
Hierarchical Modeling and Verification of Embedded Systems

Luis Alejandro Cortés, Petru Eles, and Zebo Peng
Dept. of Computer and Information Science
Linköping University, Linköping, Sweden

{luico,petel,zebpe}@ida.liu.se

Abstract

In order to represent efficiently large systems, a mecha-
nism for hierarchical composition is needed so that the
model may be constructed in a structured manner and com-
posed of simpler units easily comprehensible by the design-
er at each description level. In this paper we formally define
the notion of hierarchy for a Petri net based representation
used for modeling embedded systems. We show how small
parts of a large system may be transformed by using the
concept of hierarchy and the advantages of a transforma-
tional approach in the verification of embedded systems. A
real-life example illustrates the feasibility of our approach
on practical applications.

1. Introduction

Embedded systems are characterized by their dedicated
function, real-time behavior, and high requirements on reli-
ability and correctness [2]. In order to devise systems with
such features, the design process must be based upon a for-
mal representation that captures the characteristics of em-
bedded systems. Many computational models have been
proposed in the literature to represent embedded systems
[10], including extensions to finite-state machines, data-
flow graphs, and communicating processes. Particularly,
Petri nets (PNs) are an interesting representation for this
sort of systems: PNs, for instance, may represent parallel as
well as sequential activities and easily capture non-deter-
ministic behaviors. In embedded systems design, PNs have
been extended in various ways to fit the most relevant traits
of such systems, e.g. notion of time, and we can find several
PN-based models with different flavors [18], [11], [13],
[14]. We have recently introduced PRES+, a novel repre-
sentation that extends PNs, in which tokens hold informa-
tion, transitions perform transformation of data, and timing
is captured by associating lower and upper limits to the du-
ration of activities related to transitions [4], [6].

However, the lack of hierarchical decomposition makes
it difficult to specify and understand complex systems mod-
eled as PNs. In this paper we present an approach to the hi-
erarchical modeling of embedded systems using PRES+.
We formally define the concept ofhierarchical PRES+

model, introducingsuper-transitionsas hierarchical blocks,
as well as the notions ofabstractionandrefinement. Since
realistic systems tend to be complex and complicated, a flat
representation may become too large to handle as well as er-
ror-prone. Hierarchy is a useful tool that allows the system
to be constructed in a structured way by composing a num-
ber of fully understandable entities.

For a large class of embedded systems time-to-market is
a very important issue. The use of hierarchical modeling
during the design phases can help to shorten the time-to-
market of embedded applications. Hierarchy permits sys-
tems to be designed in a modular way. Thus the system may
be set up by reusing existing elements such as IP blocks and
therefore reduce its design time.

There have been several approaches to the introduction
of hierarchy into Petri nets. The method for stepwise refine-
ment and abstraction of nets presented in [15] is an elegant
formulation to cope with the state explosion of PNs by
transforming transitions and/or places into subnets and vice
versa. Murata [12] proposes a set of transformation rules
used to refine and abstract PNs, which preserve liveness,
safeness, and boundedness. Valette [17] defines the concept
of block, which is a refinement net with one initial transition
and one final transition, to represent divisible and non-in-
stantaneous actions. These approaches, though dealing with
the concept of hierarchy through sound formalisms, are not
completely appropriate for embedded systems since the
classical PN model lacks essential notions like timing. An
important contribution of our work is the definition of hier-
archy for a modeling formalism suitable for the design and
verification of embedded systems. We define a semantic re-
lation betweensuper-transitionsand theirrefinements. In
our approach timing is explicitly handled in the hierarchy.

Another major contribution of this paper is the reduction
of the verification cost by using transformations. We show
how the hierarchical representation supports a transforma-
tion based concept and its advantages during the formal ver-
ification process. For the sake of reducing the verification
effort, we first transform the system model into a simpler
one, still semantically equivalent, and then verify the sim-
plified model. If a given model is modified using correct-
ness-preserving transformations and then the resulting one
is proved correct with respect to its specification, the initial
model is guaranteed to be correct by construction and no in-
termediate steps need to be verified. This observation al-

This research is sponsored by the Swedish Agency for Innovation Sys-
tems (VINNOVA) in the frame of the SAVE project.

in Proc. Euromicro Symposium on Digital Systems Design, 2001, pp. 63-70.

lows us to reduce significantly the complexity of the
verification process.

The rest of this paper is organized as follows. A descrip-
tion of the design representation that we use to model em-
bedded systems is presented in Section 2. The notions of
hierarchy and abstraction/refinement are formally defined
in Section 3. In Section 4 we illustrate the hierarchical mod-
eling of a real-life application used in acoustic echo cancel-
lation. Section 5 discusses transformations on PRES+
models and their benefits in reducing the verification effort.
Finally, some conclusions are drawn in Section 6.

2. The Design Representation

The notation we use to model embedded systems is
PRES+ (Petri net based Representation for Embedded Sys-
tems). PRES+ extends Petri nets to be used as representa-
tion in the design process of such systems. When modeling
embedded systems, PRES+ overcomes some of the draw-
backs of the classical PN model: it captures explicitly tim-
ing information; it is more expressive since tokens might
carry information; systems may be represented at different
levels of granularity. Furthermore, both control and data in-
formation may be captured by a unified design representa-
tion.

In this section we briefly present, in a rather informal
manner, the distinguishing features of PRES+. Figure 1
shows a simple example used to illustrate the main charac-
teristics of this representation. A formal definition of the
model can be found in [6].

Figure 1. A PRES+ model

A PRES+ model is a five-tuple
where is a set of places, is a set of transitions, is a set
of input (place-transition) arcs, is a set of output (transi-
tion-place) arcs, and is the initial marking of the net. A
marking is an assignment of tokens to the places of the net.
A PRES+ net is 1-bounded1, that is, a place may

hold at most one token for a certain marking :
when is marked, otherwise . A token is a pair

where is the token value—may be of any
type—and is the token time—a non-negative real num-
ber. Thus tokens carry data and time information attached to
them as stamps. The token type associated to a place , de-
notedτ(p), is the type of value that a token may bear in .
For the initial marking shown in the model of Figure 1,

is the only marked place and its token has
token value and token time .

Every transition has one function, called transition
function, associated to it. Such a function takes as argu-
ments the token values of tokens in the pre-set of the transi-
tion2. In Figure 1 we inscribe transition functions inside
transition boxes: the function associated to , for example,
is given by where is the token value of the
token in when marked. We use inscriptions on the input
arcs of a transition in order to denote the arguments of its
transition function and/or those of its guard.

A transition may have a guard, a condition that
must be satisfied in order to enable the transition when all
its input places hold tokens. The guard of a transition is a
function of the token values of tokens in the places of its
pre-set. For instance, represents the guard of . Note
that, for the initial marking, is not enabled even though
its only input place is marked.

For every transition , there exist a minimum tran-
sition delay and a maximum transition delay . The
non-negative real numbers represent the lower and
upper bounds for the execution time (delay) of the function
associated to the transition. Transition delays give the limits
in time for the firing of a transition since it becomes en-
abled, unless it is disabled by the firing of another transition.
Assuming in Figure 1, for instance, that fires at 1 time
units and accordingly the token in is removed and a new
token is deposited in , then and become
enabled at 1 time units. Thus may not fire before 4 time
units and must fire before or at 5 time units, unless it be-
comes disabled by the firing of . When a transition fires,
all tokens in its output places get the same token value and
token time. The token time represents the instant at which
the token was “created”. The global time of the system, for
a certain marking , is given by the maximum token time
of all tokens in the net.

3. Hierarchy

Embedded systems are complex structures which require
models that allow a sound representation throughout their
design cycle. PRES+ supports systems modeled at different
levels of granularity with transitions representing simple
arithmetic operations or complex algorithms. However, in

1 In order to handle multi-rate systems, the model could be easily
extended by allowing unbounded nets. However, its analysis (for instance,
formal verification) would become cumbersome. This is a trade-off
between expressiveness and analysis power.

t 3
-b

t 6
-d

t 8e+2

pa

pb cp

pd pe

t 2 []a<0-at 1[]a>0 a

t 4b t 5c

t 7d

e

a a

[1,1.7]

[2.2,4]

[1
.8

,3
]

b

[3
,4

]

[0,1]

[2,3]

[1,4] 5

d

cb

d

<2,0>

N= P T I O M0, , , ,()
P T I

O
M0

p P∈
2 The pre-set of a transition is the set of input places oft.

The post-set is the set of output places oft. Correspondingly, the pre-
set and the post-set of a place are the sets of transitions for
whichp is output and input place respectively.

M M p()=1
p M p()=0

k= v r,〈 〉 v
r

p
p

M0
pa ka= va r a,〈 〉

va=2 r a=0
t T∈

°t t T∈
t°

°p p° p P∈

t8
f 8 e()= e+2() e

pe

t T∈

a 0< t2
t2

t T∈
d- d+

d- d+≤

t1
pa

kb= 2 1,〈 〉 pb t3 t4
t3

t4

M

order to handle efficiently the modeling of large systems, a
mechanism of hierarchical composition is needed so that the
model may be constructed in a structured manner, compos-
ing simple units fully understandable by the designer.

Hierarchical modeling can be conveniently applied
along the design process of embedded systems. Sometimes
the specification or requirements may not be complete or
thoroughly understood. In a top-down approach, a designer
may define the interface to each component and then grad-
ually refine those components. On the other hand, a system
may be constructed reusing existing elements such as IP
blocks in a bottom-up approach. A hierarchical PRES+
model can be devised bottom-up, top-down, or by mixing
both approaches. In this section we formalize the concept of
hierarchy for PRES+ models. Some trivial examples are
used in order to illustrate the definitions.
Definition 1. A place is an in-port of the net

iff for all . A place
 is anout-port of iff for all .

We denote by and the set of in-ports and out-
ports respectively.
Definition 2. A transition is anin-transition of

 iff

A transition is anout-transition of iff

Note that the existence of non-empty sets and
is a necessary condition for the existence of in- and out-tran-
sitions. For the net shown in Figure 2, ,

, and and are in-transition and out-
transition respectively.

Figure 2. Simple subnet N1

Definition 3. A Hierarchical PRES+ Modelis a six-tuple
 where

 is a finite non-empty set of places;
 is a finite set of transitions;

 is a finite set ofsuper-transitions;
 is a finite set of input arcs;
 is a finite set of output arcs;

M0 is the initial marking.
Observe that a (non-hierarchical) PRES+ net is a partic-

ular case of a hierarchical PRES+ net with . Figure 3
illustrates a hierarchical PRES+ net. Super-transitions are

represented by thick-line boxes.

Figure 3. A hierarchical PRES+ model

Definition 4. The pre-set andpost-set of a super-
transition are given by and

 respectively.
Similar to transitions, the pre(post)-set of a super-transi-

tion is the set of input(output) places of .
Definition 5. For every super-transition there exists
ahigh-level function

associated to , where and .
Recall that denotes thetype associated with the

place , i.e. the type of value that a token may bear in
that place. Observe the usefulness of high-level functions
associated to super-transitions in, for instance, a top-down
approach: for a certain component of the system, the design-
er may define its interface and a high-level description of its
functionality through a super-transition, and in a later de-
sign phase refine the component. In current design method-
ologies it is also very common to reuse predefined elements
such as IP blocks. In such cases, the internal structure of the
component is unknown to the designer and therefore the
block is best modeled by a super-transition and its high-lev-
el function.
Definition 6. For every super-transition there exist a
minimum estimated delay and amaximum estimated de-
lay , where are non-negative real numbers that
represent the estimated lower and upper limits for the exe-
cution time of the high-level function associated to .
Definition 7. A super-transition may not be inconflictwith
other transitions or super-transitions, that is:
(i) and for all
such that ;
(ii) and for all , .

In other words, a super-transition may not “share” input
places with other transitions/super-transitions, nor output
places. In what follows, the input and output places of a su-
per-transition will be calledsurrounding places.
Definition 8. A super-transition together with its
surrounding places in the hierarchical net

is a semi-abstractionof the (hierarchical) subnet

p P∈
N= P T I O M0, , , ,() t p,() O∉ t T∈
p P∈ N p t,() I∉ t T∈

inP outP

t T∈
N= P T I O M0, , , ,()

p°
p inP∈
∪ t{ }=

t T∈ N
°p

p outP∈
∪ t{ }=

inP outP

N1 inP1= pa pb,{ }
outP1= pd{ } tin tout

intinf

cp

dp

ap bp

in
-

in
+[d ,d]

+
outout

-[d ,d]

t outoutf

H= P T Λ I O M0, , , , ,()
P= p1 p2 … pm, , ,{ }
T= t1 t2 … tn, , ,{ }
Λ= S1 S2 … Sl, , ,{ }
I P Λ T∪()×⊆
O Λ T∪() P×⊆

Λ=∅

3p 4p

2p1p

5p

-
1 1

+[d ,d]

- 2
2+

[d
 ,

d
]

- 3
3+

[d
 ,

d
]

[e ,e]-
1 1

+

t 11f

S11g

t 2
2f

t 3
3f

°S S°
S Λ∈ °S= p P p S,() I∈∈{ }

S°= p P S p,() O∈∈{ }

S Λ∈ S
S Λ∈

g : τ p1() τ p2() … τ× pa()×× τ q()→
S °S= p1 p2 … p, a, ,{ } q S°∈

τ p()
p P∈

S Λ∈
e-

e+ e- e+≤

S

°S1 °S2∩()=∅ S1
o S2

o∩()=∅ S1 S2, Λ∈
S1 S2≠

°S °t∩()=∅ S° t°∩()=∅ S Λ∈ t T∈

Si Λ∈
H=(P T Λ I, , , ,

O M0,)

(or conversely, is asemi-
refinement of and its surrounding places) iff:
(i) There exists a unique in-transition ;
(ii) There exists a unique out-transition ;
(iii) There exists a bijection that maps the
input places of onto the in-ports of ;
(iv) There exists a bijection that maps
the output places of onto the out-ports of ;
(v) and for all

;
(vi) and for all

;
(vii) is disabled in the initial marking for all

A subnet may, in turn, contain super-transitions. It is
straightforward to prove that the net of Figure 2 is in-
deed a semi-refinement of in the hierarchical net of Fi-
gure 3.

If a net is the semi-refinement of some super-transi-
tion , it is possible tocharacterize in terms of both
function and time by putting tokens in its in-ports and then
observing the value and time stamp of tokens in its out-ports
after a certain firing sequence. If the time stamp of all to-
kens deposited in the in-ports of is zero, the token time
of tokens obtained in the out-ports is called theexecution
timeof . For example, the net of Figure 2 is charac-
terized by putting tokens and in its
in-ports and observing the token after firing

and . Thus the execution time of is equal to the
token time , bounded by .
Note that the token value , where
and are the transition functions of and respec-
tively.

The definition of semi-abstraction/refinement is just
“syntactic sugar” that allows a complex design to be con-
structed in a structured way by composing simpler entities.
We have not defined, so far, a semantic relation between the
functionality of super-transitions and their refinements. Be-
low we define the concepts ofstrongandweak refinement
of a super-transition.
Definition 9. A (hierarchical) subnet

is a strong refinementof the super-transition
together with its surrounding places in the hierar-

chical net (or and its surround-
ing places is astrong abstraction of) iff:
(i) is a semi-refinement of ;
(ii) “implements” , i.e. and arefunction-
equivalent3;
(iii) The minimum estimated delay of is equal to the
lower bound of the execution time of ;
(iv) The maximum estimated delay of is equal to the

upper bound of the execution time of .
The net shown in Figure 2 is a semi-refinement of
in the hierarchical net of Figure 3. is a strong refine-

ment of the super-transition if, in addition, (Definitions
9(ii), 9(iii), and 9(iv) respectively): (a) ; (b)

; (c) .
Observe that the concept of strong refinement requires

the super-transition and its strong refinement to have the
very same time limits. Such a concept could have limited
practical use since the high-level description and the imple-
mentation have typically different timings and therefore
their bounds for the execution time do not coincide. We re-
lax the requirement of exact correspondence of lower and
upper bounds on time; this yields to a weaker notion of re-
finement, yet more practical.
Definition 10. A (hierarchical) subnet

is a weak refinementof the super-transition
together with its surrounding places in the hierar-

chical net (and its surrounding
places is aweak abstraction of) iff:
(i) is a semi-refinement of ;
(ii) “implements” , i.e. and arefunction-
equivalent;
(iii) The minimum estimated delay of is less than or
equal to the lower bound of the execution time of ;
(iv) The maximum estimated delay of is greater than
or equal to the upper bound of the execution time of .

In the sequel whenever we refer torefinementit will
meanweak refinement.

Given a hierarchical PRES+ net
and refinements of its super-transitions, it is possible to con-
struct an equivalent non-hierarchical net. For the sake of
clarity, in the following discussion we will consider nets
with a single super-transition, nonetheless these concepts
can be easily extended to the general case.
Definition 11. Let us consider the hierarchical net

where , and let the subnet
be a refinement of and

its surrounding places. Let be unique in-tran-
sition and out-transition respectively. Let and
be respectively the sets of in-ports and out-ports of . The
equivalent net ,one level lower
in the hierarchy tree, is defined as follows:
(i)
(ii)
(iii)
(iv) if ;

 if , or
 and ;

 if
(v) if ;

 if , or
 and ;

 if
(vi) for all ;

3 Several notions of equivalence have been defined for PRES+ models
in [5]. Intuitively, two nets arefunction-equivalentif they perform the
same function, that is to say, whenever tokens in corresponding in-ports
have the same value, there exists a firing sequence that leads to the same
token value in corresponding out-ports.

Ni= Pi T, i Λi I i Oi Mi 0,, , , ,() Ni
Si

tin Ti∈
tout Ti∈

hin : °Si inPi→
Si Ni

hout : Si
o outPi→

Si Ni
M0 p()=Mi 0, hin p()() τ p()=τ hin p()()

p °Si∈
M0 p()=Mi 0, hout p()() τ p()=τ hout p()()

p Si
o∈
t Mi 0,

t Ti-tin()∈

N1
S1

Ni
Si Ni

Ni

Ni N1
ka= va 0,〈 〉 kb= vb 0,〈 〉

kd= vd r d,〈 〉
tin tout N1

r d din
- dout

-+ r d din
+ dout

++≤ ≤
vd= f out f in va vb,()() f in

f out tin tout

Ni=(Pi T, i Λi I i ,, ,
Oi Mi 0,),
Si Λ∈

H= P T Λ I O M0, , , , ,() Si
Ni

Ni Si
Ni Si Ni Si

ei
- Si
Ni

ei
+ Si

Ni
N1

S1 N1
S1

g1= f out o f in
ei

-=din
- +dout

- ei
+=din

+ +dout
+

Ni=(Pi T, i Λi I i ,, ,
Oi Mi 0,),
Si Λ∈

H= P T Λ I O M0, , , , ,() Si
Ni

Ni Si
Ni Si Ni Si

ei
- Si

Ni
ei

+ Si
Ni

H= P T Λ I O M0, , , , ,()

H= P T Λ I O M0, , , , ,() Λ= S1{ }
N1= P1 T, 1 Λ1 I 1 O1 M1 0,, , , ,() S1

tin tout, T1∈
inP1 outP1

N1
H′= P′ T′ Λ′ I, ′ O′ M0′, , , ,()

Λ′=Λ1
P′=P P1-inP1-outP1()∪
T′=T T1∪
p S,() I ′∈ p S,() I 1∈
p t,() I ′∈ p t,() I∈

p t,() I 1∈ p inP1∉
p tin,() I ′∈ p S1,() I∈
S p,() O′∈ S p,() O1∈
t p,() O′∈ t p,() O∈

t p,() O1∈ p outP1∉
tout p,() O′∈ S1 p,() O∈

M0′ p()=M0 p() p P∈

 for all

Figure 4. A non-hierarchical PRES+ model

Given the hierarchical net of Figure 3 and being (Fi-
gure 2) a refinement of , we can construct the equivalent
non-hierarchical net as illustrated in Figure 4.

4. Hierarchical Modeling of a GMDFα

In this section we model a GMDFα (Generalized Multi-
Delay frequency-domain Filter) [7] using PRES+. GMDFα
has been used in acoustic echo cancellation for improving
the quality of hand-free phone and teleconference applica-
tions. The GMDFα algorithm is a frequency-domain block
adaptive algorithm: a block of input data is processed at one
time, producing a block of output data. The impulse re-
sponse of lengthL is segmented intoK smaller blocks of
sizeN (K=L/N), thus leading to better performance.R new
samples are processed at each iteration and the filter is
adaptedα times per block (R=N/α).

The filter inputs are the signalX and its echoE, and the
output is the reduced or cancelled echoE’. In Figure 5 we
show the hierarchical PRES+ model of a GMDFα with
K=4. The transition transforms the input signalX into the
frequency domain by a FFT (Fast Fourier Transform).
corresponds to the normalization block. In each one of the
basic cells the filter coefficients are updated. Transi-
tions serve as delay blocks. computes the estimated
echo in the frequency domain by a convolution product and
then it is converted into the time domain by . The differ-
ence between the estimated echo and the actual one (signal
E) is calculated by and output asE’. Such a cancelled
echo is also transformed into the frequency domain by to
be used in the next iteration when updating the filter coeffi-
cients. In Figure 5 we also model the environment with
which the GMDFα interacts: models the echoing of sig-
nal X, and represent, respectively, the sending of the
signal and the reception of the cancelled echo, and is the
entity that emitsX.

The refinement of the basic cells is shown in Figure
5(b) where the filter coefficients are computed and thus the

filter is adapted by using FFT-1 and FFT operations. It is
worth noticing that instances of the same net (Figure 5(b))
are used as refinements of the different cells . Transition
delays as well as estimated delays of super-transitions in Fi-
gure 5 are given in milliseconds.

5. Design Verification

For the levels of complexity typical to modern electronic
systems, traditional validation techniques like simulation
and testing are neither sufficient nor viable to verify their
correctness. Formal methods are becoming an alternative to
ensure the correctness of designs. In [4], [6] we have pro-
posed methods to formally verify embedded systems repre-
sented in PRES+ by using model checking. There are
several types of analysis that can be performed on PRES+
models: the absence/presence of tokens in places of the net,
time stamps of such tokens, and their token values. These
analyses have been called reachability, time, and functional
analysis respectively. Our approach to verification focuses
on the first two, that is, reachability and time analyses. We
do consider transition functions whenever they affect the
marking or time stamps associated to tokens.

Model checking is an approach to formal verification
used to determine whether the model of a system satisfies its
specification, that is, certain required properties. The two
inputs to the model checking problem are the system model
and the properties that such a system must satisfy, usually
expressed as temporal logic formulas. Our approach allows
to determine the truth of CTL (Computation Tree Logic) [3]
and TCTL (Timed CTL) [1] formulas with respect to a
PRES+ model. Formulas in CTL are composed of atomic
propositions, boolean connectors, and temporal operators.
Temporal operators consist of forward-time operators (G
globally,F in the future,X next time, andU until) preceded
by a path quantifier (A all computation paths, andE some
computation path). TCTL is a real-time extension of CTL
that allows to inscribe subscripts on the temporal operators
to limit their scope in time. For instance, expresses
that, along all computation paths, the propertyp becomes
true withinn time units.

In [6] we have proposed a systematic procedure to trans-
late PRES+ models into timed automata. This allows us to
use various model checking tools, namely HyTech [8],
KRONOS[9], UPPAAL [16], in order to verify properties of
embedded systems modeled in PRES+. The verification of
hierarchical PRES+ models is done by constructing the
equivalent non-hierarchical net as stated in Definition 11,
and then using the verification approach discussed in [6].
Note that obtaining the non-hierarchical PRES+ model can
be done automatically so that the designer is not concerned
with flattening the net: he inputs to the model checker a hi-
erarchical PRES+ model as well as the properties he is in-
terested in, and then he obtains an answer to the question
“does the specification hold in the model of the system?”. In

M0′ p()=M1 0, p() p P1-inP1-outP1()∈

5p

t 2
t 3

2p1p

3p 4p

t 1

intinf

cp

in
-

in
+[d ,d]

+
outout

-[d ,d]

t outoutf

- 3
3+

[d
 ,

d
]

- 2
2+

[d
 ,

d
]

-
1 1

+[d ,d]

N1
S1

t1
t2

S3.i
t4.i t5

t6

t7
t8

te
ts tr

td

S3.i

S3.i

AF<n p

case of a negative answer, diagnostic information is gener-
ated in order to explore the cases that make the specification
fail.

The verification technique may be improved by trans-
forming the system model into a simpler one, yet semanti-
cally equivalent. In the next section we will show how
transformations can be conveniently used to simplify the
system model for the sake of verification. Thus the verifica-
tion effort along the design process may be reduced signifi-
cantly.

5.1. Transformations on PRES+ Models

A flat representation of a real-life embedded system can
be too big and complex to handle and understand. The con-
cept of hierarchy defined above allows systems to be mod-
eled in a structured way. Thus, using the notion of
abstraction/refinement, the system may be broken down
into a set of comprehensible nets structured in a hierarchy.
Each one of these nets may represent a sub-block of the cur-
rent design. Such a sub-block can be a pre-designed IP com-
ponent as well as a design alternative corresponding to a
subsystem of the system under design.

Transformations performed on large and flat systems
are, in general, difficult to prove. Hierarchical modeling
permits a structural representation of the system in such a
way that the composing (sub)nets are simple enough to be
transformed efficiently.

We can define a set of transformation rules that make it
possible to transform only a part of the system model. A
simple transformation is shown in Figure 6. We do not in-
tend to provide here a comprehensive set of transformations

but rather illustrate the transformation of just a portion of
the model taking advantage of the definition of hierarchy for
PRES+ models. Assume that two nets and aretotal-
equivalentin the sense defined in [5]. The intuitive idea be-
hind total-equivalenceis as follows (the reader is referred to
[5] for a formal definition): (a) there exist bijections that de-
fine one-to-one correspondence between in(out)-ports of

and ; (b) having initially tokens with the same token
value/time in corresponding in-ports, there exists a firing
sequence which leads to the same marking and the very
same token values and times in corresponding out-ports.
The nets and aretotal-equivalentif the above re-
quirements hold. It is not difficult to formally prove that
and are total-equivalent, provided the conditions given
in Figure 6 are satisfied. The most interesting part for this
particular transformation is that if a certain net is a re-
finement of a given super-transition in the hierarchi-
cal net (see Definition 10) and
is transformed into (so that and are total-equiv-
alent), then is also a refinement of and may be used
instead of without changing the overall system at all.
Therefore such a transformation rule can be used to simplify
PRES+ models and accordingly reduce the complexity of
the verification process.

The kind of transformations worth using during verifica-
tion are those that transform a net into a total-equivalent
one. Since an external observer could not distinguish be-
tween two total-equivalent nets (for the same tokens in cor-
responding in-ports, the observer would get in both cases
the very same tokens in corresponding out-ports), the global
system properties are preserved in terms of reachability,
time, and functionality. Therefore such transformations are

Mult at

XF
µF EF

FFT dt

Update ct

YF

FFT b
-1 t

Coef

[0.7,0.9]

[0.8,1.1]

[0.4,0.5]

[0.8,1.2]

FFT 1t

N
o

rm
2t

Delay t4.1

S 3
.2

C
e

ll
S 3

.1
C

e
ll

F
F

T
8t

Echo te

GMDFα
µF.2

µF.1

XF.2

XF.1

YF.2

YF.1

EF.1

EF.2

S
e

n
d

X
t s

Sender td

EF.K

µF.K

Delayt4.K-1

XF.K

S 3
.K

C
e

ll

YF.K

C
o

n
v

5t

F
F

T
6

-1
t

D
iff

7t

R
e

cE
t r

8

[0.01,0.05]
.
.
.

X

X

[0.8,1.2]

0.1

[0
.8

,1
.2

]

[0
.3

,0
.4

]

.
.
.

.
.
.

0.1

.
.
.

[0
.7

,1
]

[0
.8

,1
.1

]

E
.
.
.

[0
.1

,0
.2

]

E’

(a) (b)

Figure 5. Hierarchical modeling of a GMDF α

N′ N′′

N′ N′′

N′ N′′
N′

N′′

N′
S Λ∈

H= P T Λ I O M0, , , , ,() N′
N′′ N′ N′′

N′′ S
N′

correctness-preserving: if a propertyp holds in a net, it does
in the other (a total-equivalent one); ifp does not hold in the
first net, it does not either in the second.

Figure 6. A simple transformation rule

We will illustrate the benefits of using transformations in
the verification of the filter discussed in Section 4. We con-
sider two cases of a GMDFα of length 1024: a) with an
overlapping factor of 4, we have the following parameters:
L=1024, α=4, K=4, N=256, andR=64; b) with an overlap-
ping factor of 2, we have the following parameters:L=1024,
α=2, K=8, N=128, andR=64. Having a sampling rate of 8
kHz, the maximum execution time for one iteration is in
both cases 8 ms (64 new samples must be processed at each
iteration). The completion of one iteration is determined by
the marking of the placeE’.

First we want to prove that the system will eventually
complete its functionality which can be expressed as a CTL
formula . Second, according to the time constraint of
the system, it is not sufficient to finish the filtering iteration
but also to do so with a bound on time. This aspect of the
specification is captured by the TCTL formula . At
this point, our task is to formally verify that the model of the
GMDFα shown in Figure 5 satisfies the formulas
and .

A straightforward way could be flattening the system
model and applying directly the verification technique dis-
cussed in [6]. However, a wiser approach would be trying to
simplify first the system model by transforming it into a to-
tal-equivalent one, through transformations from a library
already proved to be correctness-preserving. Such transfor-
mations are a mathematical tool that allows a significant im-
provement in the verification cost. The improvement is
possible because of the following observation: the smaller
the model is, the lower the verification cost becomes, in
terms of both time and memory. Therefore we try to reduce

the model aiming at obtaining a simpler one, still semanti-
cally equivalent, so that the correctness is preserved.

We start by using the transformation rule illustrated in
Figure 6 on the refinement of the basic cell, so that we ob-
tain the subnet of Figure 7(b). Note that in this transforma-
tion step, no time is spent on-line in proving the
transformation itself because transformations are proved
off-line (once in a lifetime) and stored in a library. Since the
subnets of Figures 7(a) and 7(b) are total-equivalent (there
is no need to prove that these two subnets are total-equiva-
lent because the transformation rule guarantees so), the
functionality of the entire GMDFα remains unchanged. Us-
ing other simple transformation rules (not discussed in this
paper), it is possible to obtain a simpler, still total-equiva-
lent, representation of the basic cell as shown in Figure 7(c).
Applying again the transformation rule of Figure 6, the ba-
sic cell refinement is further simplified into the single-tran-
sition net of Figure 7(d). Finally we check the specification
against the simplest model of the system, that is, the one in
which the refinement of the basic cells is the net shown
in Figure 7(d). We have verified the above two formulas and
the model of the GMDFα indeed satisfies its specification
for bothK=4 andK=8. The verification times using UPPAAL

[16] on a Sun Ultra 10 workstation are shown in the last row
of Table 1.

Since the transformations used along the simplification
of the GMDFα model are total-equivalence transforma-
tions, the initial model of Figure 5 is correct, i.e. satisfies the
system specification, and therefore need not be verified.
However, in order to illustrate the verification cost (time) at
different stages, we have verified the intermediate steps
(models in which the refinements of the basic cells are
given by the nets shown in Figures 7(b) and 7(c)) as well as
the initial model. The results are shown in Table 1. Recall,
however, that this is not needed as long as the transforma-
tion rules are correctness-preserving. Observe how much
effort is saved when the basic cells are refined by the
simplest net compared to the original model.

Thus verification is carried out at low cost (short time) by
first using correctness-preserving transformations aiming at
simplifying the system representation. If the simpler model
is correct (its specification holds), the initial one is guaran-
teed to be correct and intermediate steps need not be veri-

f = f f2 1o

+a = a a1 2
+b = b b1 2

0M p () = 0

Total-equivalence

Abstraction/Refinem
entAbs

tra
cti

on
/R

ef
ine

m
en

t

Transformation

q1 qm

1p pn

- +[e ,e]

. . .

. . .

Sg

t22f

t11fG[]

[a ,b]11

22[a ,b]

pnp1

q1 qm

. . .

p

. . .

’ ’

’ ’

N’

1p pn

G[]

q1 qm

. . .

f

[a,b]

t

. . .

’’

’’’’

’’N’’

AF E′

AF<8 E′

AF E′
AF<8 E′

Table 1. Verification times of the GMDF α

Refinement of
the basic cell

Verification time [s]

α=4, K=4 α=2, K=8

Fig. 7(a) 108 NA†

† Not available: out of time

Fig. 7(b) 61 8177

Fig. 7(c) 9 1368

Fig. 7(d) <1 9

S3.i

S3.i

S3.i

fied.

6. Conclusions

We have formally defined the concepts of hierarchy and
abstraction/refinement for a Petri net based representation
aimed to model embedded systems. In our approach it is
feasible to represent large systems as a set of comprehensi-
ble nets structured in a hierarchy and, at the same time, the
essential characteristics of the system may be captured by
the model. Our notion of hierarchy explicitly handles tim-
ing.

We illustrated how a transformational approach may be
extremely useful to reduce the verification cost: if a given
model is simplified by using correctness-preserving trans-
formations and then the resulting (simpler) one is proved
correct with respect to its specification, the initial model is
guaranteed to be correct. Thus the verification cost is re-
duced considerably by verifying a simpler, still semantical-
ly equivalent, model.

A GMDFα (Generalized Multi-Delay frequency-domain
Filter) has been studied in order to illustrate the hierarchical
modeling of a practical system. This application has also
been used during the experiments we carried out to show the
worthiness of transformations to reduce the time spent in
verification.

References

[1] R. Alur, C. Courcoubetis and D. L. Dill, “Model Checking for
Real-Time Systems,” inProc. Symposium on Logic in Computer
Science, 1990, pp. 414-425.
[2] R. Camposano and J. Wilberg, “Embedded System Design,”
in Design Automation for Embedded Systems, vol. 1, pp. 5-50, Jan.
1996.
[3] E. M. Clarke, E. A. Emerson, and A. P. Sistla, “Automatic
Verification of Finite-State Concurrent Systems Using Temporal
Logic Specifications,” inACM Trans. on Programming Languag-
es and Systems, vol. 8, pp. 244-263, April 1986.

[4] L. A. Cortés, P. Eles, and Z. Peng, “Formal Coverification of
Embedded Systems using Model Checking,” inProc. EURO-
MICRO, 2000, vol. I, pp. 106-113.
[5] L. A. Cortés, P. Eles, and Z. Peng, “Definitions of Equiva-
lence for Transformational Synthesis of Embedded Systems,” in
Proc. ICECCS, 2000.
[6] L. A. Cortés, P. Eles, and Z. Peng, “Verification of Embedded
Systems using a Petri Net based Representation,” inProc. ISSS,
2000.
[7] L. Freund, M. Israel, F. Rousseau, J. M. Bergé, M. Auguin, C.
Belleudy, and G. Gogniat, “A Codesign Experiment in Acoustic
Echo Cancellation: GMDFα,” in ACM Trans. on Design Automa-
tion of Electronic Systems, vol. 4, pp. 365-383, Oct. 1997.
[8] HyTech: The HYbrid TECHnology Tool,http://www-
cad.eecs.berkeley.edu/~tah/HyTech/

[9] KRONOS, http://www-verimag.imag.fr/TEMPORISE/
kronos/

[10] L. Lavagno, A. Sangiovanni-Vincentelli, and E. Sentovich,
“Models of Computation for Embedded System Design,” inSys-
tem-Level Synthesis, A. A. Jerraya and J. Mermet, Eds. Dordrecht:
Kluwer, 1999, pp. 45-102.
[11] P. Maciel, E. Barros, and W. Rosenstiel, “A Petri Net Model
for Hardware/Software Codesign,” inDesign Automation for Em-
bedded Systems, vol. 4, pp. 243-310, Oct. 1999.
[12] T. Murata, “Petri Nets: Analysis and Applications,” inProc.
IEEE, vol. 77, pp. 541-580, April 1989.
[13] M. Sgroi, L. Lavagno, Y. Watanabe, and A. Sangiovanni-
Vincentelli, “Synthesis of Embedded Software Using Free-Choice
Petri Nets,” inProc. DAC, 1999, pp. 805-810.
[14] E. Stoy and Z. Peng, “An Integrated Modelling Technique for
Hardware/Software Systems,” inProc. ISCAS, 1994, pp. 399-402.
[15] I. Suzuki and T. Murata, “A Method for Stepwise Refinement
and Abstraction of Petri Nets,” inJournal of Computer and System
Sciences, vol. 27, pp. 51-76, Aug. 1983.
[16] UPPAAL, http://www.uppaal.com/

[17] R. Valette, “Analysis of Petri Nets by Stepwise Refinement,”
in Journal of Computer and System Sciences, vol. 18, pp. 35-46,
Feb. 1979.
[18] M. Varea and B. Al-Hashimi, “Dual Transitions Petri Net
based Modelling Technique for Embedded Systems Specifica-
tion,” in Proc. DATE Conference, 2001, pp. 566-571.

Mult at

XF
µF EF

FFT dt

Update ct

YF

FFT b
-1 t

Coef

[0.7,0.9]

[0.8,1.1]

[0.4,0.5]

[0.8,1.2]

FFT dt

Update ct

YF

abt

XF
µF EF

[0.4,0.5]

[0.8,1.2]

[1.5,2]

Coef

FFT dt

YF

abct

XF
µF EF

[1.9,2.5]

[0.8,1.2] YF

abcdt

XF
µF EF

[2.7,3.7]

(b) (c) (d)

Figure 7. Transformations of the basic cell

(a)

