in Proc. EUROMICRQ2000, pp. 106-113.

Formal Coverification of Embedded Systems using Model Checking

Luis Alejandro Cortés, Petru Eles, and Zebo Peng
Dept. of Computer and Information Science
Linkodping University, Linkdping, Sweden
{luico,petel,zebpe}@ida.liu.se

Abstract However, they are not commonplace in embedded systems
design. There is a lack of techniques for formal verification
The complexity of embedded systems is increasing rapid-of hardware/software systems. In this paper we present an
ly. In consequence, new verification techniques that over-approach to coverification of embedded systems using sym-
come the limitations of traditional methods and are suitable bolic model checking, based on a Petri net representation.
for hardware/software systems are needed. In this paper weWith this approach it is possible to validate properties of the
introduce a computational model for embedded systemssystem as well as timing requirements. Design properties
based on Petri nets, called PRES. We present an approactare specified as CTL (Computation Tree Logic) formulas
to coverification of both the hardware and software parts of and the model checker determines whether they are satis-
an embedded system represented by PRES. We use symbofied. We model the system using PRES (Petri net based
model checking to prove the correctness of such systemsRepresentation for Embedded Systems), a notation capable
specifying properties in CTL and verifying whether they are of capturing relevant information characteristic to embed-
satisfied. This coverification method permits to reason for- ded systems.
mally about design properties as well as timing require- The rest of this paper is organized as follows. Section 2
ments. A medical monitoring system illustrates the addresses related approaches to modeling of embedded sys-
feasibility of our approach on practical applications. tems using Petri nets as well as formal methods suitable for
HW/SW codesign. Section 3 describes shortly the main fea-
tures of symbolic model checking. The underlying compu-
1. Introduction tational model that we use to represent embedded systems is
introduced in Section 4. In Section 5 we present our ap-
Current electronic systems are typically constituted of proach to formal coverification. Section 6 shows the verifi-
application-specific hardware components and softwarecation of a medical monitoring system. Finally, some
running on programmable platforms. The inherent heteroge-conclusions are drawn in Section 7.
neity of this kind of systems makes them very complex and
difficult to verify. Moreover, the increasing demand on
high-performance products has boosted the levels of sophis—z' Related Work
tication of such systems.
For the levels of complexity typical to modern electronic
systems, trad|t|ona] vahdatu;n technlqges, like S'm“'a“o.” approaches, suitable to hardware/software systems, have
and testing, are neither sufficient nor viable to verify their

correctness. First, these techniques may cover just a smalPeen proposed recently. Alat. al [1] present a model
X : ’ niq y 14 . “checking procedure based on the Hybrid Automata model:
fraction of the system behavior. Second, long simulation

times and bUgS found late in prototyping phases have a neg_glven a system represented as communicating machines

ative impact on time-to-market. Formal methods are becom_with real-valued variables, the method shows whether an
. pact : ' ICTL-formula (Integrator Computation Tree Logic), speci-
ing a practical alternative to ensure the correctness of

. . A ing system requirements, is satisfied. Using the same
designs. They might overcome some of the limitations of fy . P ;
tradigt;ional vaﬁdati%n methods. At the same time. formal model, Hybrid Automata, another coverification method is

verification can give a better understanding of the system proposed in [12], where complex systems can be analyzed

behavior, help to uncover ambiguities, and reveal new in- using a simplification strategy 0 verify individ_ually the
sights of ’the system ' _hardware, the §pﬂvyare and the interface. Balatiral [2] .
Formal methods Have been extensively used in softwarem.trOduce averlflcatlon methodplogy based on Codesign Fi-
development [10] and hardware verification as well [14] nltg State M_qchmes (CFSMs), in Wh'ch CFSM.S are translat'-
" ed into traditional state automata. This technique checks if

This research is sponsored by the Swedish National Board for Indu- all possible sequences of inputs and outputs of the system
strial and Technical Development (NUTEK) in the frame of the SAVE ~ satisfy the desired properties. To do so, those sequences that
project.

The increasing complexity of embedded systems poses a
challenge in verifying their correctness. Some verification

meet the requirements constitute the language of anotheboolean formulas and transition relations is using ordered
automaton, reducing the problem to the verification of lan- binary decision diagrams (BDDs). BDDs are canonical rep-
guage containment between automata. In [11], a partitionedresentations that make boolean manipulations much simpler
system, described using a Pascal-like language, is the inputomputationally [3]. Symbolic model checking [4] makes
to the proposed coverification framework in which CTL and use of BDDs to represent sets of states and the transition re-
TCTL formulas are evaluated in order to check behavioral lation, and the algorithm employs fixed-point techniques
and timing properties. An approach to symbolic model that manipulate sets using their characteristic functions en-
checking of process networks and related models is pro-coded as BDDs. Therefore, it is possible to reason about de-
posed in [19], where IDDs (Interval Decision Diagrams) are signs with large state spaces without constructing the state
used to represent multi-valued functions. graph of the system. SMV [17] is one of the available tools
On the other hand, related work in the area of Petri netsthat uses the BDD-based symbolic model checking algo-
(PNs) includes [20], which presents a BDD-based model rithm. This model checker has an input language that allows
checker for safe nets. Although the approach is intended toto describe systems using boolean, scalar or fixed-array data
verify Petri nets in general, with no particular interestin em- types, and boolean and basic scalar operations. The CTL
bedded systems and without dealing with time information, formulas to be checked are also specified in the SMV lan-
it studies different forms of describing PNs using the SMV guage and may express liveness or deadlock-freedom, safe-
system [17], developed at Carnegie Mellon University. An ty, and fairness, among other properties. In our experiments
interesting approach used for analysis and verification of we have used the SMV tool to verify the correctness of de-
bounded Petri nets is presented in [16]. Using the efficiency signs represented in PRES.
of BDDs to represent sets of markings and reduction rules
to transform PNs, fcr_lis t_echnique canbe use_d for reachabi_lity4. Petri Net based Model
analyses and verification of some properties of PNs with
large state spaces. One of the issues in applying formal methods to embed-
Many models have been proposed to represent HW/SWgeq systems design is the underlying computational model.
systems. Particularly Petri nets have been extended to capThis model has to be formally defined in order to allow rea-
ture significant information of such systems. Mags¢l al soning about the properties of the system that it represents.
[15] introduce an intermediate model for hardware/software The notation we use to model such systems is PRES (Petri
codesign, extending Petri nets to analyze certain properties,e hased Representation for Embedded Systems). PRES is
used in the partitioning process. Stoy [18] presents a mode-, extension to Petri nets which allows to capture important
ling technique based on PNs notation, where timed Petrifaatres of HW/SW systems. Some of the characteristics of
nets with restricted transition rules are used to representyis model will be illustrated using the example shown in Fi-

control flow in both hardware and software. gure 1. The net represents a patient monitoring system as in-
troduced in [9] and studied in [5].
3. Symbolic Model Checking The patient monitor measures physiological phenomena

and analyzes this information. If the system detects abnor-

Model checking is an approach to formal verification mal conditions on the patient, it activates aural and visual
used to determine whether the model of a system satisfiesalarms. The patient condition information is displayed and
certain required properties. Clarlet. al [6] introduced a recorded as well. The functionality of the system can be
model checking algorithm for formulas specified in the tem- captured as a set of processes. abguireprocess reads in-
poral logic CTL (Computation Tree Logic). CTL is based formation from the sensors. Usually this information con-
on propositional logic of branching time, that is, a logic tains spurious data that must be debugditter processes
where time may split into more than one possible future us- such data and eliminates false information received from
ing a discrete model of time. Formulas in CTL are com- the sensors. Once the information has been filtered, the pro-
posed of atomic propositions, boolean connectors, andcesses that detect anomalous conditions on blood pressure,
temporal operators. Temporal operators consist of forward-heart rate, or temperature may start depending on the data
time operators@ globally,F in the future X nexttime,and available. For instance, a possible anomaly in the blood
U until) preceded by a path quantified @ll computation pressure will activate the procasi®odin order to study the
paths, andE some computation path). Thus formulas may data. If, after analyzing the information, an irregular condi-
describe properties of computation paths over labeled statetion of the patient is encountered, the procalssm will be
transition structures. This algorithm, however, requires the executed and an audio signal (procasslio) will be trig-
entire state transition graph to be constructed, causing a segered. The information resulted from tfiter process is
rious state explosion problem. displayed on a screen and recorded by the procelsglay

One way to overcome the state explosion is to representandrecorderrespectively. The specification of the patient
symbolically the transition relation instead of explicit enu- monitoring system includes a timing constraint which states
meration. A compact and efficient form of representing that the data from sensors must be sampled every 15 ms and

acquisition of new information requires the system to finish
its functionality before the next execution.

Figure 1. Medical monitoring system

In the following we briefly describe the computational
model. A complete and formal definition of this representa-
tion can be found in [7]. APetri net based Representation
for Embedded Systerissconstituted by a finite non-empty
setP of places a finite non-empty set of transitions a fi-
nite non-empty setof input arcs a finite non-empty sed
of output arcs and the initiamarking M, of the net. Like in

ken values of tokens in places of the prelsn‘tthe transi-
tion. Transition functions are very important when
describing the behavior of the system to be modeled. They
allow systems to be modeled at different levels of granular-
ity with transitions being associated with simple arithmetic
operations or complex algorithms. For instance, in Figure 1,
there is one transition function associated to transfilter,
which defines token values of new token$3g, P7andP9,
when filter is fired (executed). This function represents
what has been earlier called the prodites.

For every transitiom, there exisminimumandmaximum
transition delaysnon-negative real numbers, which repre-
sent the lower and upper limits for the execution time (de-
lay) of the function associated to that transition. In this
paper we restrict ourselves to the case in which minimum
and maximum transition delays are equal. Under the above
assumption, in the example of Figure 1 such a time is cap-
tured as “transition delay” and is inscribed in the respective
transition box. Thustg represents the execution time of the
function associated to transitideamp(in Section 6, where
we study alternative implementations of the system, partic-
ular values will be assigned to transition delays).

Each transitiort in the net may also have guard G
which represents eonditionthat must be satisfied in order
to enable that transition, when all its input places hold to-
kens. Guards are functions of token values of tokens in the
pre-set of a given transition. In Figure 1, for exampB,
represents the condition that must be fulfilled to execute the
procesdlood In Figure 1 there are two transitions that have
no name attached: we have introduced them in order to
model the situation in which no abnormal condition on the
patient is detected. The associated execution time is zero be-

circles, transitions by boxes, and arcs by arrows. The medi-

In PRES, every transition hasbehavior The behavior

cal monitoring system is modeled in PRES as shown in Fi- of a Fransitio_r_t is defined in_ terms of_ it$ransiti_on functi_on
gure 1, where the operations performed in the processes ar@nd itstransition delay Intmtlvely,_ thls_ behavpr describes _
captured by transitions and the data dependence betweervhat happens” when the transition fires. Unlike the classi-
them is given by the structure of the net. The transitions c@l Petri net model, each token holds a value and a time

have been named after the processesndtking Mis a

stamp. When a transitians fired the markingv will gen-

function that denotes the absence or presence of tokens ifgrally change by removing all the tokens from the pre2set

places of the net. The model requires the net tedfeor 1-
boundedi.e. no more than one token is allowed in a place.
The markingMg, for the model of the monitoring system in
Figure 1, show®1 as the only place initially marked.

In PRES, aokenis a pairk = 0y, r0 wherer is theto-
ken valug(this value may be of any type), ands thetoken

and depositing one token into each element of the post-set
t°. These tokens, placed inttf , have values and time
stamps which depend on the previous token$tin and the
behavior oft. When a transition fires, all the tokens in its
output places get the same token value and token time.

A transitiont is said to beenabledf all places of its pre-

time (a non-negative real-valued time stamp). In this man- S€t are marked, its output places different from the input
ner tokens themselves carry data and time information.ones are empty, and its guard is asserted. It means that the
There exists #ype functiort that associatestaken typeo enabling rule of classical PNs has been modified to fit the
every place. This is the type of value that a token may bearcharacteristics of this specific model. Every enabled transi-
in that place. The token type related to a certain place is antion has arigger time tt that represents the time instant at
intrinsic property of that place and will not change during
the dynamic behavior of the net.

For every transitiort, there exists dransition function
associated to. Transition functions have as arguments to-

IThe pre-seft of a transitiaris the set ofnput placesf t. Similarly,
the post-set® of a transitidns the set obutput placeft.
2A place may be, at the same time, input and output of a transition.

_; P10
2O
| =} ™
g P10 % L]
0 : 3w
- |as
Pb @
T -
§—O
LY
T~

‘5 blood‘ ‘4 heart‘ ‘3 temp‘

‘5 blood‘ ‘4 heart‘ ‘3 temp‘

(a) (b)

Figure 2. Different implementations of the patient monitoring system

which the transition may fire. Each token in the pre-setofan There is an aspect worth to pinpoint regarding the timing
enabled transition has, in general, a different token time. semantics of the model: the time stamps of tokens capture
From the point of view of time, the transition could not fire the time elapsed since the starting instant of the system (as-
before all tokens are ready. The concept of trigger time is suming that all token times are zero in the initial marking);
needed to describe how token times are handled when thahere is not such a concept like clock-on-the-wall that en-
transition is fired. The trigger time of an enabled transition forces a strict order in the firing of transitidns

is the maximum token time of the tokens in its input places. In summary, PRES is a Petri net based model with exten-
Thefiring of an enabled transition changes a markihg sions to capture features of embedded systems: the model
into a new markingV*. As a result of firing a given transi- includes an explicit notion of time; tokens, in our notation,

tiont, the following events occur: tokens from its pre-set are hold information and transitions—when fired—perform
removed; one token is added to each place of its post-setiransformation of data; the representation also supports hi-
each new token depositedifh gets a token value, which iserarchical decomposition. The reader is referred to [7] for a
calculated by evaluating the transition function with the to- formal definition of PRES.

ken values of tokens iit as arguments; and each new to-

ken added td° gets a token time, which is the sum of the5 Coverification of Embedded Systems
transition delay and the trigger time of the transition. Forin-

stance, referring to Figure 2(a), suppose tafuireis fired The coverification method presented in this work is

and the system reaches the state in wilatandP2are the 4564 on the model introduced in the previous section. The
only marked places. Theffijter will be the only enabled ,rpose of the approach presented in this paper is to reason
Fran§|t|on in the net. Whefilter fires, tok_ens will be depos- 5phout embedded systems using PRES as underlying repre-
ited inP3, P7, P9andPa (at the same time that tokens are gentation. There are several types of analysis that can be
removed fromP2 andPa) and their token values are calcu- performed on systems represented in PRES. A given mark-
lated by evaluating the respective transition function with ing, i.e. absence or presence of tokens in places of the net,

previous token values d?2 andPa as arguments. These 3y represent the state of the system at a certain moment in
new tokens will have identical token time, that is, the sum

of the trigger time (maximum token time of previous tokens
in P2 andPa) and the transition delay (6 time units). 3 A slight modification of PRES is proposed in [8] in order to have a
strict temporal order in the firing of transitions.

the dynamic behavior of the net. Based on this, different the next state. A “process” is an instance of a module, in
properties can be studied. For instance, in a landing gearsuch a way that the model checker executes a step by choos-
controller of an airplane, the wheel door must not close ing non-deterministically a process and then executing all
while the plane is landing—under any circumstance. This assignment statements of that process in parallel.

sort of safety requirement might be formally proven by Totranslate a PRES model into the SMV input language,
checking that the places which represent such a dangerousve declare in thenain module a boolean as well as an inte-
state are never marked simultaneously. Sometimes, the deger variable for each place of the net. The boolean variable
signer could also be interested in proving that the systemrepresents absence/presence of tokens in that place, while
eventually reaches a certain state whose marking representthe integer one represents the time stamp of the token when
the completion of a task. the particular place is marked (we restrict ourselves to inte-

The kind of analysis described above, calledchability ger token stamps). We instantiate each transition as a pro-
analysis is very useful but says nothing about timing as- cess that has as parameters its input and output places as
pects nor does it deal with token values. In many embeddedwell as time stamps of tokens in those places. Inntla@
applications, however, time is an essential factor. More- module we also define the initial marking of the net, assign-
over, in hard real-time systems, where deadlines should noting initial values to the variables that represent places and to
be missed, itis crucial to reason quantitatively about tempo-time stamps of tokens in initially marked places.
ral properties to assure the correctness of the design. There- We describe each transition of the Petri net as a module
fore, it is needed not only to check that a certain state will that adds/removes tokens (changes the marking) when it is
eventually be reached but also to ensure that this will occurexecuted (fires). Figure 5 illustrates the description of the
within some bound on time. In PRES, time information is blood process corresponding to the implementation shown
attached to tokens, so that we can analyze quantitative tim-n Figure 2(b). When a transition fires, it changes the mark-
ing properties: we may, for instance, prove that a given ing of the system removing tokens from its input places and
place will eventually be marked in the future and that its adding new tokens to output places. This is captured using
time stamp, for any possible condition, will be less than a next assignments for input/output places of the transition.
certain time value that represents a temporal constraint.Thus if the transition is enabledr{abled := P3 & Pa &

Such a study will be calletine analysis IP4), execution obloodwill assign boolean values 183,

A third type of analysis for systems modeled in PRES in- PaandP4 according to the transition firing rules, that is,
volves reasoning about values of tokens in marked placesto output places arito input places.

This type ofbehavior analysiss not part of the coverifica- As stated in the definition of PRES, time stamps of new
tion method proposed here. In this work we address justtokens are calculated as the sum of the trigger time and the
reachability and time analyses. In other words, we concen-transition delay, e.g(trigger_time + tran_delay)

trate on the absence/presence of tokens in the places of thenod 28. In this case, we are using integer addition “modulo
net and their time stamps, but we do not deal with the values28” because integer variables in SMV must be bounded
of those tokens. We assume that transition functions (seewhen they are defined. The bound of variables for time
Section 4) are correctly defined. stamps, in the example of Figure 2(b)2i. This is an up-

As it has been mentioned above, in a PRES model a placeper bound on the value of the time stamp that a token may
may hold at most one token for a certain marking. Thus itis have in the net (this is, of course, assuming that time stamps
possible to encode a marking—or a set of markings—as aof all tokens in the initial marking are zero). We need esti-
boolean function where the variables correspond to placesmation based procedures to calculate such an upper bound.
of the net. Boolean functions can be straightforwardly rep- These procedures must be accurate enough to assure that the
resented by BDDs. Firing a transition in a Petri net changesperformance of the verification method is not adversely af-
the marking into a new one, which is a variation in the state fected by a too pessimistic estimation of the upper bound for
of the system. It is possible to build the BDD that represents token times. The larger the value of this bound, the longer is
the transition relation of the system and then compute effi- the computation time needed to verify timing properties.
ciently the reachable states using BDDs [3], [13]. With such For instance, Table 1 shows the verification time for differ-

a BDD-based representation we can formally verify proper- ent upper bounds of time stamps for the very same patient
ties, specified in CTL, using symbolic model checking [4] monitoring system of Figure 2(b). These times have been
and accomplish reachability analyses. In our experiments,obtained by running the SMV system on an UltraSPARC-
we use the SMV tool (a BDD-based symbolic model check- [li@440 MHz processor. The properties verified in these
er) [17] and its input language to describe and verify sys- cases are explained in detail in Section 6. The complexity of
tems modeled in PRES. this problem grows exponentially in the size of the bound

A program in SMV describes both the system and the for time stamps. This becomes a limitation of our approach
specification (properties to verify). The system is described when large time stamps are needed to characterize the tim-
as a collection of “modules”. Each module may contain ing aspects of a system.
variables, its initial state, and assignments of variables for

In the situation in which the net representing the system relation between the sefs5;, G, G, G} ab,, Gt
does not have loops, as it is the case of the models of thewhich means that they are independent. For PRES models
medical system in Figure 2, an upper bound could be trivi- with independent sets of complementary guards, these
ally determined summing all transition times. In the case of guards can be ignored without affecting the reachability and
representations containing loops, we need procedures thatime analyses. In this case, the model will exhibit non-deter-
consider the number of times a loop may execute in order tominism when firing transitions whose guards have been

estimate such an upper bound. dropped.
To study further the issue of guards in our approach, con-
Table 1. Coverification of the monitoring system sider the simple net of Figure 3. Suppose that we can ex-
press all guards in terms of the token value of the initial
Upper Bound Time [s] token inP1, and we can writéG andG to denote comple-
27 17 mentary guards. Thus, we have two sets of complementary

guards, however, these sets are not independent. It is clear
55 12.7 that ignoring the guards will alter the analysis results of the
111 98.0 system. When we drop the guards and analyze the model,
523 13001 we find out that in the worst cage3 will get a token with
i time stampr; = 10 , whereas in reality the worst case will
be a token ifP3 with time stampr; =

In PRES each token has two components: a value and a
time stamp. Time stamps, according to the definition of the PL
model, may be non-negative reals. However, the reader
might have noted, that in order to use the SMV system we
need to restrict the time to discrete (integer) values. Though
this aspectindeed limits the modeling power of PRES, there
exists a wide spectrum of systems that can be still represent-
ed adequately in PRES when time stamps, as well as func-
tion delays, are treated as integer values.

Wis 6 [7]’

k

6lfs 4 t]iel Figure 4. PRES model with independent guards

/|
\T

On the other hand, consider the model shown in Figure 4
with two independent setgA, A} ard, B} of comple-
mentary guards. If we ignore the guards in this case, the
model will exhibit non-determinism but this will not affect
the reachability and time analyses. For instance, for both
cases (considering guards and dropping them), in the worst
caseP3 will get a token with time stamp; = 8

E

Glla] [1 t]

<

Figure 3. PRES model with dependent guards

_ _ _ _ _ 6. Coverification of the Medical Monitoring
Another important issue to point out is that, since we are System

not dealing with token values, only certain kind of systems

that include guards in their models may be analyzed using | this section we show the coverification of the medical
this approach. On the other hand, models in which transi- monitoring application described above for two possible
tions bear no guard may be straightforwardly studied. Somejmplementations of the system. This illustrates practically a
systems modeled in PRES, which include guards, have tharansformational design space exploration methodology
particular characteristic that there exist sets of “complemen-pased on formal methods. We consider first, in Figure 2(a),
tary” guards that are “independent” from one set to another. an jmplementation using a single programmable processor.
This aspect is best explained in reference to the monitoringnote that values have been assigned to transition times.
system of Figure 1. For this examplég G, G; @Bd These times are the estimated worst case execution times of
are complementary because wheneR8iis marked, only the respective functions on the selected processor. For ex-
one of these guards will be asserted. Simila®y, ~&d ample, the transition time fdreartis 4 ms. The reader can
are complementary. In this particular example, there is no 31so notice that, by reason of the considerations explained in

the previous section, the guards have been ignored. The SPEC AF (P10 & (time_P10<=15))

placePa (initially marked) models the processor: this place

is both input and output of all transitions which capture pro- All three formulas above turn out to be false, for the mod-
cesses mapped onto that processor. We use lines with no a€! in Figure 2(a), and SMV gives counter-examples. As the
rowheads to indicate this bidirectional flow relation implementation in Figure 2(a) does not meet the time con-
between transitions arfda. PlaceP1 models the data read Straint, we consider an alternative architecture. Figure 2(b)
from the sensor®8andP10the information to be recorded Models the patient monitoring system implemented using
and displayed respectively, aib is the indicator which ~ One programmable processor (representeé’dyand one
shows that the analysis has been perforrRagdP6, P8, and ~ hardware componentPp). Processescquirg filter, re-
P10are the places through which the system interacts with corderanddisplayare mapped ontBbwhile the other pro-

its environment. InitiallyP1 and Pa are marked and time ~ Cesses ontoPa. A new transition ¢omn) has been
stamps for tokens iR1andPaarer, = 0 andr, = 0 .If introduced inthe model to consider the cost of inter-proces-
the system operates properly, a new token will be added toSOf communication. This processmmis the only one that

P1 after the patient monitor finishes its functionality. utilizes bus resources (plag). Note that execution times
of processes mapped orfts have changed with respect to

MODULE blood(P3,time_P3,Pa,time_Pa,P4,time_P4) the previous design alternative. For the model in Figure 2(b)

ASSIGN we have formally verified, using symbolic model checking

next(P3) := case
enabled : 0;
1:P3;

esac;

next(Pa) := case
enabled : 1;
1:Pa;

esac;
next(P4) := case
enabled : 1;
1:P4;
esac;
next(time_Pa) := case

enabled : (trigger_time + tran_delay) mod 28;

1:time_Pa;
esac;
next(time_P4) := case

enabled : (trigger_time + tran_delay) mod 28;

through the SMV system, that the properties mentioned

above do hold for all possible situations. This implementa-

tion has superior performance because of parallelism and
lower execution times for the hardware.

7. Conclusions

We have presented PRES, a Petri net based model with
extensions to capture important features of embedded sys-
tems. The model is simple, intuitive and can be easily han-
dled by the designer. We introduced an approach to formal

1:time_P4; verification of embedded systems using symbolic model
DEFINE checking with PRES as underlying computational model.
tran_delay := 5; Thus, coverification is possible dealing with timing proper-
trigger_time := case .
(time_P3 >=time_Pa) : time_P3; ties.

ese(ltéme:Pa >=time_P3) : time_Pa; It has been shown how PRES models can be translated

enabled := P3 & Pa & IP4: into the input formalism of a model checker in a relatively
FAIRNESS running simple manner. A patient monitoring system has been stud-
ied to illustrate the applicability of the coverification ap-
proach to practical systems. Transformations during design
space exploration can be smoothly captured in PRES and

We must first verify that the system, under any circum- properties to be checked can be derived directly from the
stance, will complete its functionality, that iBg, P8, and model in an easy manner.
P10 will eventually be marked. Using the SMV tool, this ~ Our main contribution lies in modeling embedded sys-
property can be expressed as a CTL formula preceded bytems in such a way that the representation is adequate to be
the keywordsPEC analyzed using formal methods. The model that we use is a

SPEC AF (P6 & P8 & P10) Petri net based notation in which tokens bear both value and

which reads “eventually (P6 & P8 & P10) for all computa- time stamp. We address in this paper a coverification meth-
tion paths”, i.e. the state in whid?6, P8, andP10are simul- od that allows to reason formally about the presence/ab-
taneously marked is inevitable. This formula holds for both sence of tokens in places of the net and their time stamps,
representations in Figure 2. The second property, whichbut we do not deal with their token values. This is a problem
concerns our design, is the constraint of a maximum delayworth for further research.
of 15 ms. We have to formally verify that whét6, P8 and
P10are marked (which has been shown to be true) the time
stamps of tokens in these places are less than or equal 15
We may express this constraint in our description as three[l] R. Alur, T. A. Henzinger, and P.-H. Ho, “Automatic Symbol-

CTL formulas: ic Verification of Embedded Systems,” IEEE Trans. Software

SPEC AF (P6 & (time_P6<=15)) ; ; }
SPEC AF (P8 & (time_P8<=15)) Engineering vol. 22, pp. 181-201, March 1996.

Figure 5. Description of blood using SMV

eferences

[2] F.Balarin, H. Hsieh, A. Jurecska, L. Lavagno, and A. Sangio-
vanni-Vincentelli, “Formal Verification of Embedded Systems
based on CFSM Networks,” Proc. DAG 1996, pp. 568-571.

[3] R.E.Bryant, “Symbolic Boolean Manipulation with Ordered
Binary-Decision Diagrams,” iCM Computing Surveysol. 24,

pp. 293-318, Sept. 1992.

[4] J. R.Burch, E. M. Clarke, D. E. Long, K. L. McMillan, and
D. L. Dill, “Symbolic Model Checking for Sequential Circuit Ver-
ification,” in IEEE Trans. CAD of Integrated Circuits and Sys-
tems vol. 13, pp. 401-424, April 1994.

[5] S.Campos, E. M. Clarke, W. Marrero, and M. Minea, “Tim-
ing Analysis of Industrial Real-Time Systems,"Rmoc. Workshop

on Industrial-Strength Formal Specification Techniqu&895,
pp. 97-107.

[6] E. M. Clarke, E. A. Emerson, and A. P. Sistla, “Automatic
Verification of Finite-State Concurrent Systems Using Temporal
Logic Specifications,” irACM Trans. on Programming Languag-
es and Systemsol. 8, pp. 244-263, April 1986.

[7] L.A.Cortés, P. Eles, and Z. Peng, “A Petri Net based Model
for Heterogeneous Embedded SystemsPiiac. NORCHIP Con-
ference 1999, pp. 248-255.

[8] L. A. Cortés, P. Eles, and Z. Peng, “Verification of Embed-

[11] E. H. A. Garcez and W. Rosenstiel, “CVF - Coverification
Framework,” inProc. Brazilian Symposium on Integrated Circuit
Design 1998, pp. 103-106.

[12] P.-A. Hsiung, “Hardware-Software Coverification of Con-
current Embedded Real-Time Systems,Piroc. Euromicro RTS
1999, pp. 216-223.

[13] A. J. Hu, “Formal Hardware Verification with BDDs: An In-
troduction,” inProc. Pacific Rim Conference on Communications,
Computers and Signal Processii®97, pp. 677-682.

[14] C.Kernand M. R. Greenstreet, “Formal Verification in Hard-
ware Design: A Survey,” i\CM Trans. on Design Automation of
Electronic Systemsol. 4, pp. 123-193, April 1999.

[15] P. Maciel, E. Barros, and W. Rosenstiel, “A Petri Net Model
for Hardware/Software Codesign,” Design Automation for Em-
bedded Systemeol. 4, pp. 243-310, Oct. 1999.

[16] E. Pastor, O. Roig, J. Cortadella, and R. M. Badia, “Petri Net
Analysis Using Boolean Manipulation,” ipplication and Theo-
ry of Petri Nets 1994R. Valette, EDLNCS 815Berlin: Springer-
Verlag, 1994, pp. 416-435.

[17] The SMV System, http://iwww.cs.cmu.edu/~mod-
elcheck/smv.html

[18] E. Stoy, “A Petri Net Based Unified Representation for Hard-

ded Systems using a Petri Net based Representation,” to appear ijvare/Software Co-Design,” Licentiate Thesis, Dept. of Computer

Proc. Intl. Symposium on System Synth@€ig0.

[9] P. J. Drongowski, “Software architecture in realtime sys-
tems,” inProc. Workshop on Real-Time Applicatiori®993, pp.
198-203.

[10] J. D. Gannon, J. M. Purtilo, and M. V. Zelkowit3oftware
Specification: A Comparison of Formal Method$orwood, NJ:
Ablex Publishing, 1994.

and Information Science, Linkdping University, Linképing, 1995.

[19] K. Strehl and L. Thiele, “Symbolic Model Checking of Pro-
cess Networks Using Interval Diagrams TechniquesPrioc. IC-
CAD, 1998, pp. 686-692.

[20] G. Wimmel, “A BDD-based Model Checker for the PEP
Tool,” Major Individual Project Report, Dept. of Computing Sci-
ence, University of Newcastle, Newcastle, May 1997.

	Abstract
	1. Introduction
	2. Related Work
	3. Symbolic Model Checking
	4. Petri Net based Model
	Figure 1. Medical monitoring system
	Figure 2. Different implementations of the patient monitoring system

	5. Coverification of Embedded Systems
	Table 1. Coverification of the monitoring system

	Upper Bound
	Time [s]
	27
	1.7
	55
	12.7
	111
	98.0
	223
	1300.1
	Figure 3. PRES model with dependent guards
	Figure 4. PRES model with independent guards
	6. Coverification of the Medical Monitoring System
	Figure 5. Description of blood using SMV

	7. Conclusions
	[1] R. Alur, T. A. Henzinger, and P.-H. Ho, “Automatic Symbolic Verification of Embedded Systems,...
	[2] F. Balarin, H. Hsieh, A. Jurecska, L. Lavagno, and A. Sangiovanni-Vincentelli, “Formal Verifi...
	[3] R. E. Bryant, “Symbolic Boolean Manipulation with Ordered Binary-Decision Diagrams,” in ACM C...
	[4] J. R. Burch, E. M. Clarke, D. E. Long, K. L. McMillan, and D. L. Dill, “Symbolic Model Checki...
	[5] S. Campos, E. M. Clarke, W. Marrero, and M. Minea, “Timing Analysis of Industrial Real-Time S...
	[6] E. M. Clarke, E. A. Emerson, and A. P. Sistla, “Automatic Verification of Finite-State Concur...
	[7] L. A. Cortés, P. Eles, and Z. Peng, “A Petri Net based Model for Heterogeneous Embedded Syste...
	[8] L. A. Cortés, P. Eles, and Z. Peng, “Verification of Embedded Systems using a Petri Net based...
	[9] P. J. Drongowski, “Software architecture in realtime systems,” in Proc. Workshop on Real-Time...
	[10] J. D. Gannon, J. M. Purtilo, and M. V. Zelkowitz, Software Specification: A Comparison of Fo...
	[11] E. H. A. Garcez and W. Rosenstiel, “CVF - Coverification Framework,” in Proc. Brazilian Symp...
	[12] P.-A. Hsiung, “Hardware-Software Coverification of Concurrent Embedded Real-Time Systems,” i...
	[13] A. J. Hu, “Formal Hardware Verification with BDDs: An Introduction,” in Proc. Pacific Rim Co...
	[14] C. Kern and M. R. Greenstreet, “Formal Verification in Hardware Design: A Survey,” in ACM Tr...
	[15] P. Maciel, E. Barros, and W. Rosenstiel, “A Petri Net Model for Hardware/Software Codesign,”...
	[16] E. Pastor, O. Roig, J. Cortadella, and R. M. Badia, “Petri Net Analysis Using Boolean Manipu...
	[17] The SMV System, http://www.cs.cmu.edu/~modelcheck/smv.html
	[18] E. Stoy, “A Petri Net Based Unified Representation for Hardware/Software Co-Design,” Licenti...
	[19] K. Strehl and L. Thiele, “Symbolic Model Checking of Process Networks Using Interval Diagram...
	[20] G. Wimmel, “A BDD-based Model Checker for the PEP Tool,” Major Individual Project Report, De...

