
DECIDER: A Decision Diagram Based Hierarchical Test Generation System

Gert Jervan, Antti Markus, Jaan Raik and Raimund Ubar
Department of Computer Engineering, Tallinn Technical University

Raja 15, EE0026 Tallinn, Estonia
jaan@pld.ttu.ee

Abstract

Current paper presents a hierarchical test pattern generation system that uses register-transfer level
VHDL and gate-level EDIF netlist descriptions as inputs. The system includes appropriate interfaces
to synthesize Decision Diagram (DD) models, a DD based test pattern generator and a fault
simulator to evaluate the quality of the generated tests. In the paper, the structure of the system is
presented. Additionally, representation of different design abstraction levels using decision diagrams
is explained. The performance of the system is compared to other state-of-the-art tools for sequential
circuit test generation.

1. Introduction

As the degree of integration in VLSI designs has been growing over the years, so has the need for automation of
different design tasks. Design automation helps to shorten the time-to-market cycle and increases significantly
designer’s productivity. Automation was first introduced on the lower levels of design tasks, such as placement and
routing, and together with the growth of design complexities, moved gradually to higher levels, e.g. logic synthesis,
high-level synthesis (HLS) and hardware/software co-design. Nowadays the goal is clearly to automate the entire
design cycle from conceptualization to generation of silicon layout [1].

During recent years, more-and-more high-level synthesis tools have become available. These tools are used by
designers to automatically generate Register-Transfer Level (RTL) descriptions from design’s behavioral
description. In the RTL descriptions the design is usually partitioned into a control part, i.e. a finite state machine,
and a datapath part containing a network of interconnected functional units (FU). The HLS tools take into account
several constraints, as speed, area, or testability, and allow the designer to quickly compare the trade-offs between
alternative RTL implementations.

Behavioral description
(VHDL)

High-level synthesis

RT-level description
(VHDL)

Logic-level synthesis
(SYNOPSYS)

Gate-level netlist
(EDIF)

DD-based
test generation

system

Figure 1. The Design Cycle

Figure 2. Data Flow of the DECIDER System

With the appearance of high-level synthesis, a number of automated test generation approaches [2,3] were
introduced that took advantage of register-transfer level information while generating tests for gate-level faults.
Current paper presents a hierarchical test generation system that operates on RTL and gate-level model
descriptions. At present, the system utilizes Design Compiler [4] from Synopsys Inc. for logic-level synthesis. In
Figure 1, the basic design flow and the place of test generation in it is shown.

The paper is organized as follows. Section 2 describes the structure of a novel DECIsion Diagram based test
genERation system, called DECIDER. Section 3 explains how hierarchical design descriptions can be represented
by Decision Diagram (DD) models. More detailed information about the approach can be found in [5]. In Section 4,
experimental results and comparison with other tools for sequential circuit test generation are given. Finally,
conclusive remarks are presented.

2. System Implementation

Figure 2 presents general structure of the DD-based test generation environment. It consists of DD interfaces from
VHDL and EDIF formats, a hierarchical test pattern generator, a fault simulator and a number of libraries and
scripts to support the DD synthesis. As an input for the system is design representation in RTL VHDL, where the
circuit is partitioned into control and datapath parts. Similar representations can be synthesized by a HLS tool.

Additionally, two libraries of Functional Units (FU) are provided: one in VHDL and the other in DD format. The
VHDL FU library describes the behavior of FUs that is necessary for the high-level synthesis tool to map the
behavior of the circuit into a netlist of FUs specified in the library. The library is also used, along with the RTL
VHDL model, during logic synthesis by Design Compiler. The DD FU library is required by RTL decision diagram
synthesis tool to substitute the modules in the RTL model with corresponding decision diagrams.

Design Compiler performs logic synthesis and writes out gate-level EDIF netlists of the whole design and of each
FU separately. Dedicated scripts for automating these tasks have been implemented. Subsequently, the netlists are
converted into Structurally Synthesized BDD (SSBDD) models. (The concept of SSBDD model representations is
briefly discussed in Section 3).

The hierarchical Automatic Test Pattern Generator (ATPG) operates on the SSBDD models of the FUs and on the
RTL DD model of the circuit. As an output the ATPG generates test patterns. However, the patterns do not offer
precise information about achieved fault coverage. In order to measure the actual gate-level fault coverage of the
generated tests, the test patterns have to be fault simulated on the structural level description of the whole device.

3. Decision Diagram Representations

A Decision Diagram (DD) is defined as a non-cyclic directed graph whose nodes are labeled by variables (constants
or algebraic expressions). For each value from a set of predefined values of a non-terminal node variable, there
exists a corresponding output branch from the node. Consider a situation where all variables are fixed to some
value. By these values, for each non-terminal node a certain output branch is chosen entering into a successor node.
Let us call these connections between nodes - activated branches and the chains of them - activated paths. For each
combination of values of variables, there exists a main activated path from the root node to some terminal node.
This relation describes a mapping from a Cartesian product of the sets of values for variables in all nodes to the
joint set of values for variables in terminal nodes. Therefore, by DDs it is possible to represent arbitrary functions
Y=F(x), where Y is the variable whose value will be calculated on the DD and x is the vector of all variables in
nodes of the DD.

As a hierarchical input to the test generator are descriptions where the architecture of the circuit is described at the
RT-level and the low-level structure is given at the gate level. Both these levels can be described by DD models. In
the RTL descriptions, designs are partitioned into datapath and control parts, where datapath is represented
structurally by a netlist of interconnected blocks. The building blocks of datapath are registers, multiplexers and
functional units (FU), where functions can be arbitrary arithmetic or logic operations.

Datapath can be represented by a system of DDs, where for each primary output and for each register, a DD
corresponds. In the DD models, the non-terminal nodes correspond to control signals and terminal nodes represent
operations. Register transfers and constant assignments are treated as special cases of operations. Activated
branches between the nodes determine, which operation is assigned to the variable represented by DD with each
value combination of the control signals. Figure 3 shows an example of a DD representation for a datapath register.

Figure 3. DD representation for a Datapath Fragment

The control part of an RTL description is described as a Finite State Machine (FSM) state table. Similar to
datapath, the state table can be represented by a DD model. In that case, the non-terminal nodes correspond to
current state and conditions (FSM inputs) and terminal nodes hold vectors with the values of next state and control
signals (FSM outputs). Figure 4 shows an example of a fragment of an FSM state table and the corresponding DD
representation. In the DD, q denotes the next state and q’ denotes the current state value. Variables out1, out2, out3
and out4 are output signals of the FSM. The DD in Figure 4 describes the behavior of the FSM at the current state
being equal to s5.

Figure 4. Representing an FSM State Table by a DD

In current hierarchical test generation approach, gate-level descriptions of the datapath modules are transformed
into Structurally Synthesized BDD (SSBDD) models. Differently from BDDs, which represent function only,
SSBDDs support test generation for gate-level structural faults without representing these faults explicitly.
Furthermore, the worst case complexity for generating SSBDDs is linear in respect to the number of logic gates,
while it is exponential for BDDs

SSBDD models for combinational circuits can be synthesized by a simple superposition procedure. We generate an
SSBDD for a circuit output by starting from the output, substituting recursively all the gates by their respective
elementary BDDs until primary inputs are reached. In order to avoid repetitive occurrences of subdiagrams in the
model, the recursion can be terminated in fanout branches and SSBDDs can be synthesized for each primary output
and fanout point separately. In that case the circuit will be described as a system where for each fanout-free region
an SSBDD corresponds.

4. Experimental Results

Experiments were carried out on two highly sequential circuits, a Greatest Common Divisor (GCD), which belongs
to the HLSynth92 benchmark suite, and an 8-bit multiplier example. The synthesized RTL version of the GCD
circuit contains a datapath with 5 registers and an FSM with 12 states. The circuit was chosen as it reveals a number
of difficult test generation problems. It contains a global data dependent loop and only one of the registers is
directly observable. The multiplier mult8x8 has a complex 16-bit datapath containing several feedback loops.

Actual quality of the generated test sequences was measured by applying gate-level fault simulation to the circuits
and by neglecting a set of obviously untestable faults (e.g. lines tied to constants). The achieved fault coverages for
datapath parts were 95.1 % for the GCD circuit and 95.9 % for mult8x8, respectively. Although control part faults
were not explicitly targeted, fault coverages measured for control parts were high. Achieved test generation times
were short. Both of the circuits were tested in less than 20 seconds. The number of test sequences was less than 100.
Due to the fact that sequential circuits were considered, each test sequence consisted of multiple clock cycles. Table
1 presents the experimental results, which were run on a 233 MHz Pentium II computer with 64 MB RAM under
Windows 95 operating system.

Circuit gcd mult8x8

Number of gate-level faults 1066 4432

Gate-level fault coverage DP (%) 95.1 95.9

Fault coverage CP (%) 89.4 92.1

Total gate-level fault coverage (%) 91.8 94.4

Test generation time (s) 14.6 17.7

Number of generated test sequences 53 93

Total test length (number of clock cycles) 627 2797

Table 1. Test Generation Results

In Table 2, comparative results with a gate-level sequential test pattern generator HITEC [6], a genetic test
pattern generator GATEST [7] and a novel hierarchical test pattern generation approach published in [8] are given.
(Note that in [8], the high level test frames were generated manually). The comparison is carried out on the example
of the GCD circuit, which is the only circuit common with the experiments in [8]. As we can see from the table, the
proposed DD-based technique outperforms the other test generation tools in all categories. It achieves a higher fault
coverage in a much shorter time and generates less test sequences than [8]. The number of test sequences for [6]
and [7] is not known.

DECIDER Hier. [8] GATEST [7] HITEC [5]

fault coverage, % 91.8 90.4 62.6 74.4

time, s 14.6 1068 636 49320

test sequences 53 60 N.A. N.A.

Table 2. Comparative Results

5. Conclusions

In current paper, the role of hierarchical test pattern generation in an automated design cycle is explained. The
design of a hierarchical test generation system, called DECIDER, is presented. In order to provide automated test
pattern generation for hierarchical systems, a number of diagnostic tools and appropriate interfaces have been
implemented.

A novel hierarchical test generation approach based on decision diagram models is introduced. Differently from
known methods, both, higher and lower design abstraction levels, and both, control and data paths are handled here
by a uniform approach. In addition, different types of datapath components (registers, FUs, multiplexers) are
handled in a uniform manner.

Comparison with the known state-of-the-art test generators for sequential circuits shows the advantages of the DD-
based system. Experiments on the Greatest Common Divisor circuit indicates that the proposed tool achieves a
significantly higher fault coverage with a speed 44 – 3400 times higher than in [6, 7, and 8].

References

1. D. Gajski, N. Dutt, A. Wu, S. Lin. High-Level Synthesis: Introduction to Chip and System Design. Kluwer Academic
Publishers, 1992.

2. J. Lee and J. H. Patel. Architectural level test generation for microprocessors. IEEE Trans. Computer-Aided
Design, vol. 13, no. 10, pp. 1288-1300, Oct. 1994.

3. J. Lee, J. H. Patel. Hierarchical test generation under intensive global functional constraints. Proc.29th
ACM/IEEE Design Automation Conf., pp. 261-266, June 1992.

4. Design Compiler Reference Manual Version 3.0, Synopsys Inc., Dec. 1992.

5. G. Jervan, A. Markus, J. Raik, R. Ubar. Hierarchical Test Generation with Multi-Level Decision Diagram
Models. Proc. of the 7th IEEE North Atlantic Workshop, West Greenwich, RI, USA, May 28-29, 1998.

6. T. M. Niermann, J. H. Patel. HITEC: A test generation package for sequential circuits. Proc. of the European
Conf. Design Automation (EDAC), pp.214-218, 1991.

7. E. M. Rudnick, J. H. Patel, G. S. Greenstein, T. M. Niermann. Sequential circuit test generation in a genetic
algorithm framework. Proc. of the Design Automation Conf., pp. 698-704, 1994.

8. E. M. Rudnick, R. Vietti, A. Ellis, F. Corno, P.Prinetto, M. Sonza Reorda. Fast sequential circuit test
generation using high-level and gate-level techniques. Proc. of the DATE Conf., 1998.

9. R. Ubar. Test Generation for Digital Circuits Using Alternative Graphs. Proc. of Tallinn Technical University,
Estonia, No. 409, pp. 75-81 (in Russian), 1976.

10. R. Ubar. Test Synthesis with Alternative Graphs. IEEE Design & Test of Computers, pp. 48-57, Spring 1996.

11. IEEE Standard VHDL Language Reference Manual. IEEE. 1988.

