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Abstract

The complexity of embedded systems is increasing rapid-
ly. In consequence, new verification techniques that over-
come the limitations of traditional methods and are suitable
for hardware/software systems are needed. In this paper we
introduce a computational model for embedded systems
based on Petri nets, called PRES. We present an approach
to coverification of both the hardware and software parts of
an embedded system represented by PRES. We use symbolic
model checking to prove the correctness of such systems,
specifying properties in CTL and verifying whether they are
satisfied. This coverification method permits to reason for-
mally about design properties as well as timing require-
ments. A medical monitoring system illustrates the
feasibility of our approach on practical applications.

1. Introduction

Current electronic systems are typically constituted of
application-specific hardware components and software
running on programmable platforms. The inherent heteroge-
neity of this kind of systems makes them very complex and
difficult to verify. Moreover, the increasing demand on
high-performance products has boosted the levels of sophis-
tication of such systems.

For the levels of complexity typical to modern electronic
systems, traditional validation techniques, like simulation
and testing, are neither sufficient nor viable to verify their
correctness. First, these techniques may cover just a small
fraction of the system behavior. Second, long simulation
times and bugs found late in prototyping phases have a neg-
ative impact on time-to-market. Formal methods are becom-
ing a practical alternative to ensure the correctness of
designs. They might overcome some of the limitations of
traditional validation methods. At the same time, formal
verification can give a better understanding of the system
behavior, help to uncover ambiguities, and reveal new in-
sights of the system.

Formal methods have been extensively used in software
development [10] and hardware verification as well [14].

However, they are not commonplace in embedded syste
design. There is a lack of techniques for formal verificatio
of hardware/software systems. In this paper we present
approach to coverification of embedded systems using sy
bolic model checking, based on a Petri net representati
With this approach it is possible to validate properties of th
system as well as timing requirements. Design propert
are specified as CTL (Computation Tree Logic) formula
and the model checker determines whether they are sa
fied. We model the system using PRES (Petri net bas
Representation for Embedded Systems), a notation capa
of capturing relevant information characteristic to embe
ded systems.

The rest of this paper is organized as follows. Section
addresses related approaches to modeling of embedded
tems using Petri nets as well as formal methods suitable
HW/SW codesign. Section 3 describes shortly the main fe
tures of symbolic model checking. The underlying comp
tational model that we use to represent embedded system
introduced in Section 4. In Section 5 we present our a
proach to formal coverification. Section 6 shows the verif
cation of a medical monitoring system. Finally, som
conclusions are drawn in Section 7.

2. Related Work

The increasing complexity of embedded systems pose
challenge in verifying their correctness. Some verificatio
approaches, suitable to hardware/software systems, h
been proposed recently. Aluret. al [1] present a model
checking procedure based on the Hybrid Automata mod
given a system represented as communicating machi
with real-valued variables, the method shows whether
ICTL-formula (Integrator Computation Tree Logic), spec
fying system requirements, is satisfied. Using the sam
model, Hybrid Automata, another coverification method
proposed in [12], where complex systems can be analyz
using a simplification strategy to verify individually the
hardware, the software and the interface. Balarinet. al [2]
introduce a verification methodology based on Codesign F
nite State Machines (CFSMs), in which CFSMs are transla
ed into traditional state automata. This technique checks
all possible sequences of inputs and outputs of the syst
satisfy the desired properties. To do so, those sequences

This research is sponsored by the Swedish National Board for Indu-
strial and Technical Development (NUTEK) in the frame of the SAVE
project.
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meet the requirements constitute the language of another
automaton, reducing the problem to the verification of lan-
guage containment between automata. In [11], a partitioned
system, described using a Pascal-like language, is the input
to the proposed coverification framework in which CTL and
TCTL formulas are evaluated in order to check behavioral
and timing properties. An approach to symbolic model
checking of process networks and related models is pro-
posed in [19], where IDDs (Interval Decision Diagrams) are
used to represent multi-valued functions.

On the other hand, related work in the area of Petri nets
(PNs) includes [20], which presents a BDD-based model
checker for safe nets. Although the approach is intended to
verify Petri nets in general, with no particular interest in em-
bedded systems and without dealing with time information,
it studies different forms of describing PNs using the SMV
system [17], developed at Carnegie Mellon University. An
interesting approach used for analysis and verification of
bounded Petri nets is presented in [16]. Using the efficiency
of BDDs to represent sets of markings and reduction rules
to transform PNs, this technique can be used for reachability
analyses and verification of some properties of PNs with
large state spaces.

Many models have been proposed to represent HW/SW
systems. Particularly Petri nets have been extended to cap-
ture significant information of such systems. Macielet. al
[15] introduce an intermediate model for hardware/software
codesign, extending Petri nets to analyze certain properties
used in the partitioning process. Stoy [18] presents a mode-
ling technique based on PNs notation, where timed Petri
nets with restricted transition rules are used to represent
control flow in both hardware and software.

3. Symbolic Model Checking

Model checking is an approach to formal verification
used to determine whether the model of a system satisfies
certain required properties. Clarkeet. al [6] introduced a
model checking algorithm for formulas specified in the tem-
poral logic CTL (Computation Tree Logic). CTL is based
on propositional logic of branching time, that is, a logic
where time may split into more than one possible future us-
ing a discrete model of time. Formulas in CTL are com-
posed of atomic propositions, boolean connectors, and
temporal operators. Temporal operators consist of forward-
time operators (G globally,F in the future,X next time, and
U until) preceded by a path quantifier (A all computation
paths, andE some computation path). Thus formulas may
describe properties of computation paths over labeled state-
transition structures. This algorithm, however, requires the
entire state transition graph to be constructed, causing a se-
rious state explosion problem.

One way to overcome the state explosion is to represent
symbolically the transition relation instead of explicit enu-
meration. A compact and efficient form of representing

boolean formulas and transition relations is using order
binary decision diagrams (BDDs). BDDs are canonical re
resentations that make boolean manipulations much simp
computationally [3]. Symbolic model checking [4] make
use of BDDs to represent sets of states and the transition
lation, and the algorithm employs fixed-point technique
that manipulate sets using their characteristic functions e
coded as BDDs. Therefore, it is possible to reason about
signs with large state spaces without constructing the st
graph of the system. SMV [17] is one of the available too
that uses the BDD-based symbolic model checking alg
rithm. This model checker has an input language that allo
to describe systems using boolean, scalar or fixed-array d
types, and boolean and basic scalar operations. The C
formulas to be checked are also specified in the SMV la
guage and may express liveness or deadlock-freedom, s
ty, and fairness, among other properties. In our experime
we have used the SMV tool to verify the correctness of d
signs represented in PRES.

4. Petri Net based Model

One of the issues in applying formal methods to embe
ded systems design is the underlying computational mod
This model has to be formally defined in order to allow rea
soning about the properties of the system that it represe
The notation we use to model such systems is PRES (P
net based Representation for Embedded Systems). PRE
an extension to Petri nets which allows to capture importa
features of HW/SW systems. Some of the characteristics
this model will be illustrated using the example shown in F
gure 1. The net represents a patient monitoring system as
troduced in [9] and studied in [5].

The patient monitor measures physiological phenome
and analyzes this information. If the system detects abn
mal conditions on the patient, it activates aural and visu
alarms. The patient condition information is displayed an
recorded as well. The functionality of the system can b
captured as a set of processes. Theacquireprocess reads in-
formation from the sensors. Usually this information con
tains spurious data that must be debugged.filter processes
such data and eliminates false information received fro
the sensors. Once the information has been filtered, the p
cesses that detect anomalous conditions on blood press
heart rate, or temperature may start depending on the d
available. For instance, a possible anomaly in the blo
pressure will activate the processbloodin order to study the
data. If, after analyzing the information, an irregular cond
tion of the patient is encountered, the processalarmwill be
executed and an audio signal (processaudio) will be trig-
gered. The information resulted from thefilter process is
displayed on a screen and recorded by the processesdisplay
andrecorderrespectively. The specification of the patien
monitoring system includes a timing constraint which stat
that the data from sensors must be sampled every 15 ms
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acquisition of new information requires the system to finish
its functionality before the next execution.

In the following we briefly describe the computational
model. A complete and formal definition of this representa-
tion can be found in [7]. APetri net based Representation
for Embedded Systemsis constituted by a finite non-empty
setP of places, a finite non-empty setT of transitions, a fi-
nite non-empty setI of input arcs, a finite non-empty setO
of output arcs, and the initialmarking M0 of the net. Like in
classical Petri nets, places are graphically represented by
circles, transitions by boxes, and arcs by arrows. The medi-
cal monitoring system is modeled in PRES as shown in Fi-
gure 1, where the operations performed in the processes are
captured by transitions and the data dependence between
them is given by the structure of the net. The transitions
have been named after the processes. Amarking M is a
function that denotes the absence or presence of tokens in
places of the net. The model requires the net to besafeor 1-
bounded, i.e. no more than one token is allowed in a place.
The markingM0, for the model of the monitoring system in
Figure 1, showsP1 as the only place initially marked.

In PRES, atokenis a pair wherev is theto-
ken value(this value may be of any type), andr is thetoken
time (a non-negative real-valued time stamp). In this man-
ner tokens themselves carry data and time information.
There exists atype functionτ that associates atoken typeto
every place. This is the type of value that a token may bear
in that place. The token type related to a certain place is an
intrinsic property of that place and will not change during
the dynamic behavior of the net.

For every transitiont, there exists atransition function
associated tot. Transition functions have as arguments to-

ken values of tokens in places of the pre-set1 of the transi-
tion. Transition functions are very important whe
describing the behavior of the system to be modeled. Th
allow systems to be modeled at different levels of granula
ity with transitions being associated with simple arithmet
operations or complex algorithms. For instance, in Figure
there is one transition function associated to transitionfilter,
which defines token values of new tokens inP3, P7andP9,
when filter is fired (executed). This function represent
what has been earlier called the processfilter.

For every transitiont, there existminimumandmaximum
transition delays, non-negative real numbers, which repre
sent the lower and upper limits for the execution time (d
lay) of the function associated to that transition. In th
paper we restrict ourselves to the case in which minimu
and maximum transition delays are equal. Under the abo
assumption, in the example of Figure 1 such a time is ca
tured as “transition delay” and is inscribed in the respecti
transition box. Thusrt6 represents the execution time of th
function associated to transitiontemp(in Section 6, where
we study alternative implementations of the system, part
ular values will be assigned to transition delays).

Each transitiont in the net may also have aguard G
which represents aconditionthat must be satisfied in order
to enable that transition, when all its input places hold t
kens. Guards are functions of token values of tokens in t
pre-set of a given transition. In Figure 1, for example,
represents the condition that must be fulfilled to execute t
processblood. In Figure 1 there are two transitions that hav
no name attached: we have introduced them in order
model the situation in which no abnormal condition on th
patient is detected. The associated execution time is zero
cause there are no activities to be performed in this case

In PRES, every transition has abehavior. The behavior
of a transitiont is defined in terms of itstransition function
and itstransition delay. Intuitively, this behavior describes
“what happens” when the transition fires. Unlike the class
cal Petri net model, each token holds a value and a tim
stamp. When a transitiont is fired the markingM will gen-
erally change by removing all the tokens from the pre-set
and depositing one token into each element of the post-

. These tokens, placed into , have values and tim
stamps which depend on the previous tokens in and
behavior oft. When a transition fires, all the tokens in its
output places get the same token value and token time.

A transitiont is said to beenabledif all places of its pre-
set are marked, its output places different from the inp
ones2 are empty, and its guard is asserted. It means that
enabling rule of classical PNs has been modified to fit th
characteristics of this specific model. Every enabled tran
tion has atrigger time tt* that represents the time instant a

Figure 1. Medical monitoring system
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which the transition may fire. Each token in the pre-set of an
enabled transition has, in general, a different token time.
From the point of view of time, the transition could not fire
before all tokens are ready. The concept of trigger time is
needed to describe how token times are handled when the
transition is fired. The trigger time of an enabled transition
is the maximum token time of the tokens in its input places.

The firing of an enabled transition changes a markingM
into a new markingM+. As a result of firing a given transi-
tion t, the following events occur: tokens from its pre-set are
removed; one token is added to each place of its post-set;
each new token deposited in gets a token value, which is
calculated by evaluating the transition function with the to-
ken values of tokens in as arguments; and each new to-
ken added to gets a token time, which is the sum of the
transition delay and the trigger time of the transition. For in-
stance, referring to Figure 2(a), suppose thatacquireis fired
and the system reaches the state in whichPaandP2are the
only marked places. Then,filter will be the only enabled
transition in the net. Whenfilter fires, tokens will be depos-
ited in P3, P7, P9 andPa (at the same time that tokens are
removed fromP2 andPa) and their token values are calcu-
lated by evaluating the respective transition function with
previous token values ofP2 and Pa as arguments. These
new tokens will have identical token time, that is, the sum
of the trigger time (maximum token time of previous tokens
in P2 andPa) and the transition delay (6 time units).

There is an aspect worth to pinpoint regarding the timin
semantics of the model: the time stamps of tokens capt
the time elapsed since the starting instant of the system (
suming that all token times are zero in the initial marking
there is not such a concept like clock-on-the-wall that e
forces a strict order in the firing of transitions3.

In summary, PRES is a Petri net based model with exte
sions to capture features of embedded systems: the mo
includes an explicit notion of time; tokens, in our notation
hold information and transitions—when fired—perform
transformation of data; the representation also supports
erarchical decomposition. The reader is referred to [7] fo
formal definition of PRES.

5. Coverification of Embedded Systems

The coverification method presented in this work
based on the model introduced in the previous section. T
purpose of the approach presented in this paper is to rea
about embedded systems using PRES as underlying re
sentation. There are several types of analysis that can
performed on systems represented in PRES. A given ma
ing, i.e. absence or presence of tokens in places of the
may represent the state of the system at a certain momen

t°

°t
t°

Figure 2. Different implementations of the patient monitoring system
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3 A slight modification of PRES is proposed in [8] in order to have
strict temporal order in the firing of transitions.
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the dynamic behavior of the net. Based on this, different
properties can be studied. For instance, in a landing gear
controller of an airplane, the wheel door must not close
while the plane is landing—under any circumstance. This
sort of safety requirement might be formally proven by
checking that the places which represent such a dangerous
state are never marked simultaneously. Sometimes, the de-
signer could also be interested in proving that the system
eventually reaches a certain state whose marking represents
the completion of a task.

The kind of analysis described above, calledreachability
analysis, is very useful but says nothing about timing as-
pects nor does it deal with token values. In many embedded
applications, however, time is an essential factor. More-
over, in hard real-time systems, where deadlines should not
be missed, it is crucial to reason quantitatively about tempo-
ral properties to assure the correctness of the design. There-
fore, it is needed not only to check that a certain state will
eventually be reached but also to ensure that this will occur
within some bound on time. In PRES, time information is
attached to tokens, so that we can analyze quantitative tim-
ing properties: we may, for instance, prove that a given
place will eventually be marked in the future and that its
time stamp, for any possible condition, will be less than a
certain time value that represents a temporal constraint.
Such a study will be calledtime analysis.

A third type of analysis for systems modeled in PRES in-
volves reasoning about values of tokens in marked places.
This type ofbehavior analysisis not part of the coverifica-
tion method proposed here. In this work we address just
reachability and time analyses. In other words, we concen-
trate on the absence/presence of tokens in the places of the
net and their time stamps, but we do not deal with the values
of those tokens. We assume that transition functions (see
Section 4) are correctly defined.

As it has been mentioned above, in a PRES model a place
may hold at most one token for a certain marking. Thus it is
possible to encode a marking—or a set of markings—as a
boolean function where the variables correspond to places
of the net. Boolean functions can be straightforwardly rep-
resented by BDDs. Firing a transition in a Petri net changes
the marking into a new one, which is a variation in the state
of the system. It is possible to build the BDD that represents
the transition relation of the system and then compute effi-
ciently the reachable states using BDDs [3], [13]. With such
a BDD-based representation we can formally verify proper-
ties, specified in CTL, using symbolic model checking [4]
and accomplish reachability analyses. In our experiments,
we use the SMV tool (a BDD-based symbolic model check-
er) [17] and its input language to describe and verify sys-
tems modeled in PRES.

A program in SMV describes both the system and the
specification (properties to verify). The system is described
as a collection of “modules”. Each module may contain
variables, its initial state, and assignments of variables for

the next state. A “process” is an instance of a module,
such a way that the model checker executes a step by cho
ing non-deterministically a process and then executing
assignment statements of that process in parallel.

To translate a PRES model into the SMV input languag
we declare in themain module a boolean as well as an inte
ger variable for each place of the net. The boolean varia
represents absence/presence of tokens in that place, w
the integer one represents the time stamp of the token w
the particular place is marked (we restrict ourselves to in
ger token stamps). We instantiate each transition as a p
cess that has as parameters its input and output place
well as time stamps of tokens in those places. In themain
module we also define the initial marking of the net, assig
ing initial values to the variables that represent places and
time stamps of tokens in initially marked places.

We describe each transition of the Petri net as a mod
that adds/removes tokens (changes the marking) when
executed (fires). Figure 5 illustrates the description of th
bloodprocess corresponding to the implementation show
in Figure 2(b). When a transition fires, it changes the mar
ing of the system removing tokens from its input places a
adding new tokens to output places. This is captured us
next assignments for input/output places of the transitio
Thus if the transition is enabled (enabled := P3 & Pa &
!P4 ), execution ofbloodwill assign boolean values toP3,
Pa andP4 according to the transition firing rules, that is,1
to output places and0 to input places.

As stated in the definition of PRES, time stamps of ne
tokens are calculated as the sum of the trigger time and
transition delay, e.g.(trigger_time + tran_delay)
mod 28. In this case, we are using integer addition “modu
28” because integer variables in SMV must be bound
when they are defined. The bound of variables for tim
stamps, in the example of Figure 2(b), is27. This is an up-
per bound on the value of the time stamp that a token m
have in the net (this is, of course, assuming that time stam
of all tokens in the initial marking are zero). We need es
mation based procedures to calculate such an upper bou
These procedures must be accurate enough to assure tha
performance of the verification method is not adversely a
fected by a too pessimistic estimation of the upper bound
token times. The larger the value of this bound, the longer
the computation time needed to verify timing propertie
For instance, Table 1 shows the verification time for diffe
ent upper bounds of time stamps for the very same pati
monitoring system of Figure 2(b). These times have be
obtained by running the SMV system on an UltraSPARC
IIi@440 MHz processor. The properties verified in thes
cases are explained in detail in Section 6. The complexity
this problem grows exponentially in the size of the boun
for time stamps. This becomes a limitation of our approa
when large time stamps are needed to characterize the
ing aspects of a system.
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In the situation in which the net representing the system
does not have loops, as it is the case of the models of the
medical system in Figure 2, an upper bound could be trivi-
ally determined summing all transition times. In the case of
representations containing loops, we need procedures that
consider the number of times a loop may execute in order to
estimate such an upper bound.

In PRES each token has two components: a value and a
time stamp. Time stamps, according to the definition of the
model, may be non-negative reals. However, the reader
might have noted, that in order to use the SMV system we
need to restrict the time to discrete (integer) values. Though
this aspect indeed limits the modeling power of PRES, there
exists a wide spectrum of systems that can be still represent-
ed adequately in PRES when time stamps, as well as func-
tion delays, are treated as integer values.

Another important issue to point out is that, since we are
not dealing with token values, only certain kind of systems
that include guards in their models may be analyzed using
this approach. On the other hand, models in which transi-
tions bear no guard may be straightforwardly studied. Some
systems modeled in PRES, which include guards, have the
particular characteristic that there exist sets of “complemen-
tary” guards that are “independent” from one set to another.
This aspect is best explained in reference to the monitoring
system of Figure 1. For this example, , , and
are complementary because wheneverP3 is marked, only
one of these guards will be asserted. Similarly, and
are complementary. In this particular example, there is no

relation between the sets and
which means that they are independent. For PRES mod
with independent sets of complementary guards, the
guards can be ignored without affecting the reachability a
time analyses. In this case, the model will exhibit non-dete
minism when firing transitions whose guards have be
dropped.

To study further the issue of guards in our approach, co
sider the simple net of Figure 3. Suppose that we can e
press all guards in terms of the token value of the initi
token inP1, and we can writeG andG to denote comple-
mentary guards. Thus, we have two sets of complement
guards, however, these sets are not independent. It is c
that ignoring the guards will alter the analysis results of th
system. When we drop the guards and analyze the mo
we find out that in the worst caseP3 will get a token with
time stamp , whereas in reality the worst case w
be a token inP3 with time stamp .

On the other hand, consider the model shown in Figure
with two independent sets and of comple
mentary guards. If we ignore the guards in this case, t
model will exhibit non-determinism but this will not affect
the reachability and time analyses. For instance, for bo
cases (considering guards and dropping them), in the wo
caseP3 will get a token with time stamp .

6. Coverification of the Medical Monitoring
System

In this section we show the coverification of the medic
monitoring application described above for two possib
implementations of the system. This illustrates practically
transformational design space exploration methodolo
based on formal methods. We consider first, in Figure 2(
an implementation using a single programmable process
Note that values have been assigned to transition tim
These times are the estimated worst case execution time
the respective functions on the selected processor. For
ample, the transition time forheart is 4 ms. The reader can
also notice that, by reason of the considerations explained

Table 1. Coverification of the monitoring system

Upper Bound Time [s]

27 1.7

55 12.7

111 98.0

223 1300.1

Figure 3. PRES model with dependent guards

t 16G ][ t 22

t 34 t 41 G ][

G ][

G ][

P1

P3

P2

�
�
�

�
�
�

G3 G4 G5 G6

G7 G8

G3 G, 4 G, 5 G,
6

{ } G7 G, 8{ }

r 3 10=
r 3 7=

Figure 4. PRES model with independent guards
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the previous section, the guards have been ignored. The
placePa (initially marked) models the processor: this place
is both input and output of all transitions which capture pro-
cesses mapped onto that processor. We use lines with no ar-
rowheads to indicate this bidirectional flow relation
between transitions andPa. PlaceP1 models the data read
from the sensors,P8andP10the information to be recorded
and displayed respectively, andP6 is the indicator which
shows that the analysis has been performed.P1, P6, P8, and
P10are the places through which the system interacts with
its environment. InitiallyP1 andPa are marked and time
stamps for tokens inP1 andPa are and . If
the system operates properly, a new token will be added to
P1 after the patient monitor finishes its functionality.

We must first verify that the system, under any circum-
stance, will complete its functionality, that is,P6, P8, and
P10 will eventually be marked. Using the SMV tool, this
property can be expressed as a CTL formula preceded by
the keywordSPEC:

SPEC AF (P6 & P8 & P10)
which reads “eventually (P6 & P8 & P10) for all computa-
tion paths”, i.e. the state in whichP6, P8, andP10are simul-
taneously marked is inevitable. This formula holds for both
representations in Figure 2. The second property, which
concerns our design, is the constraint of a maximum delay
of 15 ms. We have to formally verify that whenP6, P8and
P10are marked (which has been shown to be true) the time
stamps of tokens in these places are less than or equal 15.
We may express this constraint in our description as three
CTL formulas:

SPEC AF (P6 & (time_P6<=15))
SPEC AF (P8 & (time_P8<=15))

SPEC AF (P10 & (time_P10<=15))

All three formulas above turn out to be false, for the mod
el in Figure 2(a), and SMV gives counter-examples. As t
implementation in Figure 2(a) does not meet the time co
straint, we consider an alternative architecture. Figure 2
models the patient monitoring system implemented usi
one programmable processor (represented byPa) and one
hardware component (Pb). Processesacquire, filter, re-
corderanddisplayare mapped ontoPbwhile the other pro-
cesses ontoPa. A new transition (comm) has been
introduced in the model to consider the cost of inter-proce
sor communication. This processcommis the only one that
utilizes bus resources (placeB). Note that execution times
of processes mapped ontoPb have changed with respect to
the previous design alternative. For the model in Figure 2(
we have formally verified, using symbolic model checkin
through the SMV system, that the properties mention
above do hold for all possible situations. This implement
tion has superior performance because of parallelism a
lower execution times for the hardware.

7. Conclusions

We have presented PRES, a Petri net based model w
extensions to capture important features of embedded s
tems. The model is simple, intuitive and can be easily ha
dled by the designer. We introduced an approach to form
verification of embedded systems using symbolic mod
checking with PRES as underlying computational mode
Thus, coverification is possible dealing with timing prope
ties.

It has been shown how PRES models can be transla
into the input formalism of a model checker in a relativel
simple manner. A patient monitoring system has been stu
ied to illustrate the applicability of the coverification ap
proach to practical systems. Transformations during des
space exploration can be smoothly captured in PRES a
properties to be checked can be derived directly from t
model in an easy manner.

Our main contribution lies in modeling embedded sy
tems in such a way that the representation is adequate to
analyzed using formal methods. The model that we use i
Petri net based notation in which tokens bear both value a
time stamp. We address in this paper a coverification me
od that allows to reason formally about the presence/a
sence of tokens in places of the net and their time stam
but we do not deal with their token values. This is a proble
worth for further research.
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