
Abstract

The paper presents an approach to process scheduling for
embedded systems. Target architectures consist of several pro-
cessors and ASICs connected by shared busses. We have devel-
oped algorithms for process graph scheduling based on list-
scheduling and branch-and-bound strategies. One essential
contribution is in the manner in which information on pro-
cess allocation is used in order to efficiently derive a good
quality or optimal schedule. Experiments show the superi-
ority of these algorithms compared to previous approaches
like critical-path heuristics and ILP based optimal schedul-
ing. An extension of our approach allows the scheduling of
conditional process graphs capturing both data and control
flow. In this case a schedule table has to be generated so
that the worst case delay is minimized.

1. Introduction

During synthesis of an embedded system the designer
maps the functionality captured by the input specification on
different architectures, trying to find the most efficient solu-
tion which, at the same time, meets the design requirements.
This design process implies the iterative execution of several
allocation and partitioning steps before the hardware and
software components of the final implementation can be gen-
erated. Both allocation and partitioning can be performed
manually or automatically. Accurate performance estimation
tools are essential components of such a system synthesis en-
vironment. They provide the adequate feedback on design
decisions needed for efficient exploration of the design space.

Both for accurate performance estimation and for the final
synthesis of an efficient system good quality scheduling algo-
rithms are required. In this paper we concentrate on process
scheduling for systems consisting of communicating process-
es implemented on multiple processors and dedicated hard-
ware components. Optimal scheduling in such a context is an
NP complete problem [13]. Thus, it is essential to develop
heuristics which produce good results in a reasonable time.

In [15] performance estimation is based on a preemptive
scheduling strategy with static priorities using rate-monotonic-

analysis. In [12] scheduling and partitioning of processes,
and allocation of system components are formulated as a
mixed integer linear programming (MILP) problem while
the solution proposed in [11] is based on constraint logic pro-
gramming. Several research groups consider hardware/
software architectures consisting of a single programmable
processor and an ASIC. Under these circumstances deriving
a static schedule for the software component practically
means the linearization of a dataflow graph [2, 8].

Static scheduling of a set of data-dependent software
processes on a multiprocessor architecture has been inten-
sively researched [3, 10, 14]. An essential assumption in
these approaches is that a (fixed or unlimited) number of
identical processors are available to which processes are
progressively assigned as the static schedule is elaborated.
Such an assumption is not acceptable for distributed embed-
ded systems which are typically heterogeneous.

In our approach we consider embedded systems speci-
fied as a set of interacting processes which have been
mapped on an architecture consisting of several different
processors and dedicated hardware components connected
by dedicated and/or shared busses. Considering a non-pre-
emptive execution environment we statically generate a
process schedule and estimate the worst case delay. We
have developed list scheduling and branch-and-bound
based algorithms which can be used both for accurate and
fast performance estimation and for optimal or close to op-
timal system synthesis. Based on extensive experiments we
evaluated the performance of the algorithms which are su-
perior to previous approaches like critical-path heuristics
and ILP based optimal scheduling. Finally, we have extend-
ed our approach by assuming that some processes can be
activated if certain conditions, computed by previously ex-
ecuted processes, are fulfilled. This is an important
contribution because it allows to capture both data and con-
trol flow at the process level.

The paper is divided into 8 sections. In section 2 we for-
mulate our basic assumptions and introduce the formal
graph-based model which is used for system representation.
The list scheduling and branch-and-bound based heuristics are
presented in sections 3 and 4 and are evaluated in section 5.

Process Scheduling for Performance Estimation and Synthesis of
Hardware/Software Systems

Petru Eles1, Krzysztof Kuchcinski1, Zebo Peng1, Alexa Doboli2, and Paul Pop1

2 Dept. of Electr.&Comp. Eng. and Comp. Science
University of Cincinnati

USA

1 Dept. of Computer and Information Science
Linköping University

Sweden

The extension of our approach to accept conditional activation
of processes is presented in section 6. Section 7 describes an
example and section 8, finally, presents our conclusions.

2. Problem Formulation and the Process Graph

We consider a generic architecture consisting of general
purpose or application oriented programmable processors
and application specific hardware processors (ASICs) con-
nected through several busses. Only one process can be
executed at a time by a programmable processor while a
hardware processor can execute processes in parallel. Only
one data transfer can be performed by a bus at a given moment.
Computation and data transfer can overlap.

In [5] we presented algorithms for automatic hardware/
software partitioning based on iterative improvement heuris-
tics. The problem we are discussing in this paper concerns
performance estimation of a given design alternative and
scheduling of processes and communications. Thus, we as-
sume that each process is assigned to a (programmable or
hardware) processor and each communication channel which
connects processes executed on different processors is as-
signed to a bus. Our goal is to derive a delay by which the sys-
tem completes execution, so that this delay is as small as pos-
sible, and to generate the schedule which guarantees this delay.

As an abstract model for system representation we use a di-
rected, acyclic, polar graph G(V,E). Each node Pi∈V represents
one process and an edge eij∈E from Pi to Pj indicates that the
output of Pi is the input of Pj. The graph is polar, which means
that there are two nodes, called source and sink, that convention-
ally represent the first and last process. These nodes are intro-
duced as dummy processes so that all other nodes are suc-
cessors of the source and predecessors of the sink respectively.

The mapping of processes is given by a function M: V→PE,
where PE={pe1, pe2, .., peNpe} is the set of processing elements.
PE=PP∪HP∪B, where PP is the set of programmable pro-
cessors, HP is the set of hardware components, and B is the set
of busses. For a process Pi, M(Pi) is the processing element to
which Pi is assigned for execution. Each process Pi, assigned
to M(Pi), is characterized by an execution time tPi. Commu-
nication processes, assigned to pei∈B, are introduced for
each connection which links processes mapped to different
processors. These processes model inter-processor communi-
cation and their execution time is equal to the corresponding
communication time. A process can be activated after all its
inputs have arrived and it issues its outputs when it termi-
nates. Once activated, a process executes until it completes.

In the following two sections we present algorithms for
scheduling of a process graph. Depending on their speed and
accuracy, they can be used at different stages of the design pro-
cess for system synthesis and/or estimation. One of the
essential contributions consists in the manner in which infor-
mation on process allocation is used by these algorithms in
order to efficiently derive a good quality or optimal schedule.

3. Partial Critical Path (PCP) Scheduling

List scheduling heuristics [3, 9, 14] are based on priority
lists from which processes are extracted in order to be
scheduled at certain moments. In our algorithm, presented
in Fig. 1, we have such a list, Listpei, for each processing el-
ement pei. It contains the processes which are eligible to be
activated on the respective processor at time T_current.
These are processes which have not been yet scheduled but
have all predecessors already scheduled and terminated. An
essential component of a list scheduling heuristic is the pri-
ority function used to solve conflicts between ready
processes. The highest priority process will be extracted by
function Select from the list corresponding to a programma-
ble processor or a bus in order to be scheduled. Processes
assigned to a hardware processor pei are scheduled, without
any restriction, immediately after they entered Listpei.

Priorities for list scheduling very often are based on the crit-
ical path (CP) from the respective process to the sink node. Thus,
for CP scheduling, the priority assigned to a process Pi will be
the maximal execution time from the current node to the sink:

, where πik is the kth path from node
Pi to the sink node.

Considering the concrete definition of our problem, sig-
nificant improvements of the resulting schedule can be
obtained, without any penalty in scheduling time, by making
use of the available information on process allocation.

Let us consider the graph in Fig. 2 and suppose that the
list scheduling algorithm has to decide between scheduling
process PA or PB which are both ready to be scheduled on the
same programmable processor or bus pei. In Fig. 2 we depict-
ed only the critical path from PA and PB to the sink node. Let
us consider that PX is the last successor of PA on the critical
path such that all processes from PA to PX are assigned to the
same processing element pei. The same holds for PY relative
to PB. tA and tB are the total execution time of the chain of
processes from PA to PX and from PB to PY respectively, fol-
lowing the critical paths. λA and λB are the total execution
times of the processes on the rest of the two critical paths.
Thus, we have:

lPA = tA + λA, and lPB = tB + λB.

Preliminary operations for priority assignment
for each processing element pei, i=1,2, ..., Npe, do freepei=0 end for;
T_current=0; schedule P0 at T_current; -- P0 is the source node
repeat

Update ready process lists Listpei;
for each processing element pei, i=1,2, ..., Npe, do

if pei∈HP then
-- hardw. processors support several processes at a time
Schedule all processes in Listpei at time T_current;

elseif T_current ≥ freepi then
-- programmable processors or buses support one process at a time
p=Select(Listpei); schedule p at time T_current;
freepei=T_current+tp

end if
end for
T_current=tnext, where tnext is the next time a scheduled process terminates;

until all direct predecessors of PN are scheduled; -- PN is the sink node
Fig. 1. List scheduling

lPi max
k

tPj
P j πik∈
∑=

However, we will not use the length of these critical paths
as a priority. Our policy is based on the estimation of a lower
bound L on the total delay, taking into consideration that the
two chains of processes PA-PX and PB-PY are executed on
the same processor. LPA and LPB are the lower bounds if PA
and PB respectively are scheduled first:

LPA = max(T_current + tA + λA, T_current + tA + tB + λB)
LPB = max(T_current + tB + λB, T_current + tB + tA + λA)

We select the alternative that offers the perspective of the
shorter delay L = min(LPA, LPB). It can be observed that if
λA > λB then LPA < LPB, which means that we have to schedule
PA first so that L = LPA; similarly if λB > λA then LPB < LPA,
and we have to schedule PB first in order to get L = LPB.

As a conclusion, for PCP scheduling we use the value of
λPi as a priority criterion instead of the length lpi of the whole
critical path. Thus, we take into consideration only that part
of the critical path corresponding to a process Pi which
starts with the first successor of Pi that is assigned to a pro-
cessor different from M(Pi). The complexity of PCP priority
assignment is the same as for CP (O(v+e)). Experimental
evaluation of PCP scheduling is presented in section 5.

4. A Branch-and-Bound (BB) Based Heuristic

As our experiments show, the PCP based algorithm is
able to produce, with a short execution time, relatively good
quality schedules. Nevertheless, due to the limited investi-

gation capacity which is typical for list scheduling and the
priorities employed, list scheduling algorithms are not
always able to find very good quality or optimal results.

The branch-and-bound (BB) strategy is based on a more
extensive search, visiting several (in the worst case all) alter-
native solutions in order to find the optimal one. In order to
apply a BB strategy, the state space corresponding to the
problem is organized as a state tree. Each node Si corre-
sponds to a certain state and the children of Si are those states
which can be reached from Si as result of a scheduling deci-
sion. The number of children derived from a certain state
depends on the number of different decisions which can be
taken after the first process active in the respective state ter-
minates. Among these decisions we have to consider the
alternative to keep a certain (non-hardware) processor idle
even if there exists a ready process to be executed on it. Each
path from the root of the tree to a leaf node corresponds to a
possible solution obtained after a sequence of decisions. We
are interested in finding the leaf node Sk, such that the path
from the root to Sk corresponds to the optimal solution.

Fig. 4 shows part of the state tree explored at scheduling
of the process graph in Fig. 3. Each node in the tree corre-
sponds to a state during the scheduling process. In each

PX PY

PA PB

tA tB

λ A

Fig. 2. Delay estimation for PCP scheduling

P0

λ
B

PN

P1,φ2

T_current:0
free: pe1,pe2
ready:P1

φ1, φ2

T_current:3
free: pe1,pe2
ready:P2,P3,P4

P3,φ2

T_current:5
free: pe2
ready:P4,P5

P3,P2

T_current:8
free: pe1,pe2
ready:P4,P5,P6

P4,φ2

T_current:10
free: pe2
ready:P5

P4,P6

T_current:11
free: pe1,pe2
ready:P5,P8

P5,P6 P4,φ2 P5,φ2φ1,P6

φ1,P8

T_current:15
free: pe1
ready:P7

P5,P8

T_current:17
free: pe1,pe2
ready:P7

P5,φ2

T_current:24
free: pe1,pe2
ready:

φ1,P7

P4,φ2

T_current:5
free: pe2
ready:P3,P5

P4,P2

T_current:6
free: pe1,pe2
ready:P3,P5,P8

P5,P8

T_current:11
free: pe1
ready:P5,P6

P3,P8

T_current:12
free: pe2
ready:P6

P5,P8 P3,φ2 P5,φ2

P5,φ2

T_current:14
free: pe2
ready:

P5,P6

T_current:15
free: pe1,pe2
ready:P7

P5,φ2

φ1,P7

φ1,P8

P3,φ2

T_current:5
free: pe1,pe2
ready:P3,P4,P5

φ1,P2

P4,φ2 P5,φ2

P3,φ2 P4,φ2

...

... ...

...

... ...

...

...

...

... ...

...

∅

∅

T_current:22
free: pe1,pe2
ready:∅

Fig. 4.: A part of the state tree explored at scheduling of the process graph in Fig. 3

φ1,P8

...

φ1,P8

P0

P3P2

Process mapping

Processor pe1: P1, P3,
P4, P5

Processor pe2: P2, P6,
P7, P8

Fig. 3. Process graph with mapping

P1

P4

P5

P7

P9

Execution time tPi
for processes Pi

tP1:3 tP5:4
tP2:2 tP6:2
tP3:5 tP7:7
tP4:3 tP8:6

P6 P8 pe1∉HP
pe2∉HP

node we inscribed the pair of processes which are active on
the two processing elements pe1 and pe2. For some nodes
we also gave the current time, the free processor(s) and the
ready process(es) at the moment when the decision is taken
to pass to a next state. For T_current=0, P1 is activated as
the only ready process. The event which allows to leave this
new state is the termination of P1 at T_current=3 when both
processors are available and P2, P3, and P4 are ready to be
executed. Five different decisions are now possible which
lead to five descendent nodes. Thus, processes P3 and P2, or
P4 and P2 can be scheduled on processors pe1 and pe2
respectively. However, there are three more alternatives in
which processor pe1 is kept idle with pe2 executing P2, or
pe2 is kept idle with pe1 executing P3 or P4 (we denote an
idle processor pei by specifying on the respective position
the empty process φi). The leaf node on the left extreme cor-
responds to a scheduling solution which can be produced by
the PCP heuristic. The other leaf node represents the state
corresponding to the optimal schedule.

BB is based on the idea to visit only a part of the state
tree without missing any state which can lead to the optimal
solution. The selection and branching rules used in our BB-
based algorithm are presented in [6]. Here we concentrate on
the estimation algorithms used for the bounding rule.

Before branching from a node S, a decision is taken if
exploration has to continue on the respective subtree or the
subtree can be cut. The decision is based on two values: the
upper bound U (which is the length of the best schedule
found so far) and the lower bound LBS (which sets a lower
limit on the length of the schedule corresponding to any leaf
node in the subtree originating from S). Thus, whenever for
a certain node S the inequality LBS ≥ U holds, the corre-
sponding subtree is cut. The estimation of such a lower
bound is a critical aspect of any BB approach.

Let us consider a node S in the solution tree and Λ the set
of active processes corresponding to the respective state. The
state represented by node S is the result of a sequence of de-
cisions captured by the path from the root to the node. From
the point of view of the graph G(V,E) to be scheduled, these
decisions have determined the start times tsPi assigned to
processes Pi which are members of a set Φ⊂V. If we consid-
er a process Pi, such that Pi∈Φ, then for each process Pj,
such that Pj is a predecessor of Pi, it is true that Pj∈Φ. All
processes Pk, such that Pk∈V−Φ, will get start times as re-
sult of future decisions. All these decisions produce states
which are part of the subtree originating in node S. What we
have to do is to estimate a value LBS such that
LBS≤ , where δk is the length of the schedule corre-
sponding to the kth leaf node in the subtree derived from node S.

The lower bound estimation practically implies estima-
tions of start times ts

Pk and exit times t f
Pk for all processes

Pk∈V−Φ. An initial bound ωPk on the start times can be set
for each process Pk∈V−Φ. This bound depends only on the
processing element pel on which the process is executed.
Thus, ωPk=bpel if M(Pk)=pel, where

bpel = t f
Pj, if ∃Pj∈Λ such that Pj≠φl, M(Pj) = pel, pel∉HP;

bpel = , if (φl∈Λ, pel∉HP) or (pel∈HP).

This initial bounding reflects the fact that no process Pk∈V−Φ
is started before any already scheduled process assigned to
the same non-hardware processing element (pel∉HP) ter-
minates. On a programmable processor or bus which has
been kept idle in state S (φl∈Λ, pel∉HP), as well as on a
hardware component (pel∈HP), no new process is started
before any active process terminates.

Lower bound estimation is based on traversal of the
paths linking anchor processes with the sink of the process
graph. The set of anchor processes is defined as
∆={Pi|Pi∈V-Φ, pred(Pi)⊂Φ}; pred(Pi) is the set of all direct
predecessors of Pi. Nodes have to be visited in a topological
order, starting from the anchor processes, and to each visit-
ed node Px the following start time is assigned:

tsPx=max(ωPx, t
f
pred(Px)), if Px has only one direct predecessor;

tsPx=max(ωPx, , µPx), if Px has at least two
direct predecessors.

The estimated lower bound LBS is the estimated start time ts

for the sink node. A node with at least two direct predecessors
is a join node. A fork node is a node with at least two direct
successors. Estimation is based on the fact that no process can
be started before all its predecessors have finished. If Px is a
join node, the value µPx will be obtained as result of a heuris-
tic applied to polar subgraphs delimited by Px and a
corresponding fork node respectively. In [6] we present the
heuristic for determination of µPx. Here we illustrate this al-
gorithm by an example using the graph in Fig. 5. If the visited
node is the join node P7, µP7 is derived considering the polar
subgraph HP7,P1 delimited by P7 and the fork node P1. We
identify two sets, Π1

P7,P1={P2,P3} and Π2
P7,P1={P5,P6},

containing processes assigned to processing elements pe1∉HP
and pe2∉HP respectively (source and sink nodes are not in-
cluded in these sets). We denote Out1

P7,P1 the length of the
shortest path from any process in Π1

P7,P1 to the sink. Simi-
larly In2

P7,P1 is the length of the shortest path from the
source to any process in Π2

P7,P1. We can observe that
Out1

P7,P1=3, In2
P7,P1=4, Out2

P7,P1=0, and In1
P7,P1=0. Deter-

mination of µP7 is based on the fact that the time interval
elapsed between termination of the source and activation of the
sink has to be larger than the total execution time of the pro-
cesses assigned to pe1 plus the time intervals In1

P7,P1 and

min
k

δk()

min
Pi Λ∈

Pi φM Pi()≠

tPi
f()

P3P2

P1

P4

P5

P7

P11

P8

P10

P9

P12

P13

Process mapping
Processor pe1: P2, P3, P7, P8, P10, P13
Processor pe2: P1, P4, P5, P6, P9, P11, P12

Polar subgraphs for lower bound estimation

HP7,P1(VP7,P1,EP7,P1); VP7,P1={P1,P2,P3,P5,P6,P7}
HP11,P7(VP11,P7,EP11,P7); VP11,P7={P7,P8,P9,P11}
HP11,P12(VP11,P12,EP11,P12); VP11,P12=

{P4,P10,P11,P12,P13}

P6

Execution time tPi for processes Pi
tP1:3 tP5: 6 tP9: 2
tP2:5 tP6: 3 tP10:5
tP3:4 tP7: 4 tP11:6
tP4:6 tP8: 3 tP12:2 tP13: 4

Fig. 5. Polar subgraphs for lower bound estimation

max
Pi pred Px()∈ tPi

f()

Out1
P7,P1. The same applies to processes assigned to pe2. Thus:

µP7 = t f
P1 + max(In1

P7,P1 + + Out1
P7,P1,

In2
P7,P1 + + Out2

P7,P1) = t f
P1 + 13.

For join node P11, the same procedure has to be performed
on the polar subgraphs HP11,P12 and HP11,P7. The maximum of
the two resulting values, one for each subgraph, is the value for
µP11. It is interesting to observe that the subgraph HP11,P1 has
been omitted from the discussion. It has the particularity that it
contains a node, P7, such that each path from the source to the
sink goes through that node. Estimations based on this subgraph
can not provide a better bound for µP11 than already obtained
from successive evaluations based on HP7,P1 and HP11,P7.

It is very important that for all join nodes Px, the relative
fork nodes Qi and the corresponding values In, Out as well
as the sums of process execution times, can be determined
statically and stored before the start of the BB search. Thus,
the complexity of the dynamic bounding process is reduced
to that of the partial traversal of the process graph starting
from the anchor processes. The static determination of the
pairs (Px,Qi) and of the associated values runs in time
O(v(v+e) log v), which is the actual complexity of generat-
ing the connectivity matrix corresponding to the graph.

The evaluation of the lower bound LBS needs, as dis-
cussed above, a partial traversal of the process graph.
Before starting this evaluation, a very fast estimation of two
weaker bounds lb1S and lb2S is performed:

lb1S = ; lb2S = .

If bounding with one of these bounds succeeds, which
means that lb1S ≥ U or lb2S ≥ U, the evaluation of LBS can
be avoided. The value of lb1S is computed based on the total
execution time of the yet unscheduled processes (Pi∈V−Φ)
which are assigned to the same non-hardware processor
pek∉HP, and on the earliest time, bpek, when such a process
could be activated. If needed, lb2S is derived using the
critical paths lPi (see section 3) and the estimated start times
ωPi of the anchor processes Pi∈∆.

In the state tree presented in Fig. 4 all states bordered by
dashed lines are cut using the three lower bounds presented
above. The state in the left subtree corresponding to active
processes (P5,P6) is cut using the bound LBS while all other
states represented with dashed lines are cut by the bounds
lb1S and lb2S

1.
Unlike the list scheduling based approaches previously

presented, BB scheduling, which always produces an opti-
mal schedule, is of exponential complexity in the worst
case. Due to a good branching, selection, and bounding
strategy, however, the complexity is significantly reduced in
practice. Experimental results presented in the next section
show that even for large problems BB scheduling can be a
viable solution.

1. Generation of the shaded states in Fig. 4 is avoided as result of
our branching rule [6].

5. Experimental Evaluation

For evaluation of the algorithms presented in the previous
sections we used 1250 graphs generated for experimental
purpose. We considered architectures consisting of one ASIC
and one to eleven processors and one to eight busses [6]. All
experiments were run on a SPARCstation 20. We have eval-
uated the percentage deviations of the schedule lengths
produced by CP, UB2 and PCP scheduling from the lengths
of the optimal schedules. The optimal schedules were pro-
duced running the BB based algorithm. The average
deviation for all graphs is 4.73% for UB, 4.69% for CP, and
2.35%, two times smaller, for PCP. Deviations for the indi-
vidual graphs are in the interval [0%, 44.74%] for all three
heuristics. Execution times for the three list scheduling al-
gorithms are very similar; scheduling of graphs up to 200
nodes is performed in less than 0.007 seconds.

Table 1 shows the percentage of the final results obtained
with BB after certain time limits. It shows that for a very
large majority of the graphs having 75 or less nodes the op-
timal schedule can be obtained in less than 0.3 seconds.
After 3 seconds the optimal schedule for more than 50% of
the 200-node graphs has already been generated. At the
same time, in order to get a good schedule it is not necessary
to let the BB algorithm run until termination. Table 2 shows
the average and maximal deviation of the schedule lengths
produced with PCP from the lengths of the intermediate
schedules obtained with BB after certain time limits. For
example, if we interrupt after 1 second the still running al-
gorithms for the 130-node graphs, we get intermediate
results which in average are 2.71% better than the PCP
schedule but, for certain graphs, can be up to 10.31% better.

We have performed similar experiments using an ILP

2. Urgency based (UB) scheduling uses the difference between the
ALAP schedule of a process and the current time, as a priority.

tPi
Pi Π1

P7 P1,∈
∑

tPi
Pi Π2

P7 P1,∈
∑

max
pek HP∉ bpek

tPi
Pi V Φ–∈

M Pi() pek=

∑+()
max

Pi ∆∈ ωPi lpi+()

Table 1: Percentage of final (optimal) results
obtained with the BB algorithm

time lim. (s) 20 proc. 40 proc. 75 proc. 130 proc. 200 proc.
0.04 91.6% 0.0% 0.0% 0.0% 0.0%
0.08 95.6% 54.0% 0.0% 0.0% 0.0%
0.3 98.8% 83.6% 66.4% 0.0% 0.0%
1 99.6% 87.6% 77.6% 56.8% 0.0%
3 99.6% 89.6% 79.2% 70.8% 51.0%
5 100% 90.4% 79.2% 72.0% 62.1%
60 100% 92.4% 80.8% 76.8% 71.5%

1800 100% 96.8% 84.8% 80.4% 79.5%

Table 2: Percentage deviation of PCP schedule
from intermediate results obtained with BB

time
(s)

40 processes 75 processes 130 processes 200 processes
aver. max. aver. max. aver. max. aver. max.

1 1.94% 17.65% 2.25% 16.11% 2.71% 10.31% 0% 0%
5 1.67% 5.50% 2.45% 16.11% 2.76% 8.11% 1.99% 21.10%
60 1.48% 4.92% 2.68% 19.01% 2.96% 10.73% 2.13% 10.58%
300 1.39% 4.26% 2.96% 19.01% 3.04% 13.73% 2.50% 12.75%

based formulation in order to derive optimal schedules [4].
Execution times for 40-node graphs were in this case more
than an order of magnitude higher then with our BB algo-
rithm. For 75-node graphs the execution times using ILP are
already prohibitively large.

As a conclusion, PCP based list scheduling produces
very quickly schedules of a good quality. This quality is
superior to those produced by other list-scheduling heuris-
tics, without any penalty in execution time. With our BB
algorithm it is possible to get the optimal schedule for even
large number of processes in a relatively short time. At the
same time, the algorithm can very quickly produce sched-
ules which are of very high, close to optimal, quality.

6. Scheduling of Conditional Process Graphs

An important extension of our system, presented in [6, 7],
allows the scheduling of specifications which capture both
data and control flow at the process level. In this section we
present some of the basic ideas underlying this approach.
We assume that some processes can be activated if certain
conditions, computed by previously executed processes, are
fulfilled. Thus, at a given activation of the system, only a cer-
tain subset of the total amount of processes is executed and
this subset differs from one activation to the other.

The abstract model, presented in section 2, has been
extended in order to capture conditional activation. A condi-
tional process graph (Fig. 6) is a directed, acyclic, polar graph
Γ(V, ES, EC). ES and EC are the sets of simple and conditional
edges respectively. ES ∩ EC = and ES ∪ EC = E, where E
is the set of all edges. In Fig 6 nodes denoted P1, P2, .., P17
are “ordinary” processes specified by the designer. They are
assigned to one of the two programmable processors pe1 and
pe2 or to the hardware component pe3. The rest are commu-
nication processes (P18, P19, .., P31) and are represented as
black dots. An edge eij∈EC is a conditional edge. A condi-
tional edge (thick lines in Fig. 6) has an associated condition.
Transmission on a conditional edge eij will take place only if
the associated condition is satisfied. We call a node with con-
ditional edges at its output a disjunction node. Alternative
paths starting from a disjunction node, which correspond to

a certain condition, are disjoint and they meet in a so called
conjunction node. In Fig. 6 circles representing conjunction
and disjunction nodes are depicted with thick borders. We
assume that conditions are independent and alternatives start-
ing from different processes can not depend on the same
condition. A conjunction process can be activated after mes-
sages coming on one of the alternative paths have arrived. A
boolean expression XPi, called guard, can be associated to
each node Pi in the graph. It represents the necessary condi-
tion for the respective process to be activated. In Fig. 6, for
example, XP3=true, XP14=D∧K, XP17=true, XP5=C.

For a given execution of the system, a subset of the process-
es is activated which corresponds to the actual path through
the process graph. This path depends on certain conditions. For
each individual path there is an optimal schedule of the pro-
cesses which produces a minimal delay. Let us consider the
conditional process graph in Fig. 6. If all three conditions, C,
D, and K are true, the optimal schedule requires P1 to be acti-
vated at time t=0 on processor pe1, and processor pe2 to be
kept idle until t=4, in order to activate P3 as soon as possible.
However, if C and D are true but K is false, the optimal sched-
ule requires to start both P1 on pe1 and P11 on pe2 at t=0; P3
will be activated in this case at t=6, after P11 has terminated
and, thus, pe2 becomes free. This example reveals one of the
difficulties when generating a schedule for a system like that
in Fig. 6. As the values of the conditions are unpredictable, the
decision on which process to activate on pe2 and at which
time, has to be taken without knowing which values the con-
ditions will later get. On the other side, at a certain moment
during execution, when the values of some conditions are
already known, they have to be used in order to take the best
possible decisions on when and which process to activate.

An algorithm has to be developed which produces a
schedule of the processes so that the worst case delay is as
small as possible. The output of this algorithm is a so called
schedule table. In this table there is one row for each "ordi-
nary" or communication process, which contains activation
times for that process corresponding to different values of
the conditions. Each column in the table is headed by a log-
ical expression constructed as a conjunction of condition
values. Activation times in a given column represent starting
times of the processes when the respective expression is true.

P0

P7
P17P10

P13

P11

P8 P9

P32

P16P15P14

P12P3

P1

P2

P6

P5
P4

CC

D D

K
K

C

Fig. 6. Conditional Process Graph with execution times and mapping

Process mapping
Processor pe1: P1, P2, P4, P6, P9, P10, P13
Processor pe2: P3, P5, P7, P11, P14, P15, P17
Processor pe3: P8, P12, P16
Communications are mapped to a unique bus

Execution time tPi for processes Pi
tP1: 3 tP6: 5 tP11: 6 tP16: 4
tP2: 4 tP7: 3 tP12: 6 tP17: 2
tP3: 12 tP8: 4 tP13: 8
tP4: 5 tP9: 5 tP14: 2
tP5: 3 tP10: 5 tP15: 6
Execution time ti,j for communication
between Pi and Pj
t1,3: 1 t4,7: 3 t11,12: 1 t13,17: 2
t2,5: 3 t6,8: 3 t11,13: 2 t16,17: 2
t3,6: 2 t7,10: 2 t12,14: 1
t3,10: 2 t8,10: 2 t12,15: 3

∅

Table 3 shows part of the schedule table corresponding to
the system depicted in Fig. 6. According to this schedule pro-
cesses P1, P2, P11 as well as the communication process P18
are activated unconditionally at the times given in the first
column of the table. No condition has yet been determined
to select between alternative schedules. Process P14, on the
other hand, has to be activated at t=24 if D∧C∧K=true and
t=35 if D∧C∧K=true. To determine the worst case delay,
δmax, we have to observe the rows corresponding to pro-
cesses P10 and P17: δmax= max{34 + t10, 37 + t17}=39.

The schedule table contains all information needed by a
distributed run time scheduler to take decisions on activation
of processes. We consider that during execution a very simple
non-preemptive scheduler located on each programmable/
communication processor decides on process and communi-
cation activation depending on actual values of conditions.
Once activated, a process executes until it completes. To pro-
duce a deterministic behavior which is correct for any combina-
tion of conditions, the table has to fulfill several requirements:
1. If for a certain process Pi, with guard XPi, there exists an acti-

vation time in the column headed by expression Ek, then
Ek⇒XPi (XPi is true whenever is Ek true); this means that
no process will be activated if the conditions required for
its execution are not fulfilled.

2. Activation times have to be uniquely determined by the
conditions. Thus, if for a certain process Pi there are
several alternative activation times then, for each pair of
such times (τPi

Ej, τPi
Ek) placed in columns headed by

expressions Ej and Ek, Ej∧Ek=false.
3. If for a certain execution of the system the guard XPi be-

comes true then Pi has to be activated during that execution.
Thus, considering all expressions Ej corresponding to col-
umns which contain an activation time for Pi, ∨Ej=XPi.

4. Activation of a process Pi at a certain time t has to
depend only on condition values which are determined at
the respective moment t and are known to the processing
element M(Pi) which executes Pi.

The value of a condition is determined at the moment τ at
which the corresponding disjunction process terminates.
Thus, at any moment t, t≥τ, the condition is available for
scheduling decisions on the processor which has executed the
disjunction process. However, in order to be available on any
other processor, the value has to arrive at that processor. The
scheduling algorithm has to consider both the time and the
resource needed for this communication. For the example
given in Table 3 communication time for conditions has been
considered τ0=1. The last three rows in Table 3 indicate the
schedule for communication of conditions C, D, and K.

If at activation of the system all the conditions would be
known, the processes could be executed according to the
(near)optimal schedule of the subgraph Gk∈Γ which corre-
sponds to the actual path through the process graph. Under
these circumstances the worst case delay δmax would be

δmax = δM, with
δM = max{δk, k=1, 2, ..., Nalt}, where δk is the delay cor-

responding to subgraph Gk∈Γ (Nalt is the number of
alternative paths).
However, this is not the case as we do not assume any predic-
tion of the conditions at the start of the system. Thus, what we
can say is only that1: δmax ≥ δM.

A scheduling heuristic has to produce a schedule table for
which the difference δmax−δM is minimized. This means that
the perturbation of the individual schedules, introduced by the
fact that the actual path is not known in advance, should be as
small as possible. We have developed a heuristic which, start-
ing from the schedules corresponding to the alternative paths,
produces the global schedule table, as result of a, so called,
schedule merging operation. Hence, we perform scheduling
of a process graph as a succession of the following two steps:
1. Scheduling of each individual alternative path (using one

of the algorithms presented in the previous sections);
2. Merging of the individual schedules and generation of

the schedule table.
The algorithm for merging individual schedules and table

generation is presented in [6, 7].

7. An Example

Finally, we present a real-life example which imple-
ments the operation and maintenance (OAM) functions
corresponding to the F4 level of the ATM protocol layer [1].
Fig. 7 shows an abstract model of the ATM switch. Through
the switching network cells are routed between the n input
and q output lines. In addition, the ATM switch also per-
forms several OAM related tasks.

In [5] we discussed hardware/software partitioning of the
OAM functions corresponding to the F4 level. We concluded
that filtering of the input cells and redirecting of the OAM cells
towards the OAM block have to be performed in hardware as
part of the line interfaces (LI). The other functions are per-

1.This formula to be rigorously correct, δM has to be the maximum of the
optimal delays for each subgraph.

Table 3: Part of schedule table for the graph in Fig. 6
true D D∧C D∧C∧K D∧C∧K D∧C D∧C∧K D∧C∧K D D∧C D∧C

P1 0
P2 3

P10 34 34 26 26 34 26
P11 0

P14 35 24

P17 29 37 30 26 22 24
P18
1→3

3

P19
2→5

9 10

P20
3→10

28 20 21 21 22 18

D 6
C 7 7
K 15 15

formed by the OAM block and can be implemented in software.
We have identified three independent modes in the func-

tionality of the OAM block [6]. Execution in each mode is
controlled by a statically generated schedule table for the re-
spective mode. We specified the functionality corresponding
to each mode as a set of interacting VHDL processes. Table 4
shows the characteristics of the resulting process graphs. The
main objective of this experiment was to estimate the worst
case delays in each mode for different alternative architec-
tures of the OAM block. Based on these estimations as well
as on the particular features of the environment in which the
switch will be used, an appropriate architecture can be se-
lected and the dimensions of the buffers can be determined.

Our experiments included architecture models with one
processor and one memory module (1P/1M), two processors
and one memory module (2P/1M), as well as structures con-
sisting of one respectively two processors and two memory
modules (1P/2M, 2P/2M). The target architectures are based
on two types of processors: 486DX2/80MHz and Pentium/
120MHz. For each architecture, processes have been assigned
to processors taking into consideration the potential parallel-
ism of the process graphs and the amount of communication
between processes. The worst case delays resulting after
scheduling for each of the three modes are given in Table 4.
As expected, using a faster processor reduces the delay in
each of the three modes. Introducing an additional proces-
sor, however, has no effect on the execution delay in mode
2 which does not present any potential parallelism. In mode
3 the delay is reduced by using two 486 processors instead
of one. For the Pentium processor, however, the worst case
delay can not be improved by introducing an additional pro-
cessor. Using two processors will always improve the worst
case delay in mode 1. As for the additional memory module,
only in mode 1 the model contains memory accesses which
are potentially executed in parallel. Table 4 shows that only
for the architecture consisting of two Pentium processors
providing an additional memory module pays back by a re-
duction of the worst case delay in mode 1.

8. Conclusions

We have presented an approach to process scheduling for
the synthesis of embedded systems. For scheduling of process
graphs we presented both a very fast list scheduling heuristic
and a branch-and-bound based algorithm used successfully
for generation of optimal schedules. One of the most inter-
esting aspects concerning these algorithms is the manner in
which information on process allocation is used in order to
improve the quality of the result and to reduce execution time.
The approach has been extended in order to capture at pro-
cess level both dataflow and the flow of control. A schedule
table is generated after scheduling of a conditional process
graph, so that the worst case execution delay is minimized.

The scheduling approach we have presented can be used
both for performance estimation and for system generation.
The algorithms have been evaluated based on experiments
using a large number of graphs generated for experimental
purpose as well as real-life examples.

References

[1] T.M. Chen, S.S. Liu, ATM Switching Systems, Artech Books, ’95.
[2] P. Chou, G. Boriello, “Interval Scheduling: Fine-Grained Code

Scheduling for Embedded Systems”, Proc. DAC, 1995, 462-467.
[3] E.G. Coffman Jr., R.L. Graham, "Optimal Scheduling for two

Processor Systems", Acta Informatica, 1, 1972, 200-213.
[4] A. Doboli, “Contributions to the Design of Hardware/Soft-

ware Multiprocessor Systems”, PhD Thesis, Technical
University Timisoara, 1997.

[5] P. Eles, Z. Peng, K. Kuchcinski, A. Doboli, “System Level Hard-
ware/Software Partitioning Based on Simulated Annealing and
Tabu Search”, Des. Autom. for Emb. Syst., V2, 1, 1997, 5-32.

[6] P. Eles, K. Kuchcinski, Z. Peng, A. Doboli, P. Pop, “Process
Scheduling for Performance Estimation and Synthesis of
Embedded Systems”, Research Report, Department of Com-
puter and Information Science, Linköping University, 1997.

[7] P. Eles, K. Kuchcinski, Z. Peng, A. Doboli, P. Pop, “Schedul-
ing of Conditional Process Graphs for the Synthesis of
Embedded Systems”, Proc. Des. Aut. & Test in Europe, 1998.

[8] R. K. Gupta, G. De Micheli, “A Co-Synthesis Approach to
Embedded System Design Automation”, Des. Autom. for
Emb. Syst., V1, 1/2, 1996, 69-120.

[9] P.B. Jorgensen, J Madsen, "Critical Path Driven Cosynthesis
for Heterogeneous Target Architectures", Proc. Int. Worksh.
on Hardw.-Softw. Co-design, 1997, 15-19.

[10] H. Kasahara, S. Narita, "Practical Multiprocessor Scheduling
Algorithms for Efficient Parallel Processing", IEEE Trans. on
Comp., V33, N11, 1984, 1023-1029.

[11] K. Kuchcinski, "Embedded System Synthesis by Timing
Constraint Solving", Proc. Int. Symp. on Syst. Synth., 1997.

[12] S. Prakash, A. Parker, “SOS: Synthesis of Application-Specific
Heterogeneous Multiprocessor Systems”, Journal of Parallel
and Distrib. Comp., V16, 1992, 338-351.

[13] J.D. Ullman, "NP-Complete Scheduling Problems", Journal
of Comput. Syst. Sci., 10, 384-393, 1975.

[14] M.Y. Wu, D.D. Gajski, "Hypertool: A Programming Aid for
Message-Passing Systems", IEEE Trans. on Parallel and
Distrib. Syst., V. 1, N. 3, 1990, 330-343.

[15] T. Y. Yen, W. Wolf, Hardware-Software Co-Synthesis of Distrib-
uted Embedded Systems, Kluwer Academic Publisher, 1997.

Table 4: Worst case delays for the OAM block

mo
de

Model Worst case delay (ns)

nr.
proc.

nr.
paths

1P/1M 1P/2M 2P/1M 2P/2M

486 Pent. 486 Pent.
2×
486

2×
Pent.

486+
Pent.

2×
486

2×
Pent.

486+
Pent.

1 32 6 4471270144712701293221312532293219322532
2 23 3 1732116717321167173211671167173211671167
3 42 8 5852354858523548503335483548503335483548

Fig. 7. ATM switch with OAM block

LI

LI

LI

. .
 .

. .
 .

OAM
blockfrom/to Phys. Layer&

Management Syst.

i1

i2

in

o1

o2

oq

