An Integrated System-On-Chip Test Framework
Erik Larsson and Zebo Peng

Embedded Systems Laboratory
Department of Computer and Information Science,
Linkdpings Universitet, Sweden.

Abstrac:t1 * tests are scheduled to_min.imize.the test time., .
 atest access mechanism is designed and minimized,

In this paper we propose a framework for the testing of . test sets for each block with test resource are selected,
SyStem-Oﬂ-Chlp (SOC), which includes a set of deS|gn « test resources are f|oor-p|anned, and

algorithms to deal with test scheduling, test access . tests are parallelized.€. long scan-chains are divided
mechanism design, test sets selection, test parallelization  into several scan-chains of shorter length).

and test resource placement. The approach minimizes the
test application time and the cost of the test access i X
mechanism while considering constraints on tests, powerpOWer consumption and pest resource constraints.
consumption and test resources. The main feature of our 1 Ne rest of the paper is organised as follows. After an
approach is that it provides an integrated design OVErview o_f rglated WOI’k.II’] Sec_t|on 2, a system merlllng
environment to treat several different tasks at the same time fechnique is introduced in Section 3. Factors affecting the
which were traditionally dealt with as separate problems. t€st scheduling and an algorithm which takes them into
Experimental results shows the efficiency and the usefulnesaccount in test scheduling and test access mechanism
of the proposed technique. design are then presented in Section 4 and 5, respectively.

The paper is concluded with experimental results and
conclusions in Section 6 and 7.

The increasing_complgxity of digital systems_ ha_s qu tothe 2 Related Work
need of extensive testing and long test application times. It
is therefore important to schedule the tests as concurrentlyZ0rian proposes a test scheduling technique for fully
as possible and to design an access mechanism for efficierBISTed systems where test time is minimized while power
transportation of test data in the system under test. constraints are considered [2]. In order to reduce the
When developing the test schedule, conflicts and complexity of the test controller, tests are scheduled in
limitations must be carefully considered. For instance, the Sessions where no new tests are allowed to start until all
tests may be in conflict with each other due to the sharing oftests in a session are completed. Furthermore, tests at blocks
test resources; and power consumption must be controlledPlaced physically close to each other are grouped in the
otherwise the system may be damaged during test.Same test session in such a way that the same control line
Furthermore, test resources such as external testers suppccan be used for all tests in a group. The advantage is that the
a limited number of scan-chains and have a limited test routing of control lines is minimized.
memory which also introduce constraints on test [N a fully BISTed system, each block has its own
scheduling. For the test designer, it is also important to getdedicated test generator (test source) and its own test
an early impression on the systems overall testesponse evaluator (test sink); and there might not be any
characteristics in order to develop an efficient test solution. conflicts among testsi.e. the tests can be scheduled
Research has been going on in developing techniques foconcurrently. However, in the general case, conflicts among
test scheduling, test access mechanism design andests may occur. Gargt al. propose a test scheduling
testability analysis. For example, a technique to help thetechnique where test time is minimized for systems with
designer determine the test schedule for SOC with Built-In test conflicts [3] and for core-based systems a test
Self-Test (BIST) is proposed by Benso al. [1]. In this  scheduling technique is proposed by Chakrabarty [4]. Chou
paper, we combine and generalize several approaches i€t al propose an analytic test scheduling technique where
order to create a framework for SOC testing where: test conflicts and power constraints are considered [5].
Another test scheduling approach is proposed by Muresan
et al. where constraints among tests and power consumption
1. This work has partially been supported by the Swedish a_re also considered [6]..In the Iatter- approach, favour is
National Board for Industrial and Technical Development 9iven to reduce the test time by allowing new tests to start
(NUTEK).

Furthermore, the above tasks are performed under test,

1. Introduction




even if all tests in a session are not completed. The draw-
back is the increasing complexity of the test controller. Note
also that in the approaches by Chetual. and by Muresan
et al., the systems to be tested are not restricted to fully
BISTed systems.

The conflicts among tests can be reduced by using a
wrapper such as Boundary scan [7], TestShell [8] or P1500
[9]. These techniques are all developed to increase test -chai |

isolation and to improve test data transportation.

. scan-chain _ scan-chain
Usually, several test sets can be used to test a block in the | | %l
system under test. Sugihaghal. propose a technique for Test Respons Test Respons
selecting test sets where each block may be tested by one || evaluator 1 I Evaluator 2

test set from an external tester and one test set from a
dedicated test generator for the block [10].

The effect on test application time for systems tested by
one test set per core using various design styles for test
access with the TestShell wrapper is analysed by A&ttes

al. [11]. Furthermore, the impact on test time using scan- a set of test vectors. Several tests formlack testgBT).

Ch?'r?epasrzll;“gfiﬁté?gr:tstzzor:;:lﬁgg rz);AgrE:tea{ich%rf]s.tra'ntsAnd each blockpy;, is associated with several block tests,
u : u Y : ' BTij (k=1,2,...1). Each test; is characterized by:

T e et e st e me t parallizaton deores()-L
P Pres(li): test power at parallelization degregy(tj)=1,

usually at a maximum frequency of 50 MHz [12]. External tmemorft}): memory required for test pattern storage.

ES;:SS [cl:g]n rlcjasslljjlittlr)]l ?:Iﬁ; nsu?epstir; a lg;fé?%ir;eogoflgczn source T Rgoyrcedefines the test sources for the tests;
’ 9 9 pp 9 sink T - Rgjdefines the test sinks for the tests;

designs. Furthermore an external tester's memory is limited core B C gives the core where a block is placed:

by its size. block T - B gives the block where a test is applied,;

3. System Modelling constraint T 28 gives the set of blocks required for atest;
memoryr;): memory available at test SOUTGEIRqco
bandwidti{r;): bandwidth at test sourcgIRyqyrce

In the above definitions, test time,g, test power
nsumption, peg idle power, pge, and memory
requirementtyemory are given for each of the tests. The
maximal and minimal degree of parallelization for a test is
given by par,x andparqgi, which determine how much a
scan-chain may be divided. For instancepir,,,(b3;)=2
andpar,in(b31)=1 for block 1 at core 3 in Figure 1, then the

The system is tested by applying several set of testsscan flip-flops are connect_ed into a single scan-chain
where each test set is created at some test generator (sourcggar(bg’l)_l) or two scan-chaindr(bs)=2).
and the test response is analysed at some test respongé. The SOC Test Issues
evaluator (sink).

The system in Figure 1 can be modelled aeaign with
test DT = (C, Rsource Rsink Pmax T» Source, sink, core,
block, constraint, memory, bandwiditvhere: 4.1 Test Scheduling

C = {c¢, &,..., G} is a finite set of cores; each core
consists of a finite set of blocks,= {b;1, biy,-.., - Each
core consists of at least one block and each bigckB is
characterized by:

Pidie(l): idle power,

parmin(lyj): minimal parallelization degree, and

Parmay{b;): maximal parallelization degree;
Rsource= {r'1, 2.+, [} is & finite set of test sources;

Figure 1. An illustrative example.

Rsink= {rl,_ ra,..., Ig is a finite set of test sinks;
Pmax Maximal allowed power at any time;
T={ty, tp,...,t5} is a finite set of tests, each consisting of

An example of a system under test is given in Figure 1
where each core is placed in a wrapper in order to achieve
efficient test isolation and to ease test access. Each core
consists of at least one block with added DFT technique and
in this example all blocks are tested using the scan
technique. The test access paap] is the connection to an
external tester and the test resour¢est generatod, test
generator2, test response evaluatdr andtest response
evaluator2, are implemented on the chip.

In this section the different issues considered by our SOC
test framework are discussed.

Scheduling the tests means that the start time and end time
for each test is determined in order to satisfy all constraints.
In our approach, the test bus used to transport the test data
is also determined by the scheduling algorithm. The basic
difference of our scheduling approach compared to
previously proposed approaches is illustrated in Figure 2. In
the approaches by Zorian [2] and Cheual. [5] no new
tests are allowed to start until all tests in a session are



Apower — powerlimi
tesb' | tesy tesy
. tesy :
: : >
time, time, time

Figure 2. Example of test scheduling.

completed. In their approaches tgand test would not be

time)) is true if:
{IZtj O S‘block(tj) O constrain( {) O
scheduled jt;timel, time,)}.
The Boolean functioschedule@;, time;, time,) is true
when a wirew; is used betweetime; to time:

{[tj usSiwi bug 5) Oscheduled it time,, time,) },
wherebugt)) is the set of wires allocated for tgst
4.2 Power Dissipation

allowed to be scheduled as in Figure 2. However, in the In this paper, an additive model used by Zorian [2], Clbu

approach proposed by Muresetral. [6], test is allowed to

al. [5] and Muresaret al. [6] for power consumption is

be scheduled as in Figure 2 if it is completed no later than assumed. Lepg{time;, time,) denote the peak power

test. It means that tegtis still not allowed to be started
beforetesy finishes.

In our approach it is optional if tests may start before all
tests in a session are completed or not. If it is allowedg test

and test can be scheduled as in Figure 2, which gives more

flexibility, but entails usually a more complex test
controller.
Let a schedul&be an ordered set of tests such that:

{5('3) < S(tj)‘tstart(ti) S tstart(tj)' i ;tj’ Dti 0 S’ Dti O S}’

where §t;) defines the position of tedf in § tg,(t)
denotes the time when tegtis scheduled to start, and
tandti) its completion time:
tend('[i) = tstart(ti) +ttest(ti)'
For each testi;, the start time and the bus for test data

betweertime, totime,, i.e.:

max] > Res{t) — Pare(block( 1)) +
uled ttime)

O Ot;sched

O
Pigie(b;i), time O [ timg, time,] [
2o R

whereschedulef;, time)=schedulef;, time, tim¢.

As an example, applying the functigg {time;, time,)
on the schedule for a system with 4 tests as in Figure 2, with
time; andtime, as indicated in the figure, returpgs(test)
+ Presftest) + pigie(block(tesy))+pige(blocktesy)) since it
gives the peak power consumption betwtere, andtime,.

In our approach, the maximal power consumption should
not exceed the power constraipt,,y for a schedule to be

transportation have to be determined before it is inserted@ccepted. That ipscH0, @) < Pmax

into the schedule&s

Let the Boolean functiorscheduleft;, time;, time;) be
true if testt; is scheduled in such a way that the test time
overlaps with the time intervadiifne;, timey], i.e.,

{t; OSSO~ (ton (L) <time; Oty (L) >time))}.

An example to illustrate the functicscheduledor a set
of scheduled tests is shown in Figure 3.

The Boolean functioscheduleft;, time;, time,) is true
if a sourcer; is used by a tesfbetweertime, andtime,, i.e.:

{[tj ad S‘ri =sourcq g) Oscheduled it time, time,)}.

A similar definition is used if a sink; is scheduled (used
by any test) betweeime, andtime,.
The Boolean functionschedule¢tonstraingt;), time,

: ~ (tendtesf)<time; Dtgiar(test)>timey)
; i=1: = (TruedFals§ - False
' ' i=2: - (FalseO Fals@ - True
' : i=3: = (FalsedFalse - True
' i=4: - (FalsedFalsg - True
' ' i=5: = (FalseO True) — False
. : i=6: - (False(Fals - True
| tesg |
time, time, time

Figure 3. The function scheduled .

4.3 Test Source Limitations

A test generator may use a memory for storing the test
patterns. In particular, external test generators use such a
memory with a limited size which may lead to additional
constraints on test scheduling [12].

The functionmemoryo.(ri, timey, timey) gives the peak
allocated memory betweetime; and time, for a given
sourcer;, i.e.:

[l
maxJ
D]tjscheduled jttime) Or; = source {)

tmemor)(tj)’

timed[timg, time)]}.

A test resource may have a limited bandwidth. For
instance, external tester may only support a limited number
of scan chains at a time or there could be a limit in the
available pins for test. This information is given in the
attribute bandwidth for each test resource.

The functionbandwidthy(ri, time, time,) gives the
maximal number of buses allocated betwdéne; and
time, for a given source, i.e.:

d
maxJ
D]thcheduIeQ jtime) Or; = sourcg 1)

‘ Bus(tj)

timed[timg, time)] }.



4.4 Test Floor-planning transportation of, test data in the system under test. It
transports test patterns from test sources to the blocks and

In the general case it is not feasible to assume that all COTeS, - tast response from the blacks to the test sinks

can be tested with only one BIST structure. A block may be ; . )
. The test designer faces mainly two problems, namely:
tested by several test sets produced and analyzed at different S . .
test resources. Furthermore, test resources may be shared designing and routing the test access mechanism and
' ! ay  scheduling the test data transportation.
among several blocks at different cores. It is therefore

The system can be modelled as a directed graph,

important to consider the routing of the test data accessG=(y,A), whereV consists of the set of blockB, the set of
mechanism. And an efficient placement of test resources ingo ¢ éOl:lrcesRs and the set of test sinléﬁs- o i€
the system under test must be created in order to minimize,, g g Qé‘fri@ n

ourc InK

the routing cost associated with the test access mechanism.  ap arc aJA between two vertices;
|

4.5 Test Set Selection

Each test set is defined by a test source and a test sink. Folrn
a test set, its test power consumption, test memory
requirement and test application time are defined as
discussed in Section 3. We assume that an arbitrary number

of test sets can be used to test a block.

Due to that the test resources are defined for each test s
it is possible to make a comparison of different test sets no
only in terms of the number of test vectors but also in

respect to test resources and test memory requirement. This’

information should be taken into account in our algorithm.
4.6 Test Parallelization

The test time for a test may be reduced if it is parallelized.

andy; indicates a

test access mechanism (a wire) where it is possible to
transport test data fromy; to v;. Initially no test access
echanism exists in the systeing. A=[]. However, if the
functional infrastructure may be used, it can be included in
Alinitially.

When adding a test access mechanism between a test
source and a core or between a core and a test sink, and the

Gbst data has to pass through another agyseveral routing

options are possible:
through the logic of core; using the transparent mode

of the core;
2. through an optional bypass structure of aprand

3. around core; where the access mechanism is not con-
nected to the core.

This is because dividing a scan-chain into several scan-The advantage of alternatives 1 and 2 above is that the test
chains of shorter length will shorten the test application access mechanism can be reused. However, a delay may be
time. Formulas for calculating the test time for scan-basedintroduced when the core is in transparent mode or its by-

designs are defined by Aertesal.[11]. Similar to Aertes  pass structure is used. A test wrapper such as the TestShell
et al. we assume that the scan-chain may be divided intohas a clocked by-pass structure and the impact on the test

equal portions. To simplify the problem, the degree of
parallelizationis assumed to be linear with respect to test
time and test power consumption. The test tifge(t;) for
a test; after parallelization is given by:

. tresdti)

t t) = test\’i ,

test i) (par(block(;))w
wheretis(t;) is the test time when parallelization=1 and
par(block;)) is the degree of parallelization for the block
wheret; is applied.

Assuming that the produtimexpoweris constant, we let
the test powep’(t;j) for a testt; after parallelization be
given by:

pltest(ti) = ptest(ti) x par(blOCK ﬁ))'

wherep(t;) is the test power when parallelization=1.
The parallelization at a block can not be different for

time using it is analyzed by Aertesal [11].

In the following, we assume that by-pass may be solved
by a non-delay mechanism or that the delay due to clocked
by-pass is negligible.

A test wirew; is a path of edges ¥.,v1),.,(Vn.1.V)}
wherevgORsurce@NAVORgjnke

Let Ay be defined as|y(v) —y(v))| andﬁxij as
X(v) =x(v})] , wherex(v;) and y(v;) are thex-placement
respectively the-placementor a vertexy;.

Initially, the test resources may not be placed. In this
case, their placement must be determined by our algorithm
described in the next section.

The distance between vertexand vertex is given by:

dist(v, v)) = (Ayij)z + (Axij)z'

The information of the nearest core in four direction,

different test sets; the original scan-chain can not be divided"orth, east, soutandwest are stored for each vertex and

into n chains at one moment and o chains at another
moment wherem#n. The function par(b;) denotes the
common parallelization degree at bldgk

4.7 Test Access Mechanism

A test infrastructure transports, and controls the

the functionsouth{v;) of vertexv; gives the closest vertex
south ofv; and it is defined as:

O &Y . .0
soutl( y) = 4 >10 <-1
Y Dﬂﬁxij Ax;; O

y(v) <y(%),i# j, min{ dist(y, v))}.



The functionsorth(v;), eastv;) andwestv,) are defined in
similar ways. The functiomser{y;, vj) inserts a directed arc
from vertexv; to vertexy; if and only ifthe following is true:

{south(y, v]-) Onorth(v, v;) Owes( y,v;) Oeas(vy,Vv.)}.

The functionclosestv;, V) gives a vertexy, which is in
the neighbourhood of; and has the shortest distancevio
The functionaddv;, v;) adds arcs frong; to; in the following
way: (1) findvi=closestv;, v;); (2) add a wire fromy; to v;
(3)if v =v;, terminate otherwise let=vi and go to (1).

5. The Algorithm

In this section the issues discussed above are combined into
an algorithm. The algorithm assumes that the tests are

initially sorted according to a kek which characterizes
powelp), test timét) or powerxtest timépxt).

Let P be an ordered set with the tests ordered based on the

keyk. If new tests are allowed to be scheduled even if all tests
in a session are not completed the functimexttime(}y)
gives the next time where it is possible to schedule a test:

{tend®)|Min(ten((t)), torg < tend(ti): Ot U S}
otherwise functiomexttime(}y) is defined as:
{tend(t)|max(tnt)): torg <tend(t)), Ot; O S}

The algorithm is depicted in Figure 4 and it can basically be
divided into four parts for:

e constraint checking,

« test resource placement,

« test access mechanism design and routing, and

* test scheduling.

A main loop is terminated when there exists a block test (BT)
for all blocks where all tests within the BT are scheduled. In
each iteration of the loop over the testsRna testcur is
checked.

If the parallelization degreés fixed for the blocki.e.some
tests have been scheduled for the blogar=par(bj)
otherwise it is computed:

par = mir{ par,, (1), | (Pmax— Pscr{time t.ng))/ pcur) |,
bandwidth( y, timeg, t,,,9) —bandwidth (v, time t,. 4,

which is the minimum among the available power and the
available bandwidth of the test source.

A check is also made to determine if all constraints are
fulfilled, i.e. it is possible to schedule testr attime

o "0 (4UBTj [y USJcurtBTy,) checks that another

block test set for current block is not used,
parzparmin(b;) checks that the current parallelization
degree is larger than the minimal level,
—-schedulefly,, time, to,g checks that the test source is
not scheduled duringmeto tgg4
= schedulefl/, time, ty,g checks that the test sink is not
scheduled duringmeto tg,4
=scheduleftonstrainfcur), time tg,9 checks that all
blocks required focur are not scheduled durirtgme to

Sort T according to the key (p, t okp) and store the result in P;
S=0, time=0;
until Ob, (BT, 0t0S do
for allogur ir%)??’ dg
bjj=blocKcur); v =sourcécur);
Vp=Cj; Vc=sinkcur);
par=determine parallelization degree
tengtime+Hesfcun)/parl]
Pres{CUN=Pres{Cur)xpar,
if all constraints are satisfied then
=scheduleflv,, 0, t,g floor-plan \ at v,;
= scheduleflv,, 0, t.,g floor-plan v at w,;
for all required test resources
new=length of a new wire
u=number of wires connecting,wy, and \, and are not
scheduled from time t@
v=number of wires connecting,wy, and \;
for all min(v-u,pa w,
extengextene-length of an available wir@v,);
if (par>u)
extendextend-newx(par-u);
movespar(vy) x min{ dist(vy, W), dist(vy, V)};
if (movesmin{ extend, new par})
Vy, vy:min{ dist(v,, V), dist(vy, V)}, dist(vy, W,)>0,
dist(vy,v)>0
add paxvy) wires betweenyand \;;
if (v=sourcécur)) then floorplan y at v,
if (vy = sink(cur)) then floorplan y at v,
set parallelization
forr= 1to par
if there exists a not scheduled wire during timedgyt
connecting ¥, v, and v it is selected
else
if (length of a new wire < length of extending a wirg w
w=add(v,, W) + add(vy, Vo);
else extend wire
schedule cur and remove cur from P
time = nexttim@ime).

Figure 4. The system test algorithm.

teng @nd
+ the available memory test souregis checked to see if:

MeMOryVa)>tmemorfCUN+Memoryoc(Va, time, tng.

Then the placement of the test resources are checked. If the
test resources are placed it is checked if they are to be moved.

When the placement of the test resources for the selected
test is determined, the corresponding test access mechanism
is designed and routed. The basic question is if some existing
wires can be used or new wires must be added.

If no routed connection is available connecting all required
blocks, the distance for adding a completely new connection
is re-calculated due to a possible moving of test resources.

Theextend wirestep in the algorithm extends needed parts
to connect the test resources and block with a given wire.

The computational complexity for the above algorithm,
where the test access mechanism design is excluded in order
to make it comparable with other approaches, comes mainly
from sorting the tests and the two loops. The sorting can be
performed using a sorting algorithm@¢nxlog n). The worst



case for the loops occurs when only one test is scheduled in
P y Test Idle Test Test

each iteration res‘liltir;‘g in a complexity given by: Test Block  Test . 0 power power  port
Z (P—i) = %2+g A TestA 515 1 379 scan
i=0 B Test B 160 1 205 testbus
The total worst case execution timerislog + n%/2 +n/2 (,, C  TestC 110 1 23 testbus
which is of O(n?). For instance, the approach by Gatgl. g E TestE 61 1 57 testbus
[3] and by Chakrabarty [4] both have a worst case g F Test F 38 1 27 testbus
complexity ofo(n). é | Testl 29 1 120 testbus
6. Experimental Results 2 J Testd 6 1 13 testbus
We have performed experiments to show the efficiency of Ko Testk 3 1 o testbus
the proposed algorithm. L TestL 3 1 9 testbus
6.1 Benchmarks M TestM 218 1 5 testbus
A TestN 232 1 379 fp
We have used the System S presen_ted by Qhakrabarty [4], g 9 N Testo 41 1 50 o
and ASIC Z design presented by Zorian [2] with added data £
made by Choet al.[5] (see the floor-plan in Figure 5). we 2 2 TestP 72 ! 205 fp
have also used one design consisting of 10 test presented by D TestQ 104 1 39 fp
Muresan et al. [6] and an industrial design with Table 1. Characteristics of the industrial design.

characteristics given in Table 1. The power limitation for the ) .
industrial design example is 1200 mW and only one test €1 start even if all tests are not fully completed in the
may use the test bus or the functional pins (fp) at a time. current test session. In all cases our technique achieve better
Furthermore block-level tests may not be scheduled SOlUtions, see Table 3. _ _ _ _
concurrently with top-level tests. Finally, the results on an industrial design are in Table 3
where the industrial designer’s solution is 1592 time units
RAM 2 |[RAM 3 RL 1 while our test scheduling achieve a test time of 1077 time

W (40,30) (f) units in all sorting variations which is 32.3% better

> All solutions using our technique were produced within

. s tap d on a Sun Ultra Sparc 10 with a 450 MHz processor
10.20) (i)||(20,20) ()| |40.20) ~ [192][52-11] asecond o p p
s Ol 0 O] [50.20] 1 256 Mbyte RAM.

ROM 1 ROM 2 RAM 4 RAM 1 RF
( ) fg.rf Zorian Chouet al. Our algorithm
fg.rom sa.ro 3010 (©Of | [saran) L= ts
| | | nT sa.rf Blocks Time Blocks Time Blocks Time
(10,10)(a)| |(20.10) (b) (40,10)(d)| |(50,10f€)
RAM1, RAM1, RAM3, RL2,RL1,
Figure 5. ASIC Z floor-plan. ! RAM4,RF 69 RAM4, RF 69 RAM2 160
6.2 Test Schedulin 2 RL1, RL2 160 RL1, RL2 160 RAMLROML, 145
g ROM2
We have compared our algorithm using initial sorting based
P 9 Y 9 3 RAM2,RAM3 61 ROML, ROM2, - 1y RAMS, 38

on powelp), timeglt) and powemtime(pxt) with the
approaches proposed by Zorian [2] and Chkoal. [5]. We
have used the same assumptions as Gétoal. and the
results are in Table 2. Our approaches results, in all cases, inTest time: 392 331 300
a test schedule with three test sessidgsat a test time of .

300 time units which is 23% better than Zorian's approach Table 2. ASIC Z test scheduling.
and 9% better than the approach by Cébal 6.3 Test Resource Placement

In System S, no power constraints are given and therefore . . .
only test scheduling using initial sorting of tests based on In the ASIC Z design all blocks have their own dedicated

time is performed. Our approach finds the optimal solution, BIST structure. Let us assume that all R.OM blocks share
see Table 3. one BIST structure and all RAM memories share another

We have also compared our technique with the techniqueslir itrg(grsr?r; ihe trest Sf.the blocl:ks havet tthelr OV\QE
proposed by Muresaet al.[6]. In this case we use the same edicate structure. Using our placement strategy the

assumption as Muresaat al. which assumes that new tests test resources in ASIC Z will be placed as in Figure 5.

RAM2 RAM4, RF

4 ROM1,ROM2 102




Design Approach ~ Testtime Improvement power/test bus o
Chakrabarty's Chakrabarty 1204630 - power limit
design case [4]  ours(t) 1152810 4.3% 4 (d)
Muresan 29 -
M ;
uresans ours(p) 28 3.4% a1 @l (b) W)
design case
6] ours(t) 28 3.4% 2 ® (i)
ours(p<t) 26 10.3% )
designer 1592 - L ) . @ t.|m>e
| 1 |
Industrial ours(p) 1077 32.3% 134 160 236 290
design ours(t) 1077 32.3% Figure 7. Test schedule for ASIC Z.
ours(p<t) 1077 32.3%

Table 3. Results on the designs by Chakrabarty and 7. Conclusions

Muresan as well as the industrial design. For complex systems such as SOCs, it is a difficult problem
for the test designer to develop an efficient test solution due
to the large number of factors involved. In this paper we
Assume the floor-planning of ASIC Z as in Figure 5 where propose a framework where several test-related factors are
each block is placed according to its ¥) coordinates. For  considered in an integrated manner in order to support the
instance, RAM2 is placed at (10,20), which means that thetest designer to develop an efficient test solution for a
center of RAM2 has x-coordinate 10, and y-coordinate 20. Comp|ex System_ An a|gorithm has been defined and
Assume that all tests are scan-based tests applled with arn'np|emented, and experiments have been performed to
external tester allowing a maximum of 8 scan chains to show its efficiency.
operate concurrently.

In this experiment we allow a new test to start even if all
tests are not completed, see results in Table 4.

6.4 Test Access Mechanism Design

References
[1] A.Benso, S. Cataldo, S. Chiusano, P. Prinetto, Y. Zorian, A

The test schedule and the test bus schedule achieved with
initial sorting of tests according to powdime and 2]
considering idle power is in Figure 7. The total test access
mechanism length is 360 units and it is routed as in 3

. X . (3]
Figure 6. All solutions were produced within a second on a
Sun Ultra Sparc 10 with a 450 MHz processor and 256

Mbyte RAM. [4]

(5]

Initial sorting  Testtime  Test access mechanism
power 300 360
time 290 360 [6]
powerxtime 290 360

[7]
(8]

Table 4. Results on ASIC Z.

@

[9]
[10]

K

@

[11]

iﬁ:
i E

Figure 6. ASIC Z with test data access mechanism.

[12]

High-Level EDA Environment for the Automatic Insertion of
HD-BIST Structures]ETTAV0l.16.3,pp179-184,June 2000.
Y. Zorian, A distributed BIST control scheme for complex
VLSI devicesProc. of VLSI Test Symppp. 4-9, April 1993.

M. Garg, A. Basu, T.C. Wilson, D.K. Banerji, J.C. Majithia,
A New Test Scheduling Algorithm for VLSI Systentgroc.

of the Symp. on VLSI Desigmp. 148-153, November 1999.
K. Chakrabarty, Test Scheduling for Core-Based Systems,
Proc. of Int. Conf on CADpp. 391-394, January 1991.

R. Chou, K. Saluja, V. Agrawal, Scheduling Tests for VLSI
Systems Under Power ConstraintEEE Trans. on VLSI
Systems\ol. 5, No. 2, pp. 175-185, June 1997.

V. Muresanet al, A Comparison of Classical Scheduling
Approaches in Power-Constrained Block-Test Scheduling,
Proc. of Int. Test Confpp. 882-891, 3-5 October 2000.

H. Bleekeret al., Boundary-Scan Test:A Practical Approach,
Kluwer Academic PublisherssBN 0-7923-9296-5, 1993.

E. J. Marinissert al., A Structured and Scalable Mechanism
for Test Access to Embedded Reusable Cofasc. of
International Test Confpp 284-293, October 18-23, 1998.
IEEE P1500 Web site. http://grouper.ieee.org/groups/1500/.
M. Sugihara, H. Date, H. Yasuura, A Test Methodology for
Core-Based System LSIEICE Trans. on Fundvol. E81-

A, No. 12, pp. 2640-2645, December 1998.

J. Aerts, E. J. Marinissen, Scan Chain Design for Test Time
Reduction in Core-Based ICsProceedings of the
International Test Conferencpp 448-457, 1998.

G. Hetheringtonet al, Logic BIST for Large Industrial
Designs: Real Issues and Case Studisceedings of the
International Test Conferencpp.358-367, 1999.



	Abstract
	In this paper we propose a framework for the testing of system-on-chip (SOC), which includes a se...
	1. Introduction
	• tests are scheduled to minimize the test time,
	• a test access mechanism is designed and minimized,
	• test sets for each block with test resource are selected,
	• test resources are floor-planned, and
	• tests are parallelized (i.e. long scan-chains are divided into several scan-chains of shorter l...

	2. Related Work
	3. System Modelling
	Figure 1. An illustrative example.

	4. The SOC Test Issues
	4.1 Test Scheduling
	Figure 2. Example of test scheduling.
	Figure 3. The function scheduled.

	4.2 Power Dissipation
	4.3 Test Source Limitations
	4.4 Test Floor-planning
	4.5 Test Set Selection
	4.6 Test Parallelization
	4.7 Test Access Mechanism
	• designing and routing the test access mechanism and
	• scheduling the test data transportation.
	1. through the logic of core ci using the transparent mode of the core;
	2. through an optional bypass structure of core ci; and
	3. around core ci where the access mechanism is not connected to the core.



	5. The Algorithm
	• constraint checking,
	• test resource placement,
	• test access mechanism design and routing, and
	• test scheduling.
	Figure 4. The system test algorithm.

	• Ø$tf (tfŒBTijkŸtf ŒSŸcurœBTijk) checks that another block test set for current block is not used,
	• par³parmin(bij) checks that the current parallelization degree is larger than the minimal level,
	• Øscheduled(va, time, tend) checks that the test source is not scheduled during time to tend,
	• Øscheduled(vc, time, tend) checks that the test sink is not scheduled during time to tend,
	• Øscheduled(constraint(cur), time, tend) checks that all blocks required for cur are not schedul...
	• the available memory test source va is checked to see if: memory(va)>tmemory(cur)+memoryalloc(v...

	6. Experimental Results
	6.1 Benchmarks
	Figure 5. ASIC Z floor-plan.

	6.2 Test Scheduling
	Table 1 . Characteristics of the industrial design.
	Table 2 . ASIC Z test scheduling.

	6.3 Test Resource Placement
	Table 3 . Results on the designs by Chakrabarty and Muresan as well as the industrial design.

	6.4 Test Access Mechanism Design
	Table 4 . Results on ASIC Z.
	Figure 6. ASIC Z with test data access mechanism.
	Figure 7. Test schedule for ASIC Z.


	7. Conclusions
	References
	[1] A. Benso, S. Cataldo, S. Chiusano, P. Prinetto, Y. Zorian, A High-Level EDA Environment for t...
	[2] Y. Zorian, A distributed BIST control scheme for complex VLSI devices, Proc. of VLSI Test Sym...
	[3] M. Garg, A. Basu, T.C. Wilson, D.K. Banerji, J.C. Majithia, A New Test Scheduling Algorithm f...
	[4] K. Chakrabarty, Test Scheduling for Core-Based Systems, Proc. of Int. Conf on CAD, pp. 391-39...
	[5] R. Chou, K. Saluja, V. Agrawal, Scheduling Tests for VLSI Systems Under Power Constraints, IE...
	[6] V. Muresan et al., A Comparison of Classical Scheduling Approaches in Power-Constrained Block...
	[7] H. Bleeker et al., Boundary-Scan Test:A Practical Approach, Kluwer Academic Publishers, ISBN ...
	[8] E. J. Marinissen et al., A Structured and Scalable Mechanism for Test Access to Embedded Reus...
	[9] IEEE P1500 Web site. http://grouper.ieee.org/groups/1500/.
	[10] M. Sugihara, H. Date, H. Yasuura, A Test Methodology for Core-Based System LSIs, IEICE Trans...
	[11] J. Aerts, E. J. Marinissen, Scan Chain Design for Test Time Reduction in Core-Based ICs, Pro...
	[12] G. Hetherington et al., Logic BIST for Large Industrial Designs: Real Issues and Case Studie...



	An Integrated System-On-Chip Test Framework
	Erik Larsson and Zebo Peng
	Embedded Systems Laboratory
	Department of Computer and Information Science,
	Linköpings Universitet, Sweden.


