputs, and
{ modelled inputs.

With unmodelled inputs we mean those which are completely outside our
control. In the context of the case study the incoming air temperature is such an
input. Since we do not have any information on how they can vary, restriction to
a class, in any case proves something about the closed loop system when inputs
are in that class. For these inputs we assume piecewise constant signals with a
�nite range of values.

For modelled inputs, either the input is described in detail as the state of
another continuous state system, or the input is a control signal generated by
a control program. In the former case, a parallel composition of the hybrid
transition system eliminates those variables as inputs and makes them state
variables. In the latter case { for control signals { we again restrict the signal
to a class without making the controller behaviour �xed. In particular, control
signals issued from a synchronous controller, depending on being periodic or not,
lead to di�erent abstractions of the physical model.

(a) piecewise constant control signal with changes allowed at equidistant points
in time, lead to the discrete-time abstraction of the model as di�erence equa-
tions.



(b) piecewise constant control signals which set the rate of change of a continuous
variable (e.g. increase, decrease, steady), lead to piecewise constant slopes
incorporated in a hybrid automaton model.

We attempt both approximations in the project case study (see section 5
below). As far as other continuous (non-control) inputs are concerned, as a �rst
approximation it is reasonable to assume that they are constant. This is standard
practice in control engineering, and again, gives valid results for those system
trajectories brought about by the constant input.

In the climatic chamber, as a �rst approximation we assume that the ow
(u1)is constant at all times. We further assume that the incoming air temperature
(u3) is piecewise constant with a �nite range of values.

Thus the model of the system can be transformed to a hybrid transition
system (HTS) [15] with one mode for every possible value of u3. This analysis
gives us Figure 3 as the �rst approximation.

mi

u3 = v3i

: : : : : :

u3 = v3(i+1)

_x = ax + bu2 + di

Fig. 3. Assuming that domain of u3 = fv31; : : : ; v3ng; a = au1, and di = cu1v3i

4.2 The hybrid automaton model

One restriction to the incoming control signal assumes the controller to have
three modes of operation with regard to the control signal: increasing, decreasing
and keeping constant. In this section we take the model of Figure 3 and restrict
u2 to be of this type. This assumption leads to a model of the chamber whereby
every mode in Figure 3 will be replaced by three modes as displayed in Figure 4.
The �gure shows the obtained hybrid automaton fragment, where the conditions
for incoming and outgoing transitions from the fragment are left out.

It should be clear that by speci�cally stating the rate of change for u2 this
variable can no longer be considered as an input variable in the original transition
system. In order to utilise the added knowledge for simplifying the equation for
x, we need to relate rate of change of u2 with the changes in x. Thus, we need to
explicitly represent a clock which measures how long the system has resided in
each mode since the last time it was entered. We use the clock t for this purpose.
This variable has to be reset to zero every time a mode is entered. Furthermore,
we need to establish the condition for leaving a mode and entering a new one,



mi2mi3 mi1
: : : : : :

_x = ax + bu2 + di

_u2 =��

_x = ax + bu2 + di

_u2 = �

_x = ax + bu2 + di

_u2 = 0

Fig. 4. An HTS model with u2 as a state variable: assuming that it may stay constant,
or increase/decrease at a constant rate.

which obviously arises due to actions of the controller. In HA, this is achieved
by adding synchronisation labels corresponding to controller actions. The HA
in Figure 5 allows arbitrary changes of slope within the range f��; 0; �g by the
controller. Note that the value of x is now dependent on the (apriori unknown)
value of u2 on entry to the mode. This value on entry is captured by adding a
piece-wise constant variable (gi) and an assignment at each mode change.

It can be observed that the obtained hybrid automaton still is not analysable
algorithmically. That is, it is not yet a linear hybrid automaton (x does not
vary with constant slope). To make this model analysable using the existing
(hybrid automata) veri�cation tools, we need to add bounds on the evolution of
x (otherwise the value of x will increase or decrease in�nitely as time goes by in
each mode). Adding these bounds is possible once the plant model is composed
with a particular controller { a controller which has output signals of the type
assumed in this plant model, i.e. an on-o� controller with three values for u2.
Since the Saab program is not of this type this track will not be continued any
further.

4.3 The discrete time model

Considering constant ow and piecewise constant incoming air temperature as
in previous case, but a di�erent restriction for the control signal we obtain a
di�erent approximation in this subsection.

Here, we assume that the heater is controlled by a synchronous program.
Moreover we assume the incoming control signal (voltage) and its square u2 to
change only at equidistant points in time. After this assumption, one can rewrite
the di�erential equations into a discrete-time form by making the sampling in-
terval T a parameter of the model. Thus, every di�erential equation in Figure 3
may be replaced by the di�erence equation:

x((k + 1)T ) = x(kT )eaT + b=a(eaT � 1) u2(kT ) + di=a(e
aT � 1)



: : : : : :
steady

decrease
mi3 mi1

increase

steady
mi2

_x = ax � b�t + gi
_u2 =��
_t = 1

_gi = 0

_x = ax + gi
_u2 = 0
_t = 1

_gi = 0

t := 0; gi := bu2 + dit := 0; gi := bu2 + di

t := 0; gi := bu2 + di t := 0; gi := bu2 + di

_x = ax + b�t+ gi
_u2 = �
_t = 1

_gi = 0

Fig. 5. Fragment of a hybrid automaton model with the same assumptions as in Fig-
ure 4 { the clock t and the piece-wise constant function gi = bu2+ di have been added
to relate the changes in x to u2.

That is, the (k+1)th value of x is de�ned in terms of the kth value of x and the
kth value of u2 (which is assumed constant during the interval [kT; (k + 1)T ]).
This reduces the chamber model to a mode-automaton which is a hierachical
model compilable to a Lustre program [12]. The syntax and semantics of mode-
automata can also be found in the SYRF deliverable 2.1 [17].

4.4 Lessons learnt

In the last two subsections we have seen how treatments of the control signal in
two di�erent ways results in two di�erent \simpli�ed" models, each useful in the
context of some veri�cation environment (see section 5).

Alhough it might seem that these guidelines are ad hoc, they rest on under-
lying general principles which justi�es them in the context of veri�cation. For
example, to restrict the control signal in the above two ways is de�nitely superior
to treatment of such a signal in a way similar to unmodelled inputs. Consider
for example the case that the input u2 (representing the square of the issued
voltage) is piecewise constant with a �nite range (with no further restrictions).

This leads to a new model, starting from the HTS in Figure 3 and repeating
the same step earlier performed for u3. That is, the voltage signalis assumed
to have a �nite range of values leading to the �nite range fv21; : : : ; v2pg for u2.
Replacing every mode of the HTS in Figure 3 with p modes, we get a totally
connected HTS of the form shown in Figure 6.

Note that \simplifying" with the same treatment for two di�erent types of
input variables gives di�erent results. In the case of a physical variable (the



u3 = v3i

: : :

mi2

mip

u2 = v22

: : :mi1

u2 = v21

: : :

u2 = v21

u2 = v2p

_x = ax + ki1

_x = ax + ki2

_x = ax + kip

Fig. 6. The HTS obtained with piecewise constant restriction on the control variable
u2 { where kij = bv2j + di.

incoming temperature), it is reasonable to assume that values v31; : : : ; v3n can
be taken by u3 in that order. In the case of the control signal u2 we should assume
that the variable may be set to any of the values v21; : : : ; v2p in any order. We
simply have no continuity assumptions on a discrete signal. Here, simpli�cation
of the continuous dynamics in a mode comes at a much higher price in terms of
the increase in the number of (discrete) modes.

In those cases where the nature of the controller is intentionally left open (e.g.
not restricted to be periodic) this might be a suitable abstraction. However, it
is unnecessarily complex if we already intend to test a particular controller with
speci�c characteristics (on/o� controller in the HA case, and a sampled program
in the case of the discrete time model).

5 Veri�cation techniques

In the project we have experimented with two di�erent approaches to verifca-
tion. The �rst one is compositional: a given requirement is decomposed into
several conjuncts (prrof obligations). Di�erent subsystem models (represented
in di�erent modelling environments) are used to verify that di�erent proof obli-
gations hold. The second approach, referred to as one-shot veri�cation, models
the physical system in the same proof environment and at the same abstraction
level as the controller.



5.1 Compositional veri�cation

Our approach combines formal and informal reasoning as well as continuous
analysis. In this approach we combine proofs in the NP-Tools theorem prover
and simulations in the SystemBuild environment of the MatrixX tool [10].

First, we attempt to �nd su�cient conditions which facilitate proving a prop-
erty using our knowledge of the system. These auxiliary properties may be of
the following kinds:

{ an assumption which we discharge informally
{ a property of the controller or the environment which we formally prove
locally

{ another property arising as an interaction of the two, which we further re�ne
by �nding further su�cient conditions

Then the system satis�es the top requirement under the informally dis-
charged assumptions.

Consider the second property which is a safety property. The only actuator
in the system causing hazards is the heater which must be shown to heat the air
to desired levels but not to hazardous levels. Let R2 express this property.

R2: The chamber temperature x never exceeds a limit TH

The aim is to �nd (strong enough) properties R2i such that
V
R2i is su�cient

for proving R2. We start with the following conditions:

R20: The chamber temperature is equal to the incoming temperature u3 at
start time

R21: The reference temperature TRef can never exceed TRefmax , and
TRefmax + 2� < TH

R22: Whenever the system is in wait-, solution-, or work-mode, we have
x < TH

R23: The system is never in block-mode while x > TH

These properties can be discharged informally or proved within the NP-Tools
model except for R23 which we continue to re�ne:

R231: x = TRef + 2� < TH when entering the block-mode
R232: the applied voltage u = 0 throughout the stay in block-mode
R233: The system leaves the block-mode after tblock seconds, and enters the

o�-mode
R234: The temperature x does not increase while the system is in the block

mode

This is su�cient for proving the safety property provided that
R231 ^R232 ^R233 ^R234 ! R23.
Properties R231 to R233 are easily proved using the NP-Tools model of the
controller. For the proof of R234 we use continuous reasoning based on the
simulation models.



5.2 One-shot veri�cation

Here we describe the approach whereby some aspects of the environment model
are directly stated in the same veri�cation environment as the controller is.

Consider now the �rst requirement. The stability component of this require-
ment can best be veri�ed using control theory and exact knowledge of the control
algorithm in the work mode. Here, we concentrate on the �rst component, de-
noting it by R1.

R1: Keeping the reference values constant, the work light will be lit within
t1 from the start of the system

First, we provide su�cient conditions for R1 to hold in the design model:

R11: The system starts in the wait mode with the chamber temperature
equal to u3
R12: While TRef is constant, the only successor to the wait mode is the
solution mode
Given input restrictions R10,

R13: The system leaves the wait mode within wait time from the start
of the system
R14: the system leaves the solution mode within solution time from en-
tering the mode

R15: While TRef is constant, the only successor to the solution mode is the
work mode, and the work light is turned on whenever work mode is entered
R16: wait time+ solution time � t1

We initially claim that

R11 ^R12 ^R13 ^R14 ^R15 ^R16 ! R1

At a later stage we may drop R11 and replace it with the assumption that the
initial chamber temperature is di�erent from u3. But to begin with, we make
the restrictions in R10 more explicit, and show that

R10 ! R13 ^R14

Here, we have several paths to take, but the choice is guided by the veri-
�cation techniques we intend to utilise. For example, the following restrictions
justify the adoption of a discrete-time model of the environment in a mode-
automaton [12] with n discrete modes. Each mode is then governed by a di�er-
ence equation derived from the continuous model (see section 4.3) in the standard
manner.

R101: u1 stays constant at Q [m3=s]
R102: u2 may vary every tsample seconds
R103: u3 is piecewise constant taking the values fv1; : : : ; vng



Note that using mode-automata [12], changes in state variables in each mode
are de�ned in terms of a Lustre program. Each state variable is thus de�ned
by an equation relating the state variables at the previous (clock) step and the
current input.

Adopting the restrictions above, the veri�cation method would be as follows:
using a scheme for compilation from mode-automata to Lustre we obtain a model
of the environment in Lustre which can be composed with a controller in Lustre,
and further compiled to NP-Tools. In NP-Tools it is possible (but tedious) to
show that the number of steps leading to the work light coming on is � N for
some N (this proves R1 for a given tsample provided that t1 � Ntsample).

The tool Lucifer which translates Lustre programs to NP-Tools models makes
these proofs easier. It facilitates inductive proofs with a base larger than 1. That
is, it is possible to compose n copies of the transition relation for the system, and
show the initial condition holding in the �rst n steps, followed by the inductive
step. This is a track we are currently exploring in the project.

Note that this is one reason for not choosing a "too short" sampling inter-
val [14]. As well as other disadvantages associated with oversampling, a large N
makes the proof more di�cult. Our approach is based on proving the bounded
response property for as small N as feasible.

6 Related works

The work we have reported is at a too early stage for making de�nitive remarks
about feasibility of combining "push-botton" theorem provers and simulation
environments. More work is also needed to compare the method with "heavy
duty" theorem proving in the spirit of [6]. However, some preliminary points for
discussion have already emerged. Some of the shortcomings are reminiscent of
those reported in [5]: the limitation to interger arithmetic, for example, means
that the counter proofs presented by the system are more informative than the
safety proofs holding over a limited range. This is, however, compensated in our
approach by departing from fully formal proofs and combining with a simulation
analysis when (local) reasoning over reals is crucial to the property in question.

Our model of the heat process intentionally made several simpli�cations to
�t an early experimental set up [14]. The interested reader may for example
refer to a more complex model of heat exchangers in [13] where some of our
restrictions are relaxed. The purpose of that paper is the illustration of a rich
simulation language and only the plant part of the heat exchanger is subjected
to validation by simulation.

It is also interesting to note that the size of the real ventilation subsystem,
compared to the demo system, in the same format as the one discussed in section
3 (NP-Tools circuit), is 700 input variables and 500 output variables. Despite
the seemingly large state space, the size of the reachable states set { as far as
required for the types of properties mentioned { is small enough for practical
purposes, even in the real system [11].



Further work in the other parts of the project, specially extensions to the
Lucifer prototype are very interesting for enhancing our veri�cationmethodology
and incorporation of our methods in the system development process.

Acknowledgements

This work was supported by the Esprit LTR project SYRF, the Swedish board
for technical research (TFR), and the Swedish board for technical development
(NUTEK).

References

1. A. Poign�e and M. Morley and O. Ma�e��s and L. Holenderski. The Synchronous
Approach to Designing Reactive Systems . Formal Methods in System Design,
12(2):163{187, March 1998.

2. G. Berry. The Foundations of Esterel. In Proofs, Languages and Interaction: Essays
in Honour of Robin Milner. MIT Press, 1998. To appear.

3. L. Besnard, P. Bournai, T. Gautier, N. Halbwachs, S. Nadjm-Tehrani, and
A. Ressouche. Design of a Multi-formalism Application and Distribution in a Data-
ow Context: An Example. In Proceedings of the 12th international Symposium

on Languages for Intentional programming, Athens, June 1999. World Scienti�c.
4. B. Carlson, M. Carlsson, and G. St�almarck. NP(FD): A Proof System for Finite Do-

main Formulas. Technical report, Logikkonsult NP AB, Sweden, April 1997. Avail-
able from http://www-verimag.imag.fr//SYNCHRONE/SYRF/HTML97/a321.html.

5. W. Chan, R.J. Anderson, P. Beame, S. Burns, F. Modugno, D. Notkin, and J.D.
Reese. Model Checking Large Software Speci�cations. IEEE Transactions on

Software Engineering, 24:498{519, July 1998.
6. B. Dutertre and V. Stavridou. Formal Requirements Analysis of an Avionics Con-

trol System. IEEE Transactions on Software Engineering, 25(5):267{278, May
1997.

7. N. Halbwachs. Synchronous Programming of Reactive Systems. Kluwer Academic
Publishers, 1993.

8. D. Harel. STATECHARTS: A Visual Formalism for Complex Systems. Science of
Computer Programming, 8:231{274, 1987.

9. M. Heimdahl and N. Leveson. Completeness and Consistency in Heirarchical State-
based Requirements. IEEE transactions on Software Engineering, 22(6):363{377,
June 1996.

10. Integrated Systems Inc. SystemBuild v 5.0 User's Guide. Santa Clara, CA, USA,
1997.

11. O. �Akerlund. Application of Formal Methods for Analysis of the Demo System
and parts of the Ventilation System of JAS 39 (in swedish). Technical report, Saab
Aerospace AB, Link�oping, Sweden, January 1997.

12. F. Maraninchi and Y. R�emond. Mode-automata: About modes and states for
reactive systems. In Programming Languages and Systems, Proceedings of the

7th European Symposium On Programming, Held as part of ETAPS'98, Lisbon,

Portugal, LNCS 1381. Springer verlag, March 1998.
13. S.E. Mattsson. On modelling of heat exchangers in modelica. In Proc. 9th Euro-

pean Simulation Symposium, Passau, Germany, October 1997. Currently available
through http://www.modelica.org/papers/papers.shtml.



14. S. Nadjm-Tehrani. Integration of Analog and Discrete Synchronous Design. In
Hybrid Systems: Computation and Control, Proceedings of the second international

workshop, March 1999, LNCS 1569, pages 193{208. Springer Verlag, March 1999.
15. S. Nadjm-Tehrani. Time-Deterministic Hybrid Transition Systems. In Hybrid Sys-

tems V, Proceedings of the �fth international workshop on hybrid systems, Septem-

ber 1997, LNCS 1567, pages 238{250. Springer Verlag, 1999.
16. N. Owre, J. Rushby, and N. Shankar. PVS: A Prototype Veri�cation System. In

Proc. 11th International Conference on Automated Deduction, LNCS 607. Springer
Verlag, 1992.

17. The SYRF Project. Deliverables for Work packages 1 to 7. Available from
http://www-verimag.imag.fr//SYNCHRONE/SYRF/deliv1.html, 1997-99.

18. Prover Technology. NPTools v 2.3 User's Guide. Stockholm, Sweden. Contact:
http://www.prover.com.


