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Linköping University



ii



Acknowledgements

My gratitude goes to Petru Eles for his guidance and his persevering
attempts to lend his sharpness of thought to my writing and thinking.
He is the person who compels you not to fall. Zebo Peng is the never-
angry-always-diplomatic-often-ironic advisor that I would like to thank.

All of my colleagues in the Embedded Systems Laboratory, its “steady
state” members as well as the “transient” ones, made life in our “boxes”
enjoyable. I thank them for that.

Also, I would like to thank the administrative staff for their help
concerning practical problems.

Last but not least, the few but very good friends provided a great
environment for exchanging impressions and for enjoyable, challenging,
not seriously taken and arguably fruitful discussions. Thank you.

Sorin Manolache

iii



iv



Abstract

Systems controlled by embedded computers become indispensable in our
lives and can be found in avionics, automotive industry, home appliances,
medicine, telecommunication industry, mecatronics, space industry, etc.
Fast, accurate and flexible performance estimation tools giving feedback
to the designer in every design phase are a vital part of a design process
capable to produce high quality designs of such embedded systems.

In the past decade, the limitations of models considering fixed (worst
case) task execution times have been acknowledged for large application
classes within soft real-time systems. A more realistic model considers
the tasks having varying execution times with given probability distri-
butions. No restriction has been imposed in this thesis on the particular
type of these functions. Considering such a model, with specified task
execution time probability distribution functions, an important perfor-
mance indicator of the system is the expected deadline miss ratio of tasks
or task graphs.

This thesis proposes two approaches for obtaining this indicator in
an analytic way. The first is an exact one while the second approach pro-
vides an approximate solution trading accuracy for analysis speed. While
the first approach can efficiently be applied to mono-processor systems, it
can handle only very small multi-processor applications because of com-
plexity reasons. The second approach, however, can successfully handle
realistic multi-processor applications. Experiments show the efficiency
of the proposed techniques.
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Chapter 1

Introduction

This chapter briefly presents the frame of this thesis work, namely the
area of embedded real-time systems. The limitations of the hard real-
time systems analysis techniques, when applied to soft real-time systems,
motivate our focus on developing new analysis techniques for systems
with stochastic execution times. The challenges of such an endeavour
are discussed and the contribution of the thesis is highlighted. The
section concludes by presenting the outline of the rest of the thesis.

1.1 Embedded system design flow

Systems controlled by embedded computers become indispensable in our
lives and can be found in avionics, automotive industry, home appliances,
medicine, telecommunication industry, mecatronics, space industry, etc.
[Ern98].

Very often, these embedded systems are reactive systems, i.e. they
are in steady interaction with their environment, acting upon it in a pre-
scribed way as response to stimuli sent from the environment. In most
cases, this response has to arrive at a certain time moment or within a
prescribed time interval from the moment of the application of the stim-
ulus. Usually, the system must respond to a stimulus before a prescribed
relative or absolute deadline. Such systems, in which the correctness of
their operation is defined not only in terms of functionality (what) but
also in terms of timeliness (when), form the class of real-time systems
[But97, KS97, Kop97, BW94]. Real-time systems are further classified
in hard and soft real-time systems. In a hard real-time system, break-
ing a timeliness requirement is intolerable as it may lead to catastrophic

7



8 CHAPTER 1. INTRODUCTION

consequences. Soft real-time systems are considered as still functioning
correctly even if some timeliness requirements are occasionally broken.
In a hard real-time system, if not all deadlines are guaranteed to be met,
the system is said to be unschedulable.

The nature of real-time embedded systems is typically heterogeneous
along multiple dimensions. For example, an application may exhibit
data, control and protocol processing characteristics. It may also consist
of blocks exhibiting different categories of timeliness requirements. A
telecommunication system, for example, contains a soft real-time con-
figuration and management block and a hard real-time subsystem in
charge of the actual communications. Another dimension of heterogene-
ity is given by the environment the system operates in. For example, the
stimuli and responses may be of both discrete and continuous nature.

The heterogeneity in the nature of the application itself on one side
and, on the other side, constraints such as cost, power dissipation, legacy
designs and implementations, as well as non-functional requirements
such as reliability, availability, security, and safety, lead to implementa-
tions consisting of custom designed heterogeneous multiprocessor plat-
forms. Thus, the system architecture consists typically of programmable
processors of various kinds (application specific instruction processors
(ASIPs), general purpose processors, DSPs, protocol processors), and
dedicated hardware processors (application specific integrated circuits
(ASICs), field-programmable gate arrays (FPGAs)) interconnected by
means of shared buses, point-to-point links or networks of various types.

Designing such systems implies the deployment of different tech-
niques with roots in system engineering, software engineering, com-
puter architectures, specification languages, formal methods, real-time
scheduling, simulation, programming languages, compilation, hardware
synthesis, etc. Considering the huge complexity of such a design task,
there is an urgent need for automatic tools for design, estimation and
synthesis in order to support and guide the designer. A rigorous, disci-
plined and systematic approach to real-time embedded system design is
the only way the designer can cope with the complexity of current and
future designs in the context of high time-to-market pressure. Such a
design flow is depicted in Figure 1.1 [Ele02].

The design process starts from a less formal specification together
with a set of constraints. This initial informal specification is then cap-
tured as a more rigorous model formulated in one or possibly several
modelling languages [JMEP00]. During the system level design space ex-
ploration phase, different architecture, mapping and scheduling alterna-
tives are assessed in order to meet the design requirements and possibly
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optimise certain indicators. The shaded blocks in the figure denote the
activities providing feedback concerning design fitness or performance to
the designer. The existence of accurate, fast and flexible automatic tools
for performance estimation in every design phase is of capital importance
for cutting down design process iterations, time and implicitly cost.

Performance estimation tools can be classified in simulation and anal-
ysis tools. Simulation tools are flexible, but there is always the danger
that unwanted and extremely rare glitches in behaviour, possibly bring-
ing the system to undesired states, are never observed. The probability
of not observing such an existing behaviour can be decreased at the ex-
pense of increasing the simulation time. Analysis tools are more precise,
but they usually rely on a mathematical formalisation which is some-
times difficult to come up with or to understand by the designer. A
further drawback of analysis tools is their often prohibitive running time
due to the analysis complexity. A tool that trades, in a designer con-
trolled way, analysis complexity (in terms of analysis time and memory,
for example) with analysis accuracy or the degree of insight that it pro-
vides, could be a viable solution to the performance estimation problem.
Such an approach is the topic of this thesis.

The focus of this thesis is on the analytic performance estimation
of soft real-time systems. Given an architecture, a mapping, a task
scheduling alternative, and the set of task execution time probability
distribution functions, such an analysis (the dark shaded box in Fig-
ure 1.1) would provide important and fairly accurate results useful for
guiding the designer through the design space.

1.2 Stochastic task execution times

Historically, real-time system research emerged from the need to under-
stand, design, predict, and analyse safety critical applications such as
plant control and aircraft control, to name a few. Therefore, the com-
munity focused on hard real-time systems, where the only way to ensure
that no real-time requirement is broken was to make conservative as-
sumptions about the systems. In hard real-time system analysis, each
task instantiation is assumed to run for a worst case time interval, called
the worst case execution time (WCET) of the task.

This approach is sometimes the only one applicable for the class
of safety critical embedded systems. However, for a large class of soft
real-time systems this approach leads to significant underutilisation of
computation resources, missing the opportunity to create much cheaper
products with low or no perceived service quality reduction. For ex-
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ample, multimedia applications like JPEG and MPEG encoding, sound
encoding, etc. exhibit this property.

The execution time of a task depends on application dependent, plat-
form dependent, and environment dependent factors. The amount of
input data to be processed in each task instantiation as well as its type
(pattern, configuration) are application dependent factors. The type of
processing unit that executes a task is a platform dependent factor in-
fluencing the task execution time. If the time needed for communication
with the environment (database lookups, for example) is to be considered
as a part of the task execution time, then network load is an example of
an environmental factor influencing the task execution time.

Input data amount and type may vary, as for example is the case for
differently coded MPEG frames. Platform dependent characteristics,
like cache memory behaviour, pipeline stalls, write buffer queues, may
also introduce a variation in the task execution time. Thus, obviously,
all of the enumerated factors influencing the task execution time may
vary. Therefore, a model considering variable execution time would be
more realistic as the one considering fixed, worst case execution times. In
the most general model, task execution times with arbitrary probability
distribution functions are considered. Obviously, the fixed task execution
time model is a particular case of such a stochastic one.

Figure 1.2 shows the execution time probability density of such a
task. An approach based on a worst case execution time model would
implement the task on an expensive system which guarantees the im-
posed deadline for the worst case situation. This situation, however, will
occur with a very small probability. If the nature of the application is
such that a certain percentage of deadline misses is affordable, a cheaper
system, which still fulfils the imposed quality of service, can be designed.
For example, such a cheaper a system would be one that would guaran-
tee the deadlines if the execution time of the task did not exceed a time
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moment t (see Figure 1.2). It can be seen from the figure, that there is
a low probability that the task execution time exceeds t and therefore,
missing a deadline is a rare event leading to an acceptable service quality.

In the case of hard real-time systems, the question posed to the per-
formance analysis process is whether the system is schedulable which
means if deadlines are guaranteed to be met or not. In the case of
stochastic execution times, because of the stochastic nature of the sys-
tem, such an approach is not reasonable. Therefore, the analysis of such
systems does not provide binary classifications but rather fitness esti-
mates, such as measures of the degree to which a system is schedulable.
One such measure is the expected deadline miss ratio of each task or
task graph and is the focus of this thesis.

1.3 Solution challenges

Because an application with stochastic execution times running on an
architecture can be regarded as a system with random character, a nat-
ural way to formalise it is to build its underlying stochastic process. The
first problem arises as the size of the underlying process is exponential
with the number of tasks and the number of processors. An additional
complexity dimension is due to the nature of the probability distribution
functions. There exist efficient analysis techniques for the case of expo-
nential probability distribution functions. However, this thesis considers
arbitrary probability distribution functions, which pose high demands
on the analysis resources. Both problems lead to an increase in analy-
sis time and memory and, thus, limit the range of systems amenable to
analysis under constraints on analysis resources.

The analysis complexity can be reduced by means of three approaches:

1. Restricting the assumptions on the applications to analyse (which
means restricting the class of applications that can be handled),

2. Solving the large stochastic process with less resources,

3. Finding intelligent ways to transform the stochastic process to an
equivalent one with respect to the performance indicators of inter-
est. The transformation is done such that the equivalent process
is easier to solve.

Obviously, the first alternative is not desirable, on the contrary, the chal-
lenge consists in finding an acceptable balance between required analysis
resources and the capacity to analyse applications under as unrestricted
assumptions as possible. In this thesis, this challenge is taken.
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1.4 Contribution

The contribution of this thesis includes:

• An analytic, exact method for obtaining the expected deadline miss
ratio which can be efficiently applied to mono-processor systems
[Chapter 4], [MEP01];

• An analytic, approximate method for obtaining the expected dead-
line miss ratio which can be efficiently applied to multi-processor
systems [Chapter 5], [MEP02];

• A designer controlled way to trade analysis accuracy with required
analysis resources (time and memory) [Chapter 5], [MEP02];

• A fairly general class of applications the methods are applicable to
[Chapter 3]:

– Periodic tasks possibly with precedence constraints among
them,

– Flexible late task policy,

– Almost any non-preemptive scheduling policy is supported,

– Task execution times with generalised probability distribution
functions.

• A further relaxation of the assumptions regarding the application
[Chapter 6],

• Experiments qualitatively and quantitatively describing the depen-
dency between application characteristics (number of tasks, num-
ber of processors, dependency degree) and required analysis re-
sources, allowing to assess the applicability of the proposed meth-
ods [Chapters 4 and 5].

This thesis not only provides tools for the analysis of real-time ap-
plications with stochastic execution times, but also extends, as much as
possible, the class of applications to which the tools can be applied.

1.5 Thesis organisation

The next chapter surveys the related work in the area of performance
estimation of real-time systems considering also the particular context
of varying task execution time. As mentioned, an analytic approach has
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to rely on a mathematical formalisation of the problem. The notation
used throughout the thesis and the problem formulation are introduced
in Chapter 3. The first approach to solve the problem, efficiently appli-
cable to mono-processor systems, is detailed in Chapter 4. The second
approach, applicable to multiprocessor systems, is presented in Chap-
ter 5. Chapter 6 discusses relaxations on the initial assumptions as well
as extensions of the results and their impact on the analysis complex-
ity. Finally, Chapter 7 draws the conclusions and presents directions of
future work.



Chapter 2

Background and Related
Work

This chapter is structured in three sections. The first provides a back-
ground in schedulability analysis. The second section surveys some of
the related work in the area of schedulability analysis of real-time sys-
tems with stochastic task execution times. The third section informally
presents some of the concepts in probability theory and in the theory of
stochastic processes to be used in the following chapters.

The earliest results in real-time scheduling and schedulability analysis
have been obtained under restrictive assumptions about the task set and
the underlying architecture. Thus, in the early literature, task sets with
the following properties have been considered, referred in this thesis as
the restricted assumptions: The task set is composed of a fixed number of
independent tasks mapped on a single processor, the tasks are periodically
released, each with a fixed period, the deadlines equal the periods, and the
task execution times are fixed.

Later work was done under more relaxed assumptions. This survey
of related work is limited to research considering assumption relaxations
along some of the following dimensions, of interest in the context of this
thesis:

• Multi-processor systems

• Data dependency relationships among the tasks

• Stochastic task execution times

• Deadlines less than or equal to the periods

15
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• Late task policy

Note also that applications with sporadic or aperiodic tasks, or tasks
with resource constraints, or applications with dynamic mapping of tasks
to processors have not been considered in this overview.

2.1 Schedulability analysis of hard real-time
systems

2.1.1 Mono-processor systems

In their seminal paper from 1973, Liu and Layland [LL73] considered
sets of tasks under the restricted assumptions outlined above. The tasks
are dynamically scheduled by a runtime scheduler according to an of-
fline (static) assignment of priorities to tasks. The priority assignment
is made according to the rate monotonic algorithm (the shorter the task
period, the higher the task priority). Task preemption is allowed. Under
these assumptions, Liu and Layland give the following processor utilisa-
tion based schedulability criterion. The task set is schedulable if

N∑
i=1

Ci

Ti
≤ N · (2 1

N − 1)

where Ci is the worst case execution time of task τi, Ti is the period
of task τi and N is the number of tasks. The left-hand side of the
inequality represents U , the processor utilisation and the right-hand side
represents the utilisation bound. Liu and Layland also prove that the
rate monotonic (RM) priority assignment scheme is the optimal fixed
(offline) priority scheme.

In the same paper, Liu and Layland analysed the set of tasks in the
case they are dynamically scheduled by a runtime scheduler according to
an online (dynamic) assignment of priorities to tasks. The assignment is
made according to the earlier deadline first (EDF) algorithm (the closer
the task deadline, the higher the task priority). Task preemption is
allowed. Under these assumptions, Liu and Layland give a processor
utilisation based necessary and sufficient condition for the tasks to be
schedulable. Thus, the task set is schedulable if and only if

N∑
i=1

Ci

Ti
≤ 1.
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They also prove that EDF is the optimal dynamic priority assignment
algorithm. Optimality, in the context of RM and EDF scheduling, means
that if there exists an offline [online] task priority assignment method
under which the tasks are schedulable, then they are also schedulable
under the RM [EDF] assignment method.

Recently, E. Bini et al. [BBB01] improved the bound given by Liu and
Layland for the rate monotonic algorithm. Thus, a task set is schedulable
under the same assumptions if

N∏
i=1

(
Ci

Ti
+ 1
)

≤ 2.

Checking of the schedulability conditions presented above has complexity
O(N).

A necessary and sufficient condition for schedulability under the re-
stricted assumptions and a fixed priority preemptive scheduling of tasks
has been given by Lehoczky et al. [LSD89]. A task τi is schedulable if
and only if there exists a time moment t ∈ [0, Ti] such that

t ≥
N∑

j∈HPi

Cj ·
⌈

t

Ti

⌉
,

where HPi = {j : prior(τj) ≥ prior(τi)}. They have also shown that
it is sufficient to check the schedulability condition only at the release
times of higher priority tasks. Still, the algorithm is pseudo-polynomial.

If the task deadlines are less than the corresponding periods, a dead-
line monotonic task priority assignment algorithm was proposed by Le-
ung and Whitehead [LW82]. Such a scheme assigns a higher priority
to the task with the shorter relative deadline. Leung and Whitehead
also proved that this algorithm is the optimal fixed priority assignment
algorithm under the considered assumptions and gave a schedulability
criterion. Audsley et al. [ABD+91] extended the work of Joseph and
Pandya [JP86] about response time analysis and derived a necessary
and sufficient condition for schedulability under the deadline monotonic
approach. Manabe and Aoyagi [MA95] gave similar schedulability con-
ditions reducing the number of time moments that have to be evaluated,
but their schedulability analysis algorithm is pseudo-polynomial as well.

In the case of deadlines less than periods and dynamic priority as-
signment according to an EDF policy, a necessary and sufficient schedu-
lability condition has been given by Baruah et al. [BRH90]. Their test
is pseudo-polynomial.
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Less work has been carried out when considering task sets with prece-
dence relationships among tasks. Audsley et al. [ABRW93] provide
schedulability criteria under the assumption that the tasks are dynam-
ically scheduled according to an offline (static) assignment of task pri-
orities. The precedence relationships are implicitly enforced by care-
fully choosing the task periods, offsets and deadlines but this makes the
analysis pessimistic. González Harbour et al. [GKL91, GKL94] con-
sider certain types of precedence relationships among tasks and provide
schedulability criteria for these situations. Sun et al. [SGL97] addi-
tionally extend the approach by considering fixed release times for the
tasks.

Blazewicz [Bla76] showed how to modify the task deadlines under
the assumptions of precedence relationships among tasks that are dy-
namically scheduled according to an online assignment of task priorities
based on EDF. He has also shown that the resulting EDF∗ algorithm is
optimal. Sufficient conditions for schedulability under the mentioned as-
sumptions are given by Chetto et al. [CSB90] while Spuri and Stankovic
[SS94] consider also shared resources.

2.1.2 Multi-processor systems

Most problems related to hard real-time scheduling on multi-processor
systems under non-trivial assumptions have been proven to be NP-
complete [GJ75, Ull75, GJ79, SSDB94].

The work of Sun and Liu [SL95] addresses multi-processor real-time
systems where the application exhibits a particular form of precedence
relationships among tasks, namely the periodic job-shop model. Sun
and Liu have provided analytic bounds for the task response time under
such assumptions. The results, plus heuristics on how to assign fixed
priorities to tasks under the periodic job-shop model, are summarised in
Sun’s thesis [Sun97].

Audsley [Aud91] and Audsley et al. [ABR+93] provide a schedulabil-
ity analysis method based on the task response time analysis where the
tasks are allowed to be released at arbitrary time moments. Including
these jitters in the schedulability analysis provides for the analysis of
applications with precedence relationships among tasks. Tindell [Tin94]
and Tindell and Clark [TC94] extend this schedulability analysis by ap-
plying it to multi-processor systems coupled by time triggered communi-
cation links. Later on, Palencia Gutiérrez and González Harbour [PG98]
improved on Tindell’s work by allowing dynamic task offsets, obtaining
tighter bounds for task response times.
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The above mentioned work proved to be a fertile ground for the devel-
opment of scheduling algorithms and schedulability analysis for complex
real-world applications. Thus, the work of Eles et al. [EDPP00] and
P. Pop et al. [PEP99, PEP00] provides heuristic scheduling algorithms
for applications represented as conditional process graphs implemented
on a distributed system with a time triggered communication protocol.
T. Pop et al. [PEP02] further considered heterogeneous communica-
tion subsystems with both time triggered and event triggered protocols.
Work in the area of scheduling and schedulability analysis diversified
by considering particular communication protocols, like the Token Ring
protocol [SM89, Ple92], the FDDI network architecture [ACZD94], the
ATM protocol [EHS97, HST97], CAN bus [THW94, DF01], or TTP bus
[KFG+92].

For the case when the tasks are dynamically scheduled on the pro-
cessors in a multi-processor system, according to an EDF task priority
assignment, the reader is referred to the work of Spuri [Spu96a, Spu96b].

2.2 Systems with stochastic task execution

times

The main problem that was addressed by the work surveyed in this
section concerns the schedulability analysis when considering stochastic
task execution times and various kinds of task models.

2.2.1 Mono-processor systems

Atlas and Bestavros [AB98] extend the classical rate monotonic schedul-
ing policy with an admittance controller in order to handle tasks with
stochastic execution times. They analyse the quality of service of the re-
sulting schedule and its dependence on the admittance controller param-
eters. The approach is limited to rate monotonic analysis and assumes
the presence of an admission controller at run-time.

Abeni and Butazzo’s work [AB99] addresses both scheduling and
performance analysis of tasks with stochastic parameters. Their focus
is on how to schedule both hard and soft real-time tasks on the same
processor, in such a way that the hard ones are not disturbed by ill-
behaved soft tasks. The performance analysis method is used to assess
their proposed scheduling policy (constant bandwidth server), and is
restricted to the scope of their assumptions.



20 CHAPTER 2. BACKGROUND AND RELATED WORK

Tia et al. [TDS+95] assume a task model composed of independent
tasks. Two methods for performance analysis are given. One of them
is just an estimate and is demonstrated to be overly optimistic. In the
second method, a soft task is transformed into a deterministic task and
a sporadic one. The latter is executed only when the former exceeds the
promised execution time. The sporadic tasks are handled by a server
policy. The analysis is carried out on this model.

Zhou et al. [ZHS99] and Hu et al. [HZS01] root their work in Tia’s.
However, they do not intend to give per-task guarantees, but characterise
the fitness of the entire task set. Because they consider all possible
combinations of execution times of all requests up to a time moment,
the analysis can be applied only to small task sets due to complexity
reasons.

De Veciana et al. [dJG00] address a different type of problem. Having
a task graph and an imposed deadline, they determine the path that
has the highest probability to violate the deadline. The problem is then
reduced to a non-linear optimisation problem by using an approximation
of the convolution of the probability densities.

Lehoczky [Leh96] models the task set as a Markovian process. The
advantage of such an approach is that it is applicable to arbitrary schedul-
ing policies. The process state space is the vector of lead-times (time
left until the deadline). As this space is potentially infinite, Lehoczky
analyses it in heavy traffic conditions, when the system provides a sim-
ple solution. The main limitations of this approach are the non-realistic
assumptions about task inter-arrival and execution times.

Kalavade and Moghé [KM98] consider task graphs where the task ex-
ecution times are arbitrarily distributed over discrete sets. Their analysis
is based on Markovian stochastic processes too. Each state in the pro-
cess is characterised by the executed time and lead-time. The analysis
is performed by solving a system of linear equations. Because the exe-
cution time is allowed to take only a finite (most likely small) number
of values, such a set of equations is small.

2.2.2 Multi-processor systems

Burman has pioneered the ”heavy traffic” school of thought in the area
of queueing [Bur79]. Lehoczky later applied and extended it in the area
of real-time systems [Leh96, Leh97]. The theory was further extended
by Harrison and Nguyen [HN93], Williams [Wil98] and others [PKH01,
DLS01, DW93]. The application is modelled as a multi-class queueing
network. This network behaves as a reflected Brownian motion with
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drift under heavy traffic conditions, i.e. when the processor utilisations
approach 1, and therefore it has a simple solution.

Other researchers, such as Kleinberg et al. [KRT00] and Goel and In-
dyk [GI99], apply approximate solutions to problems exhibiting stochas-
tic behaviour but in the context of load balancing, bin packing and knap-
sack problems. Moreover, the probability distributions they consider are
limited to a few very particular cases.

Kim and Shin [KS96] modelled the application as a queueing network,
but restricted the task execution times to exponentially distributed ones,
which reduces the complexity of the analysis. The tasks were considered
to be scheduled according to a particular policy, namely FIFO. The
underlying mathematical model is then the appealing continuous time
Markov chain (CTMC).

Our work is mostly related to the ones of Zhou et al. [ZHS99] and Hu
et al. [HZS01], and Kalavade and Moghé [KM98]. Mostly, it differs by
considering less restricted application classes. As opposed to Kalavade
and Moghé’s work, we consider continuous ETPDFs. Also, we accept
a much larger class of scheduling policies than the fixed priority ones
considered by Zhou and Hu. Moreover, our original way of concurrently
constructing and analysing the underlying process, while keeping only
the needed stochastic process states in memory, allows us to consider
larger applications.

As far as we are aware, the heavy traffic theory fails yet to smoothly
apply to real-time systems. Not only that there are cases when such a
reflected Brownian motion with drift limit does not exist, as shown by
Dai [DW93], but also the heavy traffic phenomenon is observed only for
processor loads close to 1, leading to very long (infinite) queues of ready
tasks and implicitly to systems with very large latency. This aspect
makes the heavy traffic phenomenon undesirable in real-time systems.

In the context of multi-processor systems, our work significantly ex-
tends the one by Kim and Shin [KS96]. Thus, we consider arbitrary
ETPDFs (Kim and Shin consider exponential ones) and we address a
much larger class of scheduling policies (as opposed to FCFS considered
by them).

2.3 Elements of probability theory and

stochastic processes

This section informally introduces some of the probability theory con-
cepts needed in the following chapters. For a more formal treatment of
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the subject, the reader is referred to Appendix B and to J. L. Doob’s
“Measure Theory” [Doo94].

Consider a set of events. An event may be the arrival or the comple-
tion of a task, as well as a whole sequence of actions, as for example “task
τ starts at moment t1, and it is discarded at time moment t2”. A random
variable is a mapping that associates a real number to an event. The dis-
tribution of a random variable X is a real function F , F (x) = P(X ≤ x).
F (x) indicates what is the probability of the events that are mapped to
reals less than or equal to x. Obviously, F is monotone increasing and its
limit limx→∞ = 1. Its first derivative f(x) = dF (x)

dx is the probability den-
sity of the random variable. If the distribution function F is continuous,
the random variable it corresponds to is said to be continuous.

If P(X ≤ t + u|X > t) = P(X ≤ u) then X (or its distribution) is
memoryless. For example, if X is a finishing time of a task τ and X is
memoryless, then the probability that τ completes its execution before a
time moment t2, knowing that by time t1 it has not yet finished, is equal
to the probability of τ finishing in t2 − t1 time units. Hence, if the task
execution time is distributed according to a memoryless distribution, the
probability of τ finishing before t time units is independent of how much
it has run already.

If the distribution of a random variable X is F of the form F (t) = 1−
e−λt, then X is exponentially distributed. The exponential distribution
is the only continuous memoryless distribution.

A family of random variables {Xt : t ∈ I}1 is a stochastic process.
The set S of values of Xt form the state space of the stochastic process. If
I is a discrete set, then the stochastic process is a discrete time stochastic
process. Otherwise it is a continuous time stochastic process. If S is a
discrete set, the stochastic process is a discrete state process or a chain.
The interval between two consecutive state transitions in a stochastic
process denotes the state holding interval.

Consider a continuous time stochastic process {Xt : t ≥ 0} with
arbitrarily distributed state holding time probabilities and consider I
to be the ordered set (t1, t2, . . . , tk, . . . ) of time moments when a state
change occurs in the stochastic process. The discrete time stochastic
process {Xn : tn ∈ I} is the embedded discrete time process of {Xt : t ≥
0}.

We are interested in the steady state probability of a given state,
i.e. the probability of the stochastic process being in a given state in
the long run. This indicates also the percentage of time the stochastic
process spends in that particular state. The usefulness of this value

1Denoted also as {Xt}t∈I
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is highlighted in the following example. Consider a stochastic process
{Xt} where Xt = i indicates that the task τi is currently running. State
0 is the idle state, when no task is running. Let us assume that we
are interested in the expected rate of a transition from state 0 to state
i, that is, how many times per second the task τi is activated after a
period of idleness. If we know the average rate of the transition from
idleness (state 0) to τi running (state i) given that the processor is idle,
the desired value is computed by multiplying this rate by the percentage
of time the processor is indeed idle. This percentage is given by the
steady state probability of the state 0.

Consider a stochastic process {Xt : t ≥ 0}. If the probability that
the system is in a given state j at some time t + u in the future, given
that it is in state j at the present time t and that its past states Xs,
s < t, are known, is independent of these past states Xs (P(Xt+u =
j|Xt = i, Xs, 0 ≤ s < t, u > 0) = P(Xt+u = j|Xt = i, u > 0)), then
the stochastic process exhibits the Markov property and it is a Markov
process. Continuous time Markov chains are abbreviated CTMC and
discrete time ones are abbreviated DTMC. If the embedded discrete time
process of a continuous time process {Xt}t≥0 is a discrete time Markov
process, then {Xt}t≥0 is a semi-Markov process.

To exemplify, consider a stochastic process where Xt denotes the task
running on a processor at time t. The stochastic process is Markovian
if the probability of task τj running in the future does not depend on
which tasks have run in the past knowing that τi is running now.

It can be shown that a continuous time Markov process must have
exponentially distributed state holding interval length probabilities. If
we construct a stochastic process where Xt denotes the running task
at time moment t, then a state transition occurs when a new task is
scheduled on the processor. In this case, the state holding times corre-
spond to the task execution times. Therefore, such a process cannot be
Markovian if the task execution time probabilities are not exponentially
distributed.

The steady state probability vector can relatively simply be com-
puted by solving a linear system of equations in the case of Markov
processes (both discrete and continuous ones). This property, as well as
the fact that Markov processes are easier to conceptualise, makes them a
powerful instrument in the analysis of systems with stochastic behaviour.
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Chapter 3

Problem Formulation

In this chapter, we introduce the notations used throughout the thesis
and give an exact formulation of the problem. Some relaxations of the
assumptions introduced in this chapter and extensions of the problem
formulation will be further discussed in Chapter 6.

3.1 Notation

3.1.1 System architecture

Let PE = {PE1, PE2, . . . , PEp} be a set of p processing elements.
These can be programmable processors of any kind (general purpose,
controllers, DSPs, ASIPs, etc.). Let B = {B1, B2, . . . , Bl} be a set of l
buses connecting various processing elements of PE.

Unless explicitly stated, the two types of hardware resources, pro-
cessing elements and buses, will not be treated differently in the scope
of this thesis, and therefore they will be denoted with the general term
of processors. Let M = p + l and P = PE ∪ B = {P1, P2, . . . , PM} be
the set of processors.

3.1.2 Functionality

Let PT = {t1, t2, . . . , tn} be a set of n processing tasks. Let CT =
{χ1, χ2, . . . , χm} be a set of m communication tasks.

Unless explicitly stated, the processing and the communication tasks
will not be differently treated in the scope of this thesis, and therefore
they will be denoted with the general term of tasks. Let N = n+m and
T = PT ∪ CT = {τ1, τ2, . . . , τN} denote the set of tasks.

25
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Let G = {G1, G2, . . . , Gh} denote h task graphs. A task graph Gi =
(Vi, Ei ⊂ Vi ×Vi) is a directed acyclic graph (DAG) whose set of vertices
Vi is a non-empty subset of the set of tasks T . The sets Vi, 1 ≤ i ≤ h,
form a partition of T . There exists a directed edge (τi, τj) ∈ Ei if and
only if the task τj is data dependent on the task τi. This data dependency
imposes that the task τj is executed only after the task τi has completed
execution.

Let Gi = (Vi, Ei) and τk ∈ Vi. Then let ◦τk = {τj : (τj , τk) ∈ Ei}
denote the set of predecessor tasks of the task τi. Similarly, let τ◦

k =
{τj : (τk, τj) ∈ Ei} denote the set of successor tasks of the task τk. If
◦τk = ∅ then task τk is a root. If τ◦

k = ∅ then task τk is a leaf.
Obviously, some consistency rules have to apply. Thus, a commu-

nication task has to have exactly one predecessor task and exactly one
successor task, and these tasks have to be processing tasks.

Let Π = {π1, π2, . . . , πh} denote the set of task graph periods, or task
graph inter-arrival times. Each πi time units, a new instantiation of
task graph Gi demands execution. In the special case of mono-processor
systems, the concept of period will be applied to individual tasks, with
certain restrictions (see Section 6.1).

The real-time requirements are expressed in terms of relative dead-
lines. Let ∆ = {δ1, δ2, . . . , δh} denote the set of task graph deadlines. δi

is the deadline for task graph Gi = (Vi, Ei). If there is a task τ ∈ Vi

that has not completed its execution at the moment of the deadline δi,
then the entire graph Gi missed its deadline.

The deadlines are supposed to coincide with the arrival of the next
graph instantiation (δi = πi). This restriction will later be relaxed in
the case of mono-processor systems [Section 6.2].

If Di(t) denotes the number of missed deadlines of graph Gi over a
time span t and Ai(t) denotes the number of instantiations of graph Gi

over the same time span, then mi = limt→∞
Di(t)
Ai(t)

denotes the expected
deadline miss ratio of task graph Gi.

3.1.3 Mapping

Let MapP : PT → PE be a surjective function that maps processing
tasks on the processing elements. MapP (ti) = Pj indicates that process-
ing task ti is executed on the processing element Pj . Let MapC : CT →
B be a surjective function that maps communication tasks on buses.
MapC(χi) = Bj indicates that the communication task χi is performed
on the bus Bj . For notation simplicity, Map : T → P is defined, where
Map(τi) = MapP (τi) if τi ∈ PT and Map(τi) = MapC(τi) if τi ∈ CT .
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3.1.4 Execution times

Let Exi denote an execution time of an instantiation of the task ti. Let
ET = {ε1, ε2, . . . , εN} denote a set of N execution time probability den-
sity functions (ETPDFs). εi is the probability density of the execution
time (or communication time) of task (communication) τi on the proces-
sor (bus) Map(τi). The execution times are assumed to be statistically
independent.

3.1.5 Late tasks policy

If a task misses its deadline, the real-time operating system takes a
decision based on a designer-supplied late task policy. Let Bounds =
{b1, b2, . . . , bh} be a set of h integers greater than 0. The late task policy
specifies that at most bi instantiations of the task graph Gi are allowed in
the system at any time. If an instantiation of graph Gi demands execu-
tion when bi instantiations already exist in the system, the instantiation
with the earliest arrival time is discarded (eliminated) from the system.
An alternative to this late task policy will be discussed in Section 6.4

3.1.6 Scheduling

In the common case of more than one task mapped on the same proces-
sor, the designer has to decide on a scheduling policy. Such a scheduling
policy has to be able to unambiguously determine the running task at
any time on that processor.

Let an event denote a task arrival, departure or discarding. In order
to be acceptable in the context described in this thesis, a scheduling
policy is assumed to preserve the sorting of tasks according to their ex-
ecution priority between consecutive events (the priorities are allowed
to change in time, but the sorting of tasks according to their priorities
is allowed to change only at event times). All practically used prior-
ity based scheduling policies, both with static priority assignment (rate
monotonic, deadline monotonic) and with dynamic assignment (EDF,
LLF) fulfill this requirement. The scheduling policy is restricted to non-
preemptive scheduling.
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3.2 Problem formulation

This section gives the problem formulation.

3.2.1 Input

The following data is given as an input to the analysis procedure:

• The set of task graphs G,

• The set of processors P ,

• The mapping Map,

• The set of task graph periods Π,

• The set of task graph deadlines ∆,

• The set of execution time probability density functions ET ,

• The late task policy Bounds, and

• The scheduling policy.

3.2.2 Output

The result of the analysis is the set Missed = {m1, m2, . . . , mh} of
expected deadline miss ratios for each task graph.

The problem formulation is extended in Section 6.3 by including the
expected deadline miss ratios for each task in the results.

3.3 Example

Figure 3.1 depicts a hardware architecture consisting of the set PE of
three (p = 3) processing elements PE1 (white), PE2 (dashed), and PE3

(solid gray) and the set B of two (l = 2) communication buses B1 (thick

PE1 PE3
����
����
����
����PE2

B2

B1

Figure 3.1: System architecture
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Figure 3.2: Application graphs

hollow line) and B2 (thin line). The total number of processors M =
p + l = 5 in this case.

Figure 3.2 depicts an application that runs on the architecture given
above. The application consists of the set G of three (h = 3) task
graphs G1, G2, and G3. The set PT of processing tasks consists of ten
(n = 10) processing tasks t1, t2, . . . , t10. The set of communication tasks
CT consists of four (m = 4) communication tasks χ1, χ2, . . . , χ4. The
total number of tasks N = n + m = 14 in this case. According to the
affiliation to task graphs, the set T of tasks is partitioned as follows.
T = V1 ∪ V2 ∪ V3, V1 = {t1, t2, . . . , t5, χ1, χ2}, V2 = {t6, t7, t8, t9, χ3, χ4},
V3 = {t10}. The predecessor set of t3, for instance, is ◦t3 = {t1, χ1}
and its successor set is t◦3 = {t4, χ2}. The edge (t1, t3) indicates, for
example, that an instantiation of the task t3 may run only after an
instantiation of the task t1 belonging to the same task graph instantiation
has successfully completed its execution. The set of task graph periods Π
is {6, 4, 3}. This means that every π1 = 6 time units a new instantiation
of task graph G1 will demand execution. Each of the three task graphs
has an associated deadline, δ1, δ2 and δ3, and these deadlines are assumed
to be equal to the task graph periods π1, π2 and π3 respectively.

The tasks t1, t3, t4, and t9 (depicted as white circles) are mapped on
the processing element PE1, the tasks t2, t6, and t7 (depicted as dashed
circles) are mapped on the processing element PE2, and the tasks t5, t8,
and t10 (depicted as gray circles) are mapped on the processing element
PE3. The communication between t2 and t3 (the communication task
χ1) is mapped on the point-to-point link B2 whereas the other three
communication tasks share the bus B1.
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Figure 3.3: Execution time probability density functions example

Figure 3.3 depicts a couple of possible execution/communication time
probability density functions (ETPDFs). There is no restriction on the
supported type of probability density functions.

The late task policy is specified by the set of integers Bounds =
{1, 1, 2}. It indicates that, as soon as one instantiation of G1 or G2 is late,
that particular instantiation is discarded from the system (1 indicates
that only one instantiation of the graph is allowed in the system at the
same time). However, one instantiation of the graph G3 is tolerated to
be late (there may be two simultaneously active instantiations of G3).

A possible scheduling policy could be fixed priority scheduling, for
example. As the task priorities do not change, this policy obviously sat-
isfies the restriction that the sorting of tasks according to their priorities
must be unique between consecutive events.

A Gantt diagram illustrating a possible task execution over a span
of 20 time units is depicted in Figure 3.4. The different task graphs are
depicted in different shades in this figure. Note the two simultaneous
instantiations of t10 in the time span 9–9.375. Note also the discarding
of the task graph G1 happening at the time moment 12 due to the
lateness of task t5. It follows that the deadline miss ratio of G1 over the
interval [0, 18) is 1/3 (one instantiations out of three missed its deadline).
The deadline miss ratio of G3 over the same interval is 1/6, because
the instantiation that arrived at time moment 6 missed its deadline.
When analysing this system, the expected deadline miss ratio of G1 (the
ratio of the number instantiations that missed their deadline and the
total number of instantiations over an infinite time interval) is 0.4. The
expected deadline miss ratio of G3 is 0.08 and the one of G2 is 0.15.
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Figure 3.4: Gantt diagram
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Chapter 4

An Exact Solution for
Schedulability Analysis:
The Mono-processor
Case

This chapter presents an exact approach for determining the expected
deadline miss ratios of task graphs in the case of mono-processor sys-
tems. First, it describes the stochastic process underlying the applica-
tion, and shows how to construct such a stochastic process in order to
obtain a semi-Markov process. Next, it introduces the concept of priority
monotonicity intervals (PMIs) and shows how to significantly reduce the
problem complexity by making use of this concept. Then, the construc-
tion of the stochastic process and its analysis are illustrated by means
of an example. Finally, a more concise formulation of the algorithm is
given and experimental results are presented.

4.1 The underlying stochastic process

Let us consider the problem as defined in Section 3.2 and restrict it to
mono-processor systems, i.e. P = PE = {PE1}; B = ∅; CT = ∅;
Map(τi) = PE1, ∀τi ∈ T ; p = 1; l = 0; m = 0; and M = 1.

The goal of the analysis is to obtain the expected deadline miss ratios
of the task graphs. These can be derived from the behaviour of the
system. The behaviour is defined as the evolution of the system through

33
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a state space in time. A state of the system is given by the values of a
set of variables that characterise the system. Such variables may be the
currently running task, the set of ready tasks, the current time and the
start time of the current task, etc.

Due to the considered periodic task model, the task arrival times
are deterministically known. However, because of the stochastic task
execution times, the completion times and implicitly the running task
at an arbitrary time instant or the state of the system at that instant
cannot be deterministically predicted.

The mathematical abstraction best suited to describe and analyse
such a system with random character is the stochastic process.1 In the
sequel, several alternatives for constructing the underlying stochastic
process and its state space are illustrated and the most appropriate one
from the analysis point of view is finally selected.

The following example is used in order to discuss the construction
of the stochastic process. The system consists of one processor and the
following application: G = {({τ1}, ∅), ({τ2}, ∅)}, Π = {3, 5}, i.e. a set
of two independent tasks with corresponding periods 3 and 5. The tasks
are scheduled according to an EDF scheduling policy. For simplicity,
in this example it is assumed that a late task is immediately discarded
(b1 = b2 = 1). The application is observed over the time interval [0, 6].
At time moment 0 both tasks are ready to run and task τ1 is activated
because it has the closest deadline. Consider the following four possible
execution traces:

1. Task τ1 completes its execution at time moment t1 < 3. Task τ2

is then activated and, because it attempts to run longer than its
deadline 5, it is discarded at time moment 5. The instance of task
τ1 that arrived at time moment 3 is activated and it completes
its execution at time moment t2 < 6. At its completion time, the
instantiation of task τ2 that arrived at time moment 5 is activated.
Figure 4.1(a) illustrates a Gantt diagram corresponding to this
scenario.

2. The system behaves exactly like in the previous case until time
moment 5. In this scenario, however, the second instantiation of
task τ1 attempts to run longer than its deadline 6 and it is discarded
at 6. The new instance of task τ1 that arrived at time moment 6 is
then activated on the processor. This scenario corresponds to the
Gantt diagram in Figure 4.1(b).

1The mathematical concepts used in this thesis are informally introduced in Sec-
tion 2.3, and more formally in Appendix B.
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Figure 4.1: Four possible execution scenarios
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Figure 4.2: Part of the underlying stochastic process

3. Task τ1 is activated on the processor at time moment 0. As it
attempts to run longer than its deadline 3, it is discarded at this
time. Task τ2 is activated at time moment 3, but discarded at
time moment 5. The instantiation of task τ1 that arrived at time
moment 3 is activated at 5 and completes its execution at time
moment t2 < 6. The instantiation of τ2 that arrived at 5 is then
activated on the processor. The scenario is depicted in the Gantt
diagram in Figure 4.1(c).

4. The same execution trace as in the previous scenario until time
moment 5. In this scenario, however, the instantiation of the task
τ1 that was activated at 5 attempts to run longer than its deadline
6 and it is discarded at 6. The new instance of task τ1 that arrived
at time moment 6 is then activated on the processor. Figure 4.1(d)
illustrates the Gantt diagram corresponding to this scenario.

Let S denote the state space of the system and let a state consist of
the currently running task and the multiset (bag) of ready tasks at the
start time of the currently running task.2 Formally, S = {(τ, W ) : τ ∈
T, W ∈ set of all multisets of T }. Because there is an upper bound on
the number of concurrently active instantiations of the same task, the
set S is finite. Let {Xt : t ≥ 0} be the stochastic process with state space
S underlying the presented application, where Xt indicates the state of
the system at time t.

Figure 4.2 depicts a part of this stochastic process corresponding to
our example. The ovals in the figure denote the system states, while

2The ready tasks form a multiset rather than a set because there might be several
concurrently active instantiations of the same task in the system, as explained in
Chapter 3.
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Figure 4.3: Sample paths for scenarios 1 and 4

the arcs indicate the possible transitions between states. The states are
marked by the identifier near the ovals. The transition labels of form u.v
indicate the vth taken transition in the uth scenario. The first transition
in the first scenario is briefly explained in the following. At time moment
0, task τ1 starts running while τ2 is ready to run. Hence, the system state
is s1 = (τ1, {τ2}). In the first scenario, task τ1 completes execution at
time moment t1, when the ready task τ2 is started and there are no more
ready tasks. Hence, at time moment t1 the system takes the transition
s1 → s2 labelled with 1.1 (the first transition in the first scenario), where
s2 = (τ2, ∅).

The solid line in Figure 4.3 depicts the sample path corresponding to
scenario 1 while the dashed line represents the sample path of scenario 4.

The state holding intervals (the time intervals between two consecu-
tive state transitions) correspond to residual task execution times (how
much time it is left for a task to execute). In the general case, the ET-
PDFs can be arbitrary and do not exhibit the memorylessness property.
Therefore, the constructed stochastic process cannot be Markovian.

In a second attempt to find a more suitable underlying stochastic
process, we focus on the discrete time stochastic process embedded in
the process presented above. The sample functions for the embedded
discrete time stochastic process are depicted in Figure 4.4. Figure 4.4(a)
corresponds to scenario 1, while Figure 4.4(b) corresponds to scenario 4.
The depicted discrete sample paths are strobes of the piecewise contin-
uous sample paths in Figure 4.3 taken at state change moments.

Task τ1 misses its deadline when the transitions s1 → s3 or s1 →
s1 occur. Therefore, the probabilities of these transitions have to be
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Figure 4.4: Sample functions of the embedded chain
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Figure 4.5: Stochastic process with new state space

determined. It can be seen from the example that the transition s1 → s1

cannot occur as a first step in the scenario, but only if certain previous
steps have been performed (when, for example, the previous history is
s1 → s3 → s1). Thus, it is easy to observe that the probability of a
transition from a state is dependent not only on that particular state
but also on the history of previously taken transitions. Therefore, not
only the continuous time process is not Markovian, but neither is the
considered embedded discrete time chain.

However, by choosing another state space, it is possible to obtain
a Markovian embedded process. One could choose the following state
space definition: S = {(τ, W, t) : τ ∈ T, W ∈ set of all multisets of T, t ∈
R}, where τ represents the currently running task and W stands for the
multiset of ready tasks at the start time of the running task. The vari-
able t may have two interpretations, leading to different continuous time
stochastic processes but having the same underlying embedded discrete
time process. Thus, t may represent the current time, or it may stand
for the start time of the currently running task. In the sequel, the second
interpretation is used.

Figure 4.5 is a graphical representation of the stochastic process cor-
responding to the four scenarios, when choosing the state space as above.
Figure 4.6 depicts the sample functions for scenarios 1 and 4. A state
change would occur if the running task finished execution for some rea-
son. The ready tasks can be deduced from the old ready tasks and the
task instances arrived during the old tasks execution time. The new run-
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ning task can be selected considering the particular scheduling policy. As
all information needed for the scheduler to choose the next running task
is present in a state, the set of possible next states can be determined
regardless of the path to the current state. Moreover, as the task start
time appears in the state information, the probability of a next state can
be determined regardless of the past states.

For example, let us consider the two states s4 = (τ1, {τ2}, 5) (τ1 is
running, τ2 is ready, and τ1 has started at time moment 5), and s6 =
(τ1, {τ2}, 6) (τ1 is running, τ2 is ready and τ1 has started at time moment
6) in Figure 4.5. State s4 is left when the instantiation of τ1 which arrived
at time moment 3 and started executing at time moment 5 completes
execution for some reason. Transition s4 → s6 is taken if τ1 is discarded
because it attempts to run longer than its deadline 6. Therefore, the
probability of this transition equals the probability of task τ1 executing
for a time interval longer than 6 − 5 = 1 time unit, i.e. P(Ex(τ1) > 1).
Obviously, this probability does not depend on the past states of the
system.

Therefore, the embedded discrete time process is Markovian and,
implicitly, the continuous time process is a semi-Markov process.

As opposed to the process depicted in Figure 4.2, the time infor-
mation present in the state space of the process depicted in Figure 4.5
removes any ambiguity related to the exact instantiation which is run-
ning in a particular state. In Figure 4.2, the state s1 corresponds to s1,
s4 and s6 in Figure 4.5. In Figure 4.2, transition s1 → s1 corresponds
to s4 → s6 in Figure 4.5. However, in the case of the stochastic process
in Figure 4.2 it is not clear if the currently running task in state s1 (τ1)
is the instantiation that has arrived at time moment 0 or the one that
arrived at 3. In the first case, the transition s1 → s1 is impossible and
therefore has probability 0, while in the second case, the transition can
be taken and has non-zero probability.

4.2 Construction and analysis of the under-
lying stochastic process

Unfortunately, by introducing a continuous variable (the time) in the
state definition, the resulting continuous time stochastic process and
implicitly the embedded discrete time process become continuous (un-
countable) space processes which makes their analysis very difficult. In
principle, there may be as many next states as many possible execution
times the running task has. Even in the case when the task execution
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Figure 4.7: ETPDFs of tasks τ1 and τ2

time probabilities are distributed over a discrete set, the resulting un-
derlying process becomes prohibitively large.

In our approach, we have grouped time moments into equivalence
classes and, by doing so, we limited the process size explosion. Thus,
practically, a set of equivalent states is represented as a single state
in the stochastic process. Let us define LCM as the least common
multiple of the task periods. For the simplicity of the exposition, let
us first assume that the task instantiations are immediately discarded
when they miss their deadlines (bi = 1, ∀1 ≤ i ≤ h). Therefore, the time
moments 0, LCM, 2 · LCM, . . . , k · LCM, . . . are renewal points of the
underlying stochastic process and the analysis can be restricted to the
interval [0, LCM).

Let us consider the same application as in the previous section, i.e.
two independent tasks with respective periods 3 and 5 (LCM = 15). The
tasks are scheduled according to an EDF policy. The corresponding task



4.2. CONSTRUCTION AND ANALYSIS 43

pmi3pmi1 pmi2 pmi4 pmi5 pmi6 pmi7τ1

τ2

0 3 5 6 9 10 12 15

Figure 4.8: Priority monotonicity intervals

execution time probability density functions are depicted in Figure 4.7.
Note that ε1 contains execution times larger than the deadline.

As a first step to the analysis, the interval [0, LCM) is divided in
disjunct intervals, the so-called priority monotonicity intervals (PMI).
A PMI is delimited by the time moments a task instantiation may arrive
or may be discarded. Figure 4.8 depicts the PMIs for the example above.

Next, the stochastic process is constructed and analysed at the same
time. Let us assume a state representation like the one introduced in the
previous section. Each process state contains the identity of the currently
running task, its start time and the set of ready task at the start time
of the currently running one. t1, t2, . . . , tq in Figure 4.9(a) are possible
finishing times for the task τ1 and, implicitly, possible starting times of
the waiting instantiation of task τ2. The number of next states equals the
number of possible execution times of the running task in the current
state. The resulting process is extremely large (theoretically infinite,
practically depending on the discretisation resolution) and, in practice,
unsolvable. Therefore, we would like to group as many states as possible
in one equivalent state and still preserve the Markovian property.

Consider a state s characterised by (τi, W, t): τi is the currently run-
ning task, it has been started at time t, and W is the multiset of ready
tasks. Let us consider the next two states derived from s: s1 charac-
terised by (τj , W1, t1) and s2 with (τk, W2, t2). Let t1 and t2 belong
to the same PMI. This means that no task instantiation has arrived or
finished in the time interval between t1 and t2, no one has missed its
deadline, and the relative priorities of the tasks inside the set W have
not changed. Thus, τj = τk = the highest priority task in the multiset
W ; W1 = W2 = W\{τj}. It follows that all states derived from state
s that have their time t belonging to the same PMI have an identical
currently running task and identical sets of ready tasks. Therefore, in-
stead of considering individual times we consider time intervals, and we
group together those states that have their associated start time inside
the same PMI. With such a representation, the number of next states of
a state s equals the number of PMIs the possible execution time of the
task that runs in state s is spanning over.
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Figure 4.10: Stochastic process example

We propose a representation in which a stochastic process state is a
triplet (τ, W, pmi), where τ is the running task, W the multiset of ready
tasks, and pmi is the PMI containing the running task start time. In our
example, the execution time of task τ1 (which is in the interval [2, 3.5],
as shown in Figure 4.7(a)) is spanning over the PMIs pmi1— [0, 3)—and
pmi2—[3, 5). Thus, there are only two states emerging from the initial
state, as shown in Figure 4.9(b).

Let Pi, the set of predecessor states of a state si, denote the set of all
states that have si as a next state. The set of successor states of a state
si consists of those states that can be reached directly from state si.
With our proposed stochastic process representation, the time moment
a transition to a state si occurred is not determined exactly, as the task
execution times are known only probabilistically. However, a probability
density of this time can be deduced. Let zi denote this density function.
Then zi can be computed from the functions zj, where sj ∈ Pi, and the
ETPDFs of the tasks running in the states sj ∈ Pi.

Figure 4.10 depicts a part of the stochastic process constructed for our
example. The initial state is s1 : (τ1, {τ2}, pmi1). The first field indicates
that an instantiation of task τ1 is running. The second field indicates
that an instantiation of task τ2 is ready to execute. The third field shows
the current PMI (pmi1—[0, 3)). If the instantiation of task τ1 does not
complete until time moment 3, then it will be discarded. The state s1

has two possible next states. The first one is state s2 : (τ2, ∅, pmi1) and
corresponds to the case when the τ1 completes before time moment 3.
The second one is state s3 : (τ2, {τ1}, pmi2) and corresponds to the case
when τ1 was discarded at time moment 3. State s2 indicates that an
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instantiation of task τ2 is running (it is the instance that was waiting
in state s1), that the PMI is pmi1—[0, 3)—and that no task is waiting.
Consider state s2 to be the new current state. Then the next states could
be state s4 : (−, ∅, pmi1) (task τ2 completed before time moment 3 and
the processor is idle), state s5 : (τ1, ∅, pmi2) (task τ2 completed at a
time moment somewhere between 3 and 5), or state s6 : (τ1, {τ2}, pmi3)
(the execution of task τ2 reached over time moment 5, and hence it was
discarded at time moment 5). The construction procedure continues
until all possible states corresponding to the time interval [0, LCM), i.e.
[0, 15) have been visited.

A function zi is the probability density function of the times when
the system takes a transition to state si. z2, z3, z4, z5, and z6 are shown
in Figure 4.10 to the left of their corresponding states s2, s3, . . . , s6 re-
spectively. The transition from state s4 to state s5 occurs at a precisely
known time instant, time 3, at which a new instantiation of task τ1 ar-
rives. Therefore, z5 will contain a scaled Dirac impulse at the beginning
of the corresponding PMI. The scaling coefficient equals the probability
of being in state s4 (the integral of z4, i.e. the shaded surface below the
z4 curve). The probability density function z5 results from the superpo-
sition of z2∗ε2 (because task τ2 runs in state s2) with z3∗ε2 (because task
τ2 runs in state s3 too) and with the aforementioned scaled Dirac impulse
over pmi2, i.e. over the time interval [3, 5). With ∗, we denote the con-
volution of two probability densities, i.e. (z ∗ ε)(t) =

∫∞
0 z(t−x) ·ε(x)dx.

The embedded process being Markovian, the probabilities of the tran-
sitions out of a state si are computed exclusively from the information
stored in that state si. For example, the probability of the transition
from state s2 to state s5 (see Figure 4.10) is given by the probability
that the transition occurs at some time moment in the PMI of state s5

(the interval [3, 5)). This probability is computed by integrating z2 ∗ ε2
over the interval [3, 5). The probability of a task missing its deadline
is easily computed from the transition probabilities of those transitions
that correspond to a discarding of a task instantiation (the thick arrows
in Figure 4.10, in our case). For example, let us consider the transi-
tion s2 → s6. The system enters state s2 at a time whose probability
density is given by z2. The system takes the transition s2 → s6 when
the attempted completion time of τ2 (running in s2) exceeds 5. The
completion time is the sum of the starting time of τ2 (whose probability
density is given by z2) and the execution time of τ2 (whose probability
density is given by ε2). Hence, the probability density of the completion
time of τ2 is given by the convolution of the above mentioned densities.
Once this density is computed, the probability of the completion time
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being larger than 5 is easily computed by integrating the result of the
convolution over the interval [5,∞).

As it can be seen, by using the PMI approach, some process states
have more than one incident arc, thus keeping the graph “narrow”. This
is because, as mentioned, one process state in our representation captures
several possible states of a representation considering individual times
(see Figure 4.9(a)).

Because the number of states grows rapidly and each state has to
store its probability density function, the memory space required to
store the whole process can become prohibitively large. Our solution
to mastering memory complexity is to perform the stochastic process
construction and analysis simultaneously. As each arrow updates the
time probability density of the state it leads to, the process has to be
constructed in topological order. The result of this procedure is that
the process is never stored entirely in memory but rather that a sliding
window of states is used for analysis. For the example in Figure 4.10, the
construction starts with state s1. After its next states (s2 and s3) are
created, their corresponding transition probabilities determined and the
possible discarding probabilities accounted for, state s1 can be removed
from memory. Next, one of the states s2 and s3 is taken as current state,
let us consider state s2. The procedure is repeated, states s4, s5 and s6

are created and state s2 removed. At this moment, the arcs emerging
from states s3 and s4 have not yet been created. Consequently, one
would think that any of the states s3, s4, s5, and s6 can be selected for
continuation of the analysis. Obviously, this is not the case, as not all
the information needed in order to handle states s5 and s6 are computed
(in particular those coming from s3 and s4). Thus, only states s3 and
s4 are possible alternatives for the continuation of the analysis in topo-
logical order. The next section discusses the criteria for selection of the
correct state to continue with.

4.3 Memory efficient analysis method

As shown in the example in Section 4.2, only a sliding window of states is
simultaneously kept in memory. All states belonging to the sliding win-
dow are stored in a priority queue. The key to the process construction
in topological order lies in the order in which the states are extracted
from this queue. First, observe that it is impossible for an arc to lead
from a state with a PMI number u to a state with a PMI number v so
that v < u (there are no arcs back in time). Hence, a first criterion for
selecting a state from the queue is to select the one with the smallest
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PMI number. A second criterion determines which state has to be se-
lected out of those with the same PMI number. Note that inside a PMI
no new task instantiation can arrive, and that the task ordering accord-
ing to their priorities is unchanged. Thus, it is impossible that the next
state sk of a current state sj would be one that contains waiting tasks
of higher priority than those waiting in sj. Hence, the second criterion
reads: among states with the same PMI, one should choose the one with
the waiting task of highest priority. Figure 4.11 illustrates the algorithm
on the example given in Section 4.2 (Figure 4.10). The shades of the
states denote their PMI number. The lighter the shade, the smaller the
PMI number. The numbers near the states denote the sequence in which
the states are extracted from the queue and processed.

4.4 Flexible discarding

The examples considered so far dealt with applications where a late task
is immediately discarded (bi = 1, 1 ≤ i ≤ h, i.e. at most one active
instance of each task graph is allowed at any moment of time).

In this case, all the late tasks are discarded at the time moments
LCM, 2 ·LCM, . . . , k ·LCM, . . . because at these moments new instan-
tiations of all tasks arrive. The system behaves at these time moments as
if it has just been started. The time moments k ·LCM , k ∈ N are called
renewal points. The system states at the renewal points are equivalent
to the initial state which is unique and deterministically known. Thus,
the behaviour of the system over the intervals [k ·LCM, (k + 1) ·LCM),
k ∈ N, is statistically equivalent to the behaviour over the time interval
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[0, LCM). Therefore, in the case when bi = 1, 1 ≤ i ≤ h, it is sufficient
to analyse the system solely over the time interval [0, LCM).

In order to illustrate the construction of the stochastic process in
the case bi > 1, when several instantiations of a task graph Gi may
exist at the same time in the system, let us consider an application
consisting of two independent tasks, τ1 and τ2, with periods 2 and 4
respectively. LCM = 4 in this case. The tasks are scheduled according
to an RM policy. At most one active instantiation of τ1 is tolerated
in the system at a certain time (b1 = 1) and at most two concurrently
active instantiations of τ2 are tolerated in the system (b2 = 2).

Figure 4.12 depicts a part of the stochastic process underlying this
example application. It was constructed using the procedure sketched
in Sections 4.2 and 4.3. The state indexes show the order in which the
states were analysed (extracted from the priority queue mentioned in
Section 4.3).

Let us consider state s6 = (τ2, ∅, [2, 4)), i.e. the instantiation of
τ2 that arrived at time moment 0 has been started sometimes between
the time moments 2 and 4 and there have not been any ready tasks
at the start time of τ2. Let us assume that the finishing time of τ2

lies past the LCM (4). At time moment 4, a new instantiation of τ2

arrives and the running instantiation is not discarded, as b2 = 2. On one
hand, if the finishing time of the running instantiation belongs to the
interval [6, 8), the system performs the transition s6 → s14 (Figure 4.12).
If, on the other hand, the running instantiation attempts to run past
the time moment 8, then at this time moment a third instantiation of
τ2 would concurrently require service from the system and, therefore,
the running task (the oldest instantiation of τ2) is eliminated from the
system. The transition s6 → s19 in the stochastic process in Figure 4.12
corresponds to this latter case. We observe that when a task execution
spans beyond the time moment LCM , the resulting state is not unique.
The system does not behave as if it has just been restarted at time
moment LCM , and, therefore, the intervals [k · LCM, (k + 1) · LCM),
k ∈ N, are not statistically equivalent to the interval [0, LCM). Hence,
it is not sufficient to analyse the system over the interval [0, LCM) but
rather over several consecutive intervals of length LCM .

Let an interval of the form [k · LCM, (k + 1) · LCM) be called the
hyperperiod k and denoted Hk. Hk′ is a lower hyperperiod than Hk

(Hk′ < Hk) if k′ < k. Consecutively, Hk is a higher hyperperiod than
Hk′ (Hk > Hk′ ) if k > k′.

For brevity, we say that a state s belongs to a hyperperiod k (denoted
s ∈ Hk) if its PMI field is a subinterval of the hyperperiod k. In our
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plication
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example, three hyperperiods are considered, H0 = [0, 4), H1 = [4, 8), and
H2 = [8, 12). In the stochastic process in Figure 4.12, s1, s2, . . . , s7 ∈ H0,
s8, s9, . . . , s18 ∈ H1, and s19, s20, s25 ∈ H2 (node that not all states have
been depicted in Figure 4.12).

In general, let us consider a state s and let Ps be the set of its
predecessor states. Let k denote the order of the state s defined as the
lowest hyperperiod of the states in Ps (k = min{j : s′ ∈ Hj , s

′ ∈ Ps}).
If s ∈ Hk and s is of order k′ and k′ < k, then s is a back state.In our
example, s8, s9, s14, and s19 are back states of order 0, while s20, s25

and s30 are back states of order 1.
Obviously, there cannot be any transition from a state belonging to

a hyperperiod H to a state belonging to a lower hyperperiod than H
(s → s′, s ∈ Hk, s′ ∈ Hk′ ⇒ Hk ≤ Hk′ ). Consequently, the set S of
all states belonging to a hyperperiod Hk can be constructed from the
back states of an order smaller than k. We say that S is generated
by the aforementioned back states. For example, the set of all states
s8, s9, . . . , s18 ∈ H1 can be derived from the back states s8, s9, s14, and
s19 of order 0. The intuition behind this is that back states are inheriting
all the needed information across the border between hyperperiods.

Before continuing our discussion, we have to introduce the notion of
similarity between states. We say that two states si and sj are similar
(si ∼ sj) if

1. The task which is running in si and sj is the same,

2. The multiset of ready tasks in si and sj is the same,

3. The PMIs in the two states differ only by a multiple of LCM ,

4. zi = zj (zi is the probability density function of the times when
the system takes a transition to si).

Let us consider the construction and analysis of the stochastic pro-
cess, as described in Sections 4.2 and 4.3. Let us consider the moment
x, when the last state belonging to a certain hyperperiod Hk has been
eliminated from the sliding window. Rk is the set of back states stored in
the sliding window at the moment x. Let the analysis proceed with the
states of the hyperperiod Hk+1 and let us consider the moment y when
the last state belonging to Hk+1 has been eliminated from the sliding
window. Let Rk+1 be the set of back states stored in the sliding window
at moment y.

If the sets Rk and Rk+1 contain pairwise similar states, then it is guar-
anteed that Rk and Rk+1 generate identical stochastic processes during
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the rest of the analysis procedure (as stated, at a certain moment the set
of back states univocally determines the rest of the stochastic process).
In our example, R0 = {s8, s9, s14, s19} and R1 = {s19, s20, s25, s30}. If
s8 ∼ s19, s9 ∼ s20, s14 ∼ s25, and s19 ∼ s30 then the analysis process
may stop as it reached convergence.

Consequently, the analysis proceeds by considering states of consec-
utive hyperperiods until the information captured by the back states in
the sliding window does not change anymore. Whenever the underlying
stochastic process has a steady state, this steady state is guaranteed to
be found.

4.5 Construction and analysis algorithm

The analysis is performed in two phases:

1. Divide the interval [0, LCM) in PMIs,

2. Construct the stochastic process in topological order and analyse
it.

The concept of PMI (called in their paper “state”) was introduced by
Zhou et al.[ZHS99] in a different context, unrelated to the construction
of a stochastic process. Let Ai denote the set of time moments in the
interval [0, LCM) when a new instantiation of the task τi arrives and let
A denote the union of all Ai. Let Di denote the set of absolute deadlines
of the instantiations of task τi in the interval [0, LCM), and D be the
union of all Di . Consequently,

Ai = {x : x = k · πi, 0 ≤ k < LCM/πi}
Di = {x : x = δi + k · πi, 0 ≤ k < LCM/πi}

If the deadlines are assumed to equal the periods, then Di = Ai (the
moment 0 is assumed to be the deadline of the instantiation arrived at
moment −πi.

Let H = A ∪ D. If H is sorted in ascending order of the time mo-
ments, then a priority monotonicity interval is the interval between two
consecutive time moments in H . The last PMI is the interval between
the greatest element in H and LCM . The only restriction imposed on
the scheduling policies accepted by our approach is that inside a PMI the
ordering of tasks according to their priorities is not allowed to change.
The consequence of this assumption is that the next state can be deter-
mined, no matter when the currently running task completes within the
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divide [0, LCM) in PMIs;
pmi no = number of PMIs between 0 and LCM ;
put first state in the priority queue pqueue;
k = 1;
Rold = ∅; // Rold is the set of densities z

// of the back states after iteration k
(Rnew, Missed) = construct and analyse(); // Missed is the set

// of expected deadline miss ratios

do
k = k + 1;
Rold = Rnew;
(Rnew , Missed) = construct and analyse();

while Rnew 6= Rold;

construct and analyse:
while ∃s ∈ pqueue such that s.pmi ≤ pmi no do

sj = extract state from pqueue;
τi = sj .running; // first field of the state

ξ = convolute(εi, zj);
nextstatelist = next states(sj); // consider task dependencies!

for each su ∈ nextstatelist do
compute the probability of the transition

from sj to su using ξ;
update deadline miss probabilities Missed;
update zu;
if su 6∈ pqueue then

put su in the pqueue;
end if;
if su is a back state and su 6∈ Rnew then

Rnew = Rnew ∪ {su};
end if;

end for;
delete state sj;

end while;
return (Rnew , Missed);

Figure 4.13: Construction and analysis algorithm
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PMI. All the widely used scheduling policies we are aware of (RM, EDF,
FCFS, LLF, etc.) exhibit this property.

The algorithm proceeds as discussed in Sections 4.2, 4.3 and 4.4. An
essential point is the construction of the process in topological order,
which allows only parts of the states to be stored in memory at any mo-
ment. The algorithm for the stochastic process construction is depicted
in Figure 4.13.

A global priority queue stores the states in the sliding window. The
state priorities are assigned as shown in Section 4.3. The initial state of
the stochastic process is put in the queue. The explanation of the algo-
rithm is focused on the construct and analyse procedure. It extracts
one state at the time from the queue. Let sj = (τi, Wi, pmii) be such a
state. The probability density of the time when a transition occurred to
sj is given by the function zj. The priority scheme of the priority queue
ensures that sj is extracted from the queue only after all the possible
transitions to sj have been considered, and thus zj contains accurate
information. In order to obtain the probability density of the time when
task τi completes its execution, the density of its starting time (zj) and
the ETPDF of τi (εi) have to be convoluted. Let ξ be the density result-
ing from the convolution. ξ is used to determine the PMIs the execution
of τi may span over. For each of those PMIs, based on Wi, on the set of
task instantiations that have arrived during the runtime of τi, and tak-
ing into consideration the precedence relationships between the tasks,
the new running task as well as the new multiset of ready tasks are com-
puted resulting in a set of states nextstatelist. The probability densities
of the times a transition to su ∈ nextstatelist is taken, zu, are updated
based on ξ. The state su is then added to the priority queue and sj

removed from memory. This procedure is repeated until no more states
in the queue have their PMI field in the range 0, . . . , pmi no (until there
is no task instantiation that started its execution between 0 and LCM).
Once such a situation is reached, partial results, corresponding to an in-
terval of length [0, LCM) are available and the construct and analyse
procedure returns. The construct and analyse procedure is repeated
until the set of back states R does not change anymore.

4.6 Experiments

The most computation intensive part of the analysis is the computation
of the convolutions zi ∗ εj . In our implementation we used the FFTW
library [FJ98] for performing convolutions based on the Fast Fourier
Transform. The number of convolutions to be performed equals the



4.6. EXPERIMENTS 55

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

10 11 12 13 14 15 16 17 18 19

S
to

ch
as

tic
 p

ro
ce

ss
 s

iz
e

Number of tasks

a=15.0
a=8.8

a=10.9
a=4.8

Figure 4.14: Stochastic process size vs. number of tasks

number of states of the stochastic process. The memory required for
analysis is determined by the maximum number of states in the sliding
window. The main factors on which the stochastic process depends are
LCM (the least common multiple of the task periods), the number of
PMIs, the number of tasks N , the task dependencies, and the maximum
allowed number of concurrently active instantiations of the same task
graph.

As the selection of the next running task is unique, given the pend-
ing tasks and the time moment, the particular scheduling policy has a
reduced impact on the process size. On the other hand, the task depen-
dencies play a significant role, as they strongly influence the set of ready
tasks and by this the process size.

In the following, we report on four sets of experiments. The aspects
of interest were the stochastic process size, as it determines the analysis
execution time, and the maximum size of the sliding window, as it de-
termines the memory space required for the analysis. All experiments
were performed on an UltraSPARC 10 at 450 MHz.

In the first set of experiments we analysed the impact of the number
of tasks on the process size. We considered task sets of 10 up to 19
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Figure 4.15: Size of the sliding window of states vs. number of tasks

independent tasks. LCM , the least common multiple of the task periods,
was 360 for all task sets. We repeated the experiment four times for
average values of the task periods a = 15.0, 10.9, 8.8, and 4.8 (keeping
LCM = 360). The results are shown in Figure 4.14. Figure 4.15 depicts
the maximum size of the sliding window for the same task sets. As it can
be seen from the diagram, the increase, both of the process size and of the
sliding window, is linear. The steepness of the curves depends on the task
periods (which influence the number of PMIs). It is important to notice
the big difference between the process size and the maximum number
of states in the sliding window. In the case for 19 tasks, for example,
the process size is between 64356 and 198356 while the dimension of the
sliding window varies between 373 and 11883 (16 to 172 times smaller).
The reduction factor of the sliding window compared to the process size
was between 15 and 1914, considering all our experiments.

In the second set of experiments we analysed the impact of the ap-
plication period LCM (the least common multiple of the task periods)
on the process size. We considered 784 sets, each of 20 independent
tasks. The task periods were chosen such that LCM takes values in the
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Figure 4.16: Stochastic process size vs. application period LCM

interval [1, 5040]. Figure 4.16 shows the variation of the average process
size with the application period.

With the third set of experiments we analysed the impact of task
dependencies on the process size. A task set of 200 tasks with strong
dependencies (28000 arcs) among the tasks was initially created. The
application period LCM was 360. Then 9 new task graphs were suc-
cessively derived from the first one by uniformly removing dependencies
between the tasks until we finally got a set of 200 independent tasks.
The results are depicted in Figure 4.17 with a logarithmic scale for the
y axis. The x axis represents the degree of dependencies among the
tasks (0 for independent tasks, 9 for the initial task set with the highest
amount of dependencies).

In the fourth set of experiments, the impact of the average number of
concurrently active instantiations of the same task graph on the stochas-
tic process size was analysed. 18 sets of task graphs containing between
12 and 27 tasks grouped in 2 to 9 task graphs were randomly generated.
Each task set was analysed between 9 and 16 times considering different
upper bounds for the maximum allowed number of concurrently active
task graph instantiations. These upper bounds ranged from 1 to 3. The



58 CHAPTER 4. EXACT SOLUTION

1000

10000

100000

1e+06

0 1 2 3 4 5 6 7 8 9

S
to

ch
as

tic
 p

ro
ce

ss
 s

iz
e

Dependency degree

Figure 4.17: Stochastic process size vs. task dependency degree

results were averaged for the same number of tasks. The dependency of
the underlying stochastic process size as a function of the average of the
maximum allowed number of instantiations of the same task graph that
are concurrently active is plotted in Figure 4.18. Note that the y-axis
is logarithmic. Different curves correspond to different sizes of the con-
sidered task sets. It can be observed that the stochastic process size is
approximately linear in the average of the maximum allowed number of
concurrently active instantiations of the same task graph.

As mentioned, the execution time for the analysis algorithm strictly
depends on the process size. Therefore, we showed all the results in
terms of this parameter. For the set of 200 independent tasks used in
the third experiment (process size 1126517, Figure 4.17) the analysis
time was 745 seconds. In the case of the same 200 tasks with strong
dependencies (process size 2178) the analysis took 1.4 seconds.

Finally, we considered an example from the mobile communication
area. Figure 4.19 depicts a set of 8 tasks that co-operate in order to
decode the digital bursts corresponding to a GSM 900 signalling channel.
The incoming bursts are demodulated by the demodulation task, based
on the frequency indexes generated by the frequency hopping task. The
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DeinterleavingConvolutional
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Figure 4.19: Decoding of a GSM dedicated signalling channel
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demodulated bursts are disassembled by the disassembling task. The
resulting digital blocks are deciphered by the deciphering task based on
a key generated by the A5 task. The deciphered block proceeds through
bit deinterleaving, convolutional decoding (Viterbi decoding) and the
so called fire decoding. The whole application runs on a single DSP
processor.

In this example, there are two sources of variation in execution times.
The demodulating task has both data and control intensive behaviour,
which can cause pipeline hazards on the deeply pipelined DSP it runs
on. Its execution time probability density is derived from the input
data streams and measurements. Another task will finally implement a
deciphering unit. Due to the lack of knowledge about the deciphering
algorithm A5 (its specification is not publicly available), the deciphering
task execution time is considered to be uniformly distributed between
an upper and a lower bound.

When two channels are scheduled on the DSP, the ratio of missed
deadlines is 0 (all deadlines are met). Considering three channels as-
signed to the same processor, the analysis produced a ratio of missed
deadlines, which was below the one enforced by the required QoS. It is
important to note that using a hard real-time model with WCET, the
system with three channels would result as unschedulable on the selected
DSP. The underlying stochastic process for the three channels had 130
nodes and its analysis took 0.01 seconds. The small number of nodes is
caused by the strong harmony among the task periods, imposed by the
GSM standard.



Chapter 5

An Approximate
Solution for
Schedulability Analysis:
The Multi-processor
Case

When analysing multi-processor applications, one approach could be to
decompose the analysis problem into several subproblems, each of them
analysing the tasks mapped on one of the processors. We could attempt
to apply the exact approach presented in the previous chapter in order
to solve each of the subproblems. Unfortunately, in the case of multi-
processors and with the assumption of data dependencies among tasks,
this approach cannot be applied. The reason is that the set of ready
tasks cannot be determined based solely on the information regarding
the tasks mapped on the processor under consideration.

An alternative approach would be to consider all the tasks and to
construct the global state space of the underlying stochastic process
accordingly. In principle, the exact approach presented in the previous
chapter could be applied in this case. However, the number of possible
execution traces, and implicitly the stochastic process, explodes due to
the parallelism provided by the application platform. As shown, the
analysis has to store the probability distributions zi for each process
state in the sliding window of states, leading to large amounts of needed

61
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memory and limiting the appropriateness of this approach to very small
multi-processor applications. Moreover, the number of convolutions zi ∗
εj would also explode, leading to prohibitive analysis times.

The challenge taken in this chapter is to analyse a multi-processor
system with acceptable accuracy without the need to explicitly store
and compute the memory consuming distributions zi and to avoid the
computations of the convolutions.

Thus, the generalised task execution time probability distributions
are approximated by weighted sums of convoluted exponential distribu-
tions, leading to a large continuous time Markov chain (as opposed to
semi-Markov processes in the previously presented approach). Such a
Markov chain is much larger, but, as the state holding times probability
distributions are exponential, there is no need to explicitly store their
distributions, leading to a much more efficient use of the analysis mem-
ory. Moreover, by construction, the Markov chain exhibits regularities in
its structure. These regularities are exploited during the analysis such
that the infinitesimal generator of the chain is constructed on-the-fly,
saving additional amounts of memory. In addition, the solution of the
continuous time Markov chain does not imply any computation of convo-
lutions. As a result, multi-processor applications of realistic size may be
analysed with sufficient accuracy. Moreover, by controlling the precision
of the approximation of the ETPDFs, the designer may trade analysis
resources for accuracy.

5.1 Approach outline

In order to extract the desired performance metrics, the underlying
stochastic process corresponding to the application has to be constructed
and analysed. When considering arbitrary execution time probability
distribution functions, the resulting process is a semi-Markov process,
making the analysis extremely demanding in terms of memory and time.
If the execution time probabilities were exponentially distributed, as as-
sumed for instance by Kim and Shin [KS96], the process would be a
continuous time Markov chain which would be easier to solve.

The outline of our approach is depicted in Figure 5.1. As a first step,
we generate a model of the application as a Generalised Stochastic Petri
Net (GSPN). We use this term in a broader sense than the one defined
by Balbo [BCFR87], allowing arbitrary probability distributions for the
firing delays of the timed transitions. This step is detailed in the next
section.
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The second step implies the approximation of the arbitrary real-world
ETPDFs with Coxian distributions, i.e. weighted sums of convoluted
exponential distributions. Some details regarding Coxian distributions
and the approximation process follow in Section 5.3.

In the third step, the tangible reachability graph of the GSPN is ob-
tained. Its nodes correspond to states in a semi-Markov process (SMP).
Directly analysing this process is practically impossible (because of time
and memory complexity) for even small toy examples if they are imple-
mented on multiprocessor systems. Therefore, the states of this process
are substituted by sets of states based on the approximations obtained
in the second step. The transitions of the SMP are substituted by transi-
tions with exponentially distributed firing interval probabilities from the
Coxian distributions. What results is a CTMC, however much larger
than the SMP. The construction procedure of the CTMC is detailed in
Section 5.4.

As a last step, the obtained CTMC is solved and the performance
metrics extracted.

5.2 Intermediate model generation

As a first step, starting from the task graph model given by the de-
signer, an intermediate model based on Generalised Stochastic Petri Nets
(GSPN) [BCFR87] is generated. Such a model allows an efficient and
elegant capturing of the characteristics of the application and of the
scheduling policy. It constitutes also an appropriate starting point for
the generation of the CTMC, to be discussed in the following sections.

A classical GSPN, as introduced by Balbo [BCFR87], contains timed
transitions with exponentially distributed firing delay probabilities and
immediate transitions, with a deterministic zero firing delay. The im-
mediate transitions may have associated priorities. A tangible marking
is one in which no immediate transitions are enabled. Such a marking
can be directly reached from another tangible marking by firing exactly
one timed transition followed by a possibly empty sequence of immediate
transition firings, until no more immediate transitions are enabled. The
tangible reachability graph (TRG) contains the tangible markings of the
GSPN. An edge in the TRG is labelled with the timed transition that
triggers the marking change. Each marking in the TRG corresponds to
a state in the underlying stochastic process. If all the timed transitions
have exponentially distributed firing delay probabilities, as it is the case
in the classical definition of the GSPN, then the underlying stochastic
process is a CTMC.
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τ1
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τ3

τ4

Figure 5.2: Task graphs

We use the term GSPN in a broader sense, allowing arbitrary proba-
bility distributions of the transition firing delays. In this case, the TRG
of the net corresponds to a semi-Markov process.

We illustrate the construction of the GSPN based on an example.
Let us consider the task graphs in Figure 5.2. Tasks τ1, τ2 and τ3 form
graph G1 while G2 consists of task τ4. τ1 and τ2 are mapped on proces-
sor P1 and τ3 and t4 on processor P2 . The task priorities are 1, 2, 2,
1 respectively. The task graph G1 has period π1 and G2 has period π2.
For simplicity, in this example, we ignore the communication tasks. The
GSPN corresponding to the example is depicted in Figure 5.3. Timed
transitions are depicted as solid rectangles. Immediate transitions ap-
pear as lines possibly annotated by the associated priority. If a timed
transition ei is enabled, it means that an instantiation of the task τi is
running. The probability distribution of the firing delay of transition ei

is equal to the ETPDF of task τi. As soon as ei fires, it means that the
instantiation of τi completed execution and leaves the system. The task
priorities are modelled by prioritising the immediate transitions ji.

The periodic arrival of graph instantiations is modelled by means of
the transition Gen with the deterministic delay T ick. Gen fires every
T ick time units, where T ick is the greatest common divisor of the graph
periods. As soon as Gen has fired πi/T ick times, the transition vi fires
and a new instantiation of task graph Gi demands execution. (In our
example, we considered π1/T ick = 3 and π2/T ick = 2.)

The place Bndi is initially marked with bi tokens, meaning that at
most bi concurrent instantiations of Gi are allowed in the system. When-
ever a new instantiation arrives (vi fires), if Bndi does not contain bi

tokens, it means that there is at least one instantiation that is still run-
ning. In such case, because the task graph deadlines are equal to the
task graph periods, by assumption, it follows that the running instantia-
tion missed its deadline. If Bndi contains no tokens at all when vi fires,
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then the maximum number of instantiations of Gi are already present
in the system and, therefore, the oldest one will be discarded. This is
modelled by firing the immediate transition dsci and marking the places
cj , where one such place cj corresponds to each task in Gi. The token in
cj will attempt to remove from the system an already completed task (a
token from dj), or a running task (a token from rj), or a ready task (a
token from akj), in this order. The transitions wi have a higher priority
than the transitions dsci, in order to ensure that a instantiation of Gi

is discarded only when Bndi contains no tokens (there already are bi

concurrently active instantiations of Gi in the system). The structure of
the GSPN is such that a newly arrived instantiation is always accepted
in the system.

In our example, the mutual exclusion of the execution of tasks mapped
on the same processor is modelled by means of the places Proc1 and
Proc2. The data dependencies among the tasks are modelled by the
arcs e2 → a23, e1 → a13 and e1 → a12. Once a task graph instantiation
leaves the system (the places dj are marked), a token is added to Bndi.

The underlying SMP is extracted from the Petri Net by building
its tangible reachability graph. The SMP is then approximated with a
CTMC by replacing the arbitrary probability distributions of the task
execution times (firing delay probability distributions of the timed tran-
sitions ei) with Coxian distributions. This is further discussed in Sec-
tion 5.3 and Section 5.4.

5.3 Coxian distribution approximation

Coxian distributions were introduced by Cox [Cox55] in the context of
queueing theory. A Coxian distribution of r stages is a weighted sum
of convoluted exponential distributions. The Laplace transform of the
probability density of a Coxian distribution with r stages is given below:

X(s) =
r∑

i=1

αi ·
i−1∏
k=1

(1 − αi) ·
i∏

k=1

µk

s + µk

X(s) is a strictly proper rational transform, implying that the Coxian
distribution may approximate a fairly large class of arbitrary distribu-
tions with an arbitrary accuracy provided a sufficiently large r.

Figure 5.4 illustrates the way we are using Coxian distributions in
our approach. Let us consider the timed transition with a certain proba-
bility distribution of its firing delay in Figure 5.4(a). This transition can
be replaced by the Petri Net in Figure 5.4(b), where hollow rectangles
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α1µ1(1−α1)µ1

2(1−α2)µ α2µ2
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Figure 5.4: Coxian approximation with three stages
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represent timed transitions with exponential firing delay probability dis-
tribution. The annotations near those transitions indicate their average
firing rate. In this example, three stages have been used for approxima-
tion.

Practically, the approximation problem can be formulated as follows:
given an arbitrary probability distribution and a certain number of stages
r, find µi, 1 ≤ i ≤ r, and αi, 1 ≤ i ≤ r−1 (αr = 1), such that the quality
of approximation of the given distribution by the Coxian distribution
with r stages is maximised. This is usually done in the complex space
by minimising the distance between the Fourier transform X(jω) of the
Coxian distribution and the computed Fourier transform of the distri-
bution to be approximated. The minimisation is a typical interpolation
problem and can be solved by various numerical methods [PTVF92].
We use a simulated annealing approach that minimises the difference of
only a few most significant harmonics of the Fourier transforms, which
is very fast if provided with a good initial solution. We choose the initial
solution in such way that the first moment of the real and approximated
distribution coincide.

By replacing all generalised transitions of the type depicted in Fig-
ure 5.4(a) with subnets of the type depicted in Figure 5.4(b) the SMP
underlying the Petri Net becomes a CTMC. It is obvious that the intro-
duced additional places trigger an explosion in the TRG and implicitly
in the resulted CTMC. The next section details on how to efficiently
handle such a complexity increase.

5.4 CTMC construction and analysis

Let S be the set of states of the SMP underlying the Petri Net. This
SMP corresponds to the TRG of the Petri Net model. Let M = [mij ]
be a square matrix of size |S| × |S| where mij = 1 if there exists a
transition from the state si to the state sj in the SMP and mij = 0
otherwise. We first partition the set of states S in clusters such that
states in the same cluster have outgoing edges labelled with the same
set of transitions. A cluster is identified by a binary combination that
indicates the set of transitions that are enabled in the particular cluster
(equivalently, the set of tasks that are running in the states belonging
to that particular cluster). The clusters are sorted according to their
corresponding binary combination and the states in the same cluster are
consecutively numbered.

Consider an example application with three independent tasks, each
of them mapped on a different processor. In this case, 8 clusters can be
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Figure 5.5: The matrix corresponding to a SMP

formed, each corresponding to a possible combination of simultaneously
running tasks. Note that if the tasks were not independent, the num-
ber of combinations of simultaneously running tasks, and implicitly of
clusters, would be smaller. The cluster labelled with 101, for example,
contains states in which the tasks τ1 and τ3 are running.

Figure 5.5 depicts the matrix M corresponding to the SMP of this
example application. The rows and columns in the figure do not corre-
spond to individual rows and columns in M. Each row and column in
Figure 5.5 corresponds to one cluster of states. The row labelled with
100, for example, as well as the column labelled with the same binary
number, indicate that the task τ1 is running in the states belonging to
the cluster labelled with 100. Each cell in the figure does not correspond
to a matrix element but to a submatrix Mli,lj , where Mli,lj is the in-
cidence matrix corresponding to the clusters labelled with li and lj (an
element of Mli,lj is 1 if there is a transition from the state corresponding
to its row to the state corresponding to its column, and it is 0 other-
wise). The submatrix MU,V at the intersection of the row labelled with
U = 100 and the column labelled with V = 011 is detailed in the figure.
The cluster labelled with U = 100 contains 2 states, while the cluster
labelled with V = 011 contains 4 states. As shown in the figure, when a
transition from the first state of the cluster labelled with U occurs, the
first state of the cluster labelled with V is reached. This corresponds to
the case when τ1 completes execution (τ1 is the only running task in the
states belonging to the cluster labelled with U) and τ2 and τ3 are subse-
quently started (τ2 and τ3 are the running tasks in the states belonging
to the cluster labelled with V ).
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Figure 5.6: Part of a SMP

(1−β1)λ1

β1λ1

β2λ2

Figure 5.7: Coxian approximation with two stages

Once we have the matrix M corresponding to the underlying SMP,
the next step is the generation of the CTMC using the Coxian distribu-
tion for approximation of arbitrary probability distributions of transition
delays. When using the Coxian approximation, a set of new states is in-
troduced for each state in S (S is the set of states in the SMP), resulting
an expanded state space S′, the state space of the approximating CTMC.
We have to construct a matrix Q of size |S′|×|S′|, the so called infinites-
imal generator of the approximating CTMC. The construction of Q is
done cell-wise: for each submatrix of M, a corresponding submatrix of
Q will be generated. Furthermore, null submatrices of M will result in
null submatrices of Q. A cell QU,V of Q will be of size G × H , where

G = |U | ·
∏

i∈EnU

ri

H = |V | ·
∏

i∈EnV

ri

and U and V are clusters of states, EnU = {k : transition ek correspond-
ing to the execution of task τk is enabled in U}, EnV = {k : transition
ek corresponding to the execution of task τk is enabled in V }, and rk is
the number of stages we use in the Coxian approximation of the ETPDF
of task τk.

We will illustrate the construction of a cell in Q from a cell in M
using an example. We consider a cell on the main diagonal, as it is the
most complex case. Let us consider three states in the SMP depicted in
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Figure 5.8: Expanded Markov chain

Figure 5.6. Two tasks, τu and τv, are running in the states X and Y .
These two states belong to the same cluster, labelled with 11. Only task
τv is running in state Z. State Z belongs to cluster labelled with 10.
If task τv finishes running in state X , a transition to state Y occurs in
the SMP. This corresponds to the situation when a new instantiation of
τv becomes active immediately after the completion of a previous one.
When task τu finishes running in state X , a transition to state Z occurs
in the SMP. This corresponds to the situation when a new instantiation
of τu is not immediately activated after the completion of a previous one.
Consider that the probability distribution of the execution time of task
τv is approximated with the three stage Coxian distribution depicted in
Figure 5.4(b) and that of τu is approximated with the two stage Coxian
distribution depicted in Figure 5.7. The resulting CTMC corresponding
to the part of the SMP in Figure 5.6 is depicted in Figure 5.8. The
edges between the states are labelled with the average firing rates of
the transitions of the Coxian distributions. Dashed edges denote state
changes in the CTMC caused by firing of transitions belonging to the
Coxian approximation of the ETPDF of τu. Solid edges denote state
changes in the CTMC caused by firing of transitions belonging to the
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Figure 5.9: The cell Q(11),(11) corresponding to the example in Figure 5.8

Coxian approximation of the ETPDF of τv. The state Y12, for example,
corresponds to the situation when the SMP in Figure 5.6 would be in
state Y and the first two of the three stages of the Coxian distribution
approximating the ETPDF of τv (Figure 5.4(b)) and the first stage out
of the two of the Coxian distribution approximating the ETPDF of τu

(Figure 5.7) have fired.
Let us construct the cell Q(11),(11) on the main diagonal of Q, situated

at the intersection of the row and column corresponding to the cluster
labelled with 11. The cell is depicted in Figure 5.9. The matrix Q(11),(11)

contains the average transition rates between the states Xij and Yij ,
0 ≤ i ≤ 1, 0 ≤ j ≤ 2, of the CTMC in Figure 5.8 (only states X and Y
belong to the cluster labelled with 11). The observed regularity in the
structure of stochastic process in Figure 5.8 is reflected in the expression
of Q(11),(11) as shown in Figure 5.9. Because Q is a generator matrix
(sum of row elements equals 0), there appear some negative elements
on the main diagonal that do not correspond to transitions in the chain
depicted in Figure 5.8. The expression of Q(11),(11) is given below:

Q(11),(11) = (Au ⊕Av) ⊗ I|11| + Iru ⊗ Bv ⊗ erv ⊗Dv

where

Au =
[−λ1 (1 − β1)λ1

0 −λ2

]
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Bv =


α1µ1

α2µ2

α3µ3




Dv =
[
0 1
0 0

]
and

Av =


−µ1 (1 − α1)µ1 0

0 −µ2 (1 − α2)µ2

0 0 −µ3




erv =
[
1 0 0

]
|11| denotes the size of the cluster labelled with 11. Ii is the identity
matrix of size i × i, ri indicates the number of stages of the Coxian
distribution that approximates the ETPDF of task τi. ⊕ and ⊗ are the
Kronecker sum and product of matrices, respectively.

In general, a matrix Ak = [aij ] is an rk × rk matrix, and is defined
as follows:

aij =




(1 − αki)µki if j = i + 1
−µki if j = i

0 otherwise

where αki and µki characterise the ith stage of the Coxian distribution
approximating a transition tk.

A matrix Bk = [bij ] is an rk × 1 matrix and bi1 = αki ·µki. A matrix
erk = [eij ] is a 1 × rk matrix and e11 = 1, e1i = 0, 1 < i ≤ rk. A matrix
Dk = [dij ] corresponding to a cell U, V is a |U | × |V | matrix defined as
follows:

dij =




1 if an edge labelled with k links
the ith state of U with the jth state of V

0 otherwise

In general, considering a label U , the cell QU,U on the main diagonal
of Q is obtained as follows:

QU,U =

(⊕
i∈U

Ai

)
⊗ I|U| +

∑
i∈U


⊗

j∈U
j>i

Irj


⊗ Bi ⊗ eri ⊗


⊗

j∈U
j<i

Irj


⊗Di

A cell situated at the intersection of the row corresponding to label
U with the column corresponding to label V (U 6= V ) is obtained as
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follows:

QU,V =
∑
i∈U


 ⊗

j∈U∪V

Fij


⊗Di (5.1)

The matrices F are given by the following expression:

Fij =




vrj if j ∈ U ∧ j 6∈ V ∧ j 6= i

Irj if j ∈ U ∧ j ∈ V ∧ j 6= i

Bi if j 6∈ V ∧ j = i

Bi ⊗ eri if j ∈ V ∧ j = i

erj if j 6∈ U

(5.2)

where vrk
= [vi1] is a rk × 1 matrix, vi1 = 1, 1 ≤ i ≤ rk.

The solution of the CTMC implies solving for π in the following
equation:

π · Q = 0

where π is the steady-state probability vector and Q the infinitesimal
generator of the CTMC.

Let us consider the edge X → Z in the SMP in Figure 5.6. The
edges X00 → Z0, X10 → Z0, X01 → Z1, X11 → Z1, X02 → Z2, and
X12 → Z2 in the CTMC in Figure 5.8, that approximates the SMP in
Figure 5.6, correspond to the edge X → Z in the SMP. The expected
transition rate of X → Z can be approximated by means of the expected
transition rates of the corresponding edges in the CTMC and is given
by the expression

(πX00 + πX01 + πX02) · β1λ1 + (πX10 + πX11 + πX12 ) · β2λ2,

where β1, β2, λ1, and λ2 are characterising the Coxian distribution that
approximates the probability distribution of the delay of the transition
X → Z (in this case, the ETPDF of τv). πXij is the probability of
the CTMC being in state Xij after the steady state is reached. The
probabilities πXij are obtained as the result of the numerical solution of
the CTMC.

As explained in Section 5.2, if there already exists at least one active
instantiation of a task graph Gi in the system when a new instantiation of
Gi arrives, then the most recent instantiation of Gi present in the system
misses its deadline (which is equal to the period). In the Petri Net model
(see Figure 5.3), this event corresponds to the sequence of firings of the
timed transition Gen, followed by vi and either the immediate transition
wi if the number of tokens in Bndi is less than bi but larger than 0, or
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the immediate transition dsci if Bndi is unmarked. Each of these two
situations corresponds to an edge in the stochastic process. Thus, the
expected deadline miss rate of Gi can be obtained by computing the
expected transition rates (as shown above for X → Z) for the edges
corresponding to a deadline miss. The expected deadline miss ratio for
the task graph Gi is then computed by multiplying the obtained expected
deadline miss rate by the period of task graph Gi.

We conclude this section with a discussion on the size of Q and its
implications on analysis time and memory. Consider the cluster labelled
11 . . .1 of S, i.e. the one that contains the largest number of enabled
transitions. The largest Q is obtained if the cluster labelled 11 . . .1
dominates all the other clusters of S, in the sense that it contains by far
more states than all the other clusters, and that the cell M(11...1),(11...1)

contains by far more non-zero entries than all the other cells of M. Thus,
a pessimistic upper bound for the number of non-zero elements of Q is
given by the expression:

|M| ·
∏
i∈E

ri

where E = {i : transition ei corresponding to the execution of task
τi is enabled in the dominant cluster} and |M| denotes the number of
non-zero elements of M, the matrix corresponding to the SMP. In the
context of multiprocessor scheduling, E may have at most M elements
(M=number of processors). The above formula shows that the increase
in the size of the CTMC, relative to the initial SMP, is mainly dictated by
the number of processors and the number of stages for the approximation
of the probability distributions (which means the degree of expected
accuracy). The number N of tasks does not directly induce any growth
in terms of the CTMC. However, the structure of the initial SMP also
depends on the number of tasks. The SMP is reflected in the matrix M
and, thus, has an influence on the dimension of the resulted CTMC.

The dimension of matrix Q, as shown above, grows quickly with
the number of processing elements and the number of stages used for
approximation of the probability distributions. Apparently, the analysis
of applications of realistic complexity would be impossible. Fortunately,
this is not the case. As can be seen from the expressions of QU,U and
QU,V , the matrix Q is completely specified by means of the matrices
Ai, Bi, and Di, hence it needs not be stored explicitly in memory, but
its elements are generated on-the-fly during the numerical solving of the
CTMC. This leads to a significant saving in memory demand for analysis.
Even for large applications, the matrices Ai, Bi, and Di are of negligible
size. The limiting factor in terms of memory is only π, the steady-state
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probability vector, which has to be stored in memory. In the worst case,
the vector has

|S| ·
∏
i∈E

ri

elements, where |S| is the size (number of states) of the SMP. It is easy
to observe that π is as large as a row (column) of Q. The effect of the
complexity increase induced by the approximation in terms of analysis
time can be attenuated by deploying intelligent numerical algorithms for
matrix-vector computation. Such algorithms rely on factorisations that
exploit the particular structure of Q.

5.5 Experiments

We performed four sets of experiments. All were run on an AMD Athlon
at 1533 MHz. The first set of experiments investigates the dependency of
the analysis time on the number of tasks in the system. Sets of random
task graphs were generated, with 9 up to 60 tasks per set. Ten different
sets were generated and analysed for each number of tasks per set. The
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Figure 5.10: Analysis time vs. number of tasks
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Figure 5.11: Stochastic process size vs. number of tasks

underlying architecture consists of two processors. The dependency be-
tween the needed analysis time and the number of tasks is depicted in
Figure 5.10. The analysis time depends on the size of the stochastic pro-
cess to be analysed as well as on the convergence rate of the numerical
solution of the CTMC. The latter explains some non-linearities exhib-
ited in Figure 5.10. The dependency of the stochastic process size as a
function of the number of tasks is plotted in Figure 5.11.

In the second set of experiments, we investigated the dependency
between the analysis time and the number of processors. Ten different
sets of random task graphs were generated. For each of the ten sets, 5
experiments were performed, by allocating the 18 tasks of the task graphs
to 2 up to 6 processors. ETPDFs were approximated by using Coxian
distributions with 4 stages. The results are plotted in Figure 5.12.

In the third set of experiments, we investigated the increase in the
stochastic process size induced by using different number of stages for
approximating the arbitrary ETPDFs. We constructed 98 sets of random
task graphs ranging from 10 to 50 tasks mapped on 2 to 4 processors.
The ETPDFs were approximated with Coxian distributions using 2 to
6 stages. The results for each type of approximation were averaged
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Figure 5.12: Analysis time vs. number of processors

over the 98 sets of graphs and the results are plotted in Figure 5.13.
Recall that |S| is the size of the SMP and |S′| is the much larger size of
the CTMC obtained after approximation. As more stages are used for
approximation, as larger the CTMC becomes compared to the original
SMP. As shown in Section 5.4, in the worst case, the growth factor is∏

i∈E

ri

As can be seen from Figure 5.13, the real growth factor is smaller than the
theoretical upper bound. It is important to emphasise that the matrix
Q corresponding to the CTMC needs not to be stored, but only a vector
with the length corresponding to a column of Q. The growth of the
vector length with the number of Coxian stages used for approximation
can be easily derived from Figure 5.13. The same is the case with the
growth of analysis time, which follows that of the CTMC.

The fourth set of experiments investigates the accuracy of results
as a factor of the number of stages used for approximation. This is
an important aspect in deciding on a proper trade-off between quality
of the analysis and cost in terms of time and memory. For compari-
son, we used analysis results obtained with our approach presented in
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Figure 5.13: Increase in stochastic process size with number of stages
for approximating the arbitrary ETPDFs

2 stages 3 stages 4 stages 5 stages
Relative error 8.467% 3.518% 1.071% 0.4%

Table 5.1: Accuracy vs. number of stages

Chapter 4. As mentioned there, that approach is an exact one based on
solving the underlying SMP. However, because of complexity reasons,
it can handle only mono-processor systems. Therefore, we applied the
approach presented in this paper to a mono-processor example, which
has been analysed in four variants using approximations with 2, 3, 4,
and 5 stages. The relative error between missed deadline ratios resulted
from the analysis using the approximate CTMC and the ones obtained
from the exact solution is presented in Table 5.1. The generalised ET-
PDF used in this experiment were created by drawing Bezier curves
that interpolated randomly generated control points. It can be observed
that good quality results can already be obtained with a relatively small
number of stages.
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Figure 5.14: Decoding of a GSM dedicated signalling channel

Finally, we considered the same example from the mobile communica-
tion area introduced in Section 4.6, this time considering an architecture
consisting of three processors. Figure 5.14 depicts the application task
graph. The shades of the ovals indicate the mapping of the tasks. The
demodulation task is mapped on a dedicated processor, the hopping,
deciphering and A5 tasks are mapped on a general purpose processor,
and the disassembling, deinterleaving, convolutional decoding and the
so called fire decoding tasks are mapped on a DSP processor.

In the case of 8 tasks, the analysis reported an acceptable miss dead-
line ratio after an analysis time of 3 seconds. The ETPDFs were approx-
imated by Coxian distributions with 6 stages. If we attempt to perform
the baseband processing of another channel on the same DSP processor,
three more tasks are added to the task graph. As a result of the analysis,
in this case 10.05% of the deadlines are missed, which is unacceptable
according to the application specification.
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Chapter 6

Extensions

The discussions in Chapter 4 and 5 were based on the assumptions and
the problem formulation introduced in Chapter 3. One of the main con-
cerns has been to master the complexity generated by the relatively un-
restricted nature of those assumptions. In this chapter, we discuss some
possible further relaxations of the assumptions introduced in Chapter 3
and their consequences on the complexity of the solution.

The following extensions of the assumptions were considered:

1. The tasks belonging to the same task graph may have different
periods.

2. The relative deadline of a task may be shorter than the task period.

3. When there are already bi concurrently active instantiations of a
task graph Gi in the system at the arrival time of a new instan-
tiation, instead of discarding the oldest instantiation, the newly
arrived one is rejected.

Furthermore, the problem formulation has been extended by adding the
expected deadline miss ratio per task (not only per task graph) to the
output of the analysis. This feature provides more insight to the designer
relative to the causes of deadline misses.

Each of these extensions is treated in a separate section.

6.1 Task periods

As presented in Chapter 3, all the tasks belonging to a task graph have
the same period. This assumption has been relaxed as follows. Each

83



84 CHAPTER 6. EXTENSIONS

task τi ∈ Gj has its own period πij , with the restriction that πij is a
common multiple of all periods of the tasks in ◦τi (πkj divides πij , where
τk ∈ ◦τi). In this case, πj will denote the period of the task graph Gj

and πj is equal to the least common multiple of all πij , where πij is the
period of τi and τi ∈ Vj .

6.1.1 The effect on the complexity of the exact so-
lution

In almost all of the cases, the relaxation concerning task periods increases
the analysis complexity. This is because the number of PMIs is increased,
leading to an increase of the underlying stochastic process state space.

In order to assess this increase, the following experiment was carried
out. 126 sets of task graphs were randomly generated. Each set con-
tained between 12 and 27 tasks grouped in 3 to 9 task graphs. Two test
cases were derived from each set of task graphs. In the first, the task
periods were assigned as described in this section and the whole task
graph had a period equal to the LCM of the individual task periods. In
the second test case, all the tasks belonging to the same graph were as-
signed the period of the corresponding task graph as resulted in the first
test case. By doing so, it was ensured that in both test cases, the LCM
of task periods in both test cases are equal, in order not to influence the
result. The number of states of the underlying stochastic process was
measured for both test cases. Table 6.1 summarises the results that were
averaged for task sets with the same cardinality. As expected, it can be
seen that introducing different periods to tasks belonging to the same
task graph increases the underlying stochastic process.

Stochastic process size
Tasks Identical task periods Individual task periods Increase

12 922.14 1440.42 56.20%
15 2385.85 3153.47 32.17%
18 2034.00 4059.42 99.57%
21 14590.66 17012.80 16.60%
24 19840.19 35362.85 78.23%
27 42486.28 64800.19 52.52%

Table 6.1: Task vs. task graph periods
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6.1.2 The effect on the complexity of the approxi-
mate solution

Two issues have to be considered: the modifications performed on the
GSPN that models the application and the impact on the analysis pro-
cess.

Consider the tasks τ1, τ2 and τ3 in Figure 5.2 and let their periods be
π1 = 2, π2 = 4 and π3 = 8. τ2 executes once whenever τ1 executes twice,
and τ3 executes once whenever τ1 executes four times and τ2 executes
twice. This can be modelled by a GSPN similar to the one in Figure 5.3
by setting the multiplicity of the arc a12 → j2 to π2/π1 (2), the one of
arc a13 → j3 to π3/π1 (4) and the one of arc a23 → j3 to π3/π2 (2).

Observe that, under the original assumptions, in the unmodified
GSPN depicted in Figure 5.3, there is no ambiguity in the situation when
a place aki is marked with more than one token. This situation would
occur only because of the multiple concurrently active instantiations of
a graph G. Under the extended assumptions, multiple tokens may ap-
pear in a place aki because several instantiations of task τk of the same
instantiation of G have completed, or because several instantiations of
task τk of different instantiations of G have completed. Therefore, either
we assume bi = 1, ∀1 ≤ i ≤ h, in the case of the extended assump-
tions about task periods, or we significantly change the GSPN, which
also increases its complexity, such that it distinguishes between tokens
modelling different graph instantiations.

In the case of discarding, under the original assumptions, at most one
token was removed from a place aki. Under the extended assumptions,
there might exist q tokens in aki, 0 ≤ q < πi/πk. Therefore, a mark-
ing dependent arc multiplicity has to be introduced in order to remove
exactly q tokens from aki.

If a task graph has several tasks with no predecessors and these tasks
have different periods, a new scheme for modelling the task arrivals has
to be designed, which is different from that implemented with the tran-
sitions v1 and v2 in Figure 5.3. Moreover, the firing delay T ick of the
timed transition Gen is given by the greatest common divisor of the task
periods and not of the task graph periods.

The main effect of introducing individual task periods on the GSPN
is an increase in the number of tokens circulating in the GSPN at a cer-
tain time. This leads to a significant increase in the tangible reachability
graph of the GSPN and implicitly in the stochastic process size. There-
fore, only small applications can be analysed under the assumption of
individual task periods.
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6.2 Deadlines shorter than periods

The restriction that the task deadlines are equal to the corresponding
periods can be relaxed too. When letting the relative deadlines of tasks
to be shorter than the task periods, two conflicting effects on the analysis
complexity are observed. On one hand, if a task misses its deadline and
if the late task policy dictates that the task graph has to be discarded,
fewer behaviours are possible in the interval from the discarding and
the graph deadline. This would reduce the stochastic process size. On
the other hand, this earlier discarding introduces new contexts for the
behaviours of the rest of tasks. This would increase the stochastic process
size.

6.2.1 The effect on the complexity of the exact so-
lution

In almost all of the cases, letting δi ≤ πi leads to a significant increase
in the number of PMIs as seen in Figure 6.1. The considered application
consists of two independent tasks with periods 3 and 5 respectively.
Figure 6.1(a) depicts the resulting PMIs if the relative task deadlines
are equal to the respective task periods, while Figure 6.1(b) depicts the
resulting PMIs if the relative task deadlines are 2 and 4 respectively.
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(b) PMIs if δi ≤ πi

Figure 6.1: PMIs if deadlines are less than the periods
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Stochastic process size
Tasks δi = πi δi < πi Increase

12 1440.42 2361.38 63.93%
15 3153.47 3851.90 22.14%
18 4059.42 5794.33 42.73%
21 11636.29 24024.35 106.46%
24 35142.60 48964.80 39.33%
27 35044.30 40218.60 14.76%

Table 6.2: Deadlines equal to periods vs. shorter deadlines

In order to assess the effect of this relaxation on the analysis com-
plexity, the following experiment was carried out. 378 sets of task graphs
were randomly generated, each set containing between 12 and 27 tasks
grouped in 3 to 9 graphs. Two test cases were created for each task set.
In the first, the deadlines are equal to the periods while in the second
test case random deadlines, less than the periods, were generated. Ta-
ble 6.2 summarises the results that were averaged for task sets with the
same cardinality.

6.2.2 The effect on the complexity of the approxi-
mate solution

Let us consider the GSPN in Figure 5.3. The firing delay T ick of the
timed transition Gen has to be modified in order to fire when a deadline
arrived. Therefore, T ick equals the greatest common divisor of the task
periods and of the relative deadlines. The GSPN has to be modified such
that the places cj are marked not when a new instantiation of a corre-
sponding task graph arrives but when the deadline of the corresponding
task graph arrives.

The additional places that have to be introduced lead to an increase
in the tangible reachability graph and implicitly in the stochastic process
size and analysis complexity.

6.3 Expected deadline miss ratios per task

The problem formulation can be extended by requiring the analysis to
provide expected deadline miss ratios per task and not only per task
graph.
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Both in the case of the exact solution and in the case of the ap-
proximate solution, the sizes of the resulting stochastic processes are not
influenced by this extension. The only difference is that there are more
transitions in the stochastic process that correspond to deadline misses.
The additional time required to compute the expected firing rates of
these transitions is negligible as compared to the time required to find
the steady state solution of the stochastic process.

6.4 Task rejection versus discarding

As formulated in Section 3.1.5, when there are bi concurrently active
instantiations of task graph Gi in the system, and a new instantiation
of Gi demands service, the oldest instantiation of Gi is eliminated from
the system. Sometimes, this behaviour is not desired, as the oldest
instantiation might have been very close to finishing, and by discarding
it, the invested resources (time, memory, bandwidth, etc.) are wasted.

Therefore, both our exact solution approach presented in Chapter 4
and our approximate solution approach presented in Chapter 5 have been
extended to support a late task policy in which, instead of discarding
the oldest instantiation of Gi, the newly arrived instantiation is denied
service (rejected) by the system.

The following sections describe how this late policy is supported in
both our approaches and what is the impact of this extension on the
analysis complexity.

6.4.1 The effect on the complexity of the exact so-
lution

In principle, the rejection policy is easily supported by only changing
the next states procedure in the algorithm presented in Section 4.5.
However, this has a strong impact on the analysis complexity as shown in
Table 6.3. The significant increase in the stochastic process size (about
two orders of magnitude), can be explained considering the following
example. Let s be the stochastic process state under analysis, let τj

belonging to task graph Gi be the task running in s and let us consider
that there are bi concurrently active instantiations of Gi in the system.
The execution time of τj may be very large, spanning over many PMIs.
In the case of discarding, it was guaranteed that τj will stop running
after at most bi ·πi time units, because at that time moment it would be
eliminated from the system. Therefore, when considering the discarding
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Avg. stoch. proc. size
Tasks Disc. Rej. Rel. incr.

12 2223.52 95780.23 42.07
15 7541.00 924548.19 121.60
18 4864.60 364146.60 73.85
21 18425.43 1855073.00 99.68
24 14876.16 1207253.83 80.15
27 55609.54 5340827.45 95.04

Table 6.3: Exact solution: Discarding compared to rejection

policy, the number of next states of a state s is upper bounded. When
considering the rejection policy, this is not the case.

101 task sets of 12 to 27 tasks grouped in 2 to 9 task graphs were
randomly generated. For each task set two analysis were performed, one
considering the discarding policy and the other considering the rejection
policy. The results were averaged for task sets with the same cardinality
and shown in Table 6.3.

6.4.2 The effect on the complexity of the approxi-
mate solution

The rejection policy is supported by the approximate solution approach
by changing the modelling of the application at the level of the interme-
diate representation, i.e. at the level of the GSPN.

The GSPN modelling the application in Figure 5.2, when considering
the rejection policy, is depicted in Figure 6.2.

If there are bi concurrently active instantiations of a task graph Gi

in the system, then the place Bndi contains no tokens. If a new in-
stantiation of Gi arrives in such a situation (vi fires), then dsci will
fire, “throwing away” the newly arrived instantiation. Although GSPNs
like the one in Figure 6.2, modelling applications with rejection policy,
seem simpler than the GSPN in Figure 5.3, modelling applications with
discarding policies, the resulting tangible reachability graphs (and im-
plicitly underlying semi-Markov processes) are larger, mainly because of
the same reason discussed in the previous section.

In order to assess the impact of the rejection policy on the analysis
complexity compared to the discarding policy, the following experiments
were carried out. 109 task sets of 12 to 27 tasks grouped in 2 to 9
task graphs were randomly generated. For each task set two analysis
were performed, one considering the discarding policy and the other
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Avg. SMP size
Tasks Disc. Rej. Rel. incr.

12 8437.85 18291.23 1.16
15 27815.28 90092.47 2.23
18 24089.19 194300.66 7.06
21 158859.21 816296.36 4.13
24 163593.31 845778.31 4.17
27 223088.90 1182925.81 4.30

Table 6.4: Approximate solution: Discarding compared to rejection

considering the rejection policy. The results were averaged for task sets
with the same cardinality and shown in Table 6.4.

Even if the size of the SMP is larger in the case of the rejection policy
than in the case of the discarding policy, the following property can be
exploited in order to speed up the analysis of the stochastic process. It
can be observed from Figure 6.2 that the firing of any timed transition
cannot lead to the disabling of any other timed transition. This is the
case because neither pre-emption nor discarding is allowed. Note that,
as opposed to rejection, as soon as discarding is allowed (Figure 5.3), by
firing the timed transition T ick followed by the firing of the immediate
transitions vi, dsci, and the transition between the places ci and ri, a
token from ri is removed and the timed transition ei is not anymore
enabled.

Consider two arbitrary tangible markings M1 and M2, such that M2

is directly reachable from M1 by firing the timed transition U . The sets
of timed transitions ei that are enabled in M1 and M2 are W1 and W2.
(Observe that W1 and W2 can be seen as sets of tasks, as each transition
ei corresponds to a task τi.) This means that no transition in W1 can
be disabled when firing U , except possibly U itself (W1\{U} ⊆ W2). In
other words, if the cardinality of W1\W2 is greater than 1, then we are
guaranteed that M2 is not directly reachable from M1. In the underlying
stochastic process, this implies that there can be no edge from a state
in which a set W1 of tasks is running to a state in which a set W2 of
tasks is running, if |W1\W2| > 1. This is used in order to determine the
null submatrices of the matrix M (see page 69), and implicitly of the
infinitesimal generator that will be constructed.

Consider an example application with four independent tasks, each
of them mapped on a different processor. In this case, 16 clusters can
be formed, each corresponding to a possible combination of simultane-
ously running tasks. Figure 6.3 depicts the matrix M corresponding to
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Figure 6.3: The matrix M in the case of the rejection policy

the SMP of this example application. As in Figure 5.9, the rows and
columns in the figure do not correspond to individual rows and columns
in M but to clusters of states. The shaded cells of M indicate those
submatrices that may contain non-zero elements. The blank ones are
null submatrices. For example, one such null submatrix appears at the
intersection of row 1101 and column 1000. Due to the non-preemption
assumption, a task arrival or departure event may not stop the running
of another task. If the submatrix (1101, 1000) had non-zero elements it
would indicate that an event in a state where the tasks τ1, τ2, and τ4

are running, triggers a transition to a state where only the task τ1 is
running, and two of the previously running tasks are not running any-
more. This is not possible in the case of non-preemption. The submatrix
(1000, 0000) may contain non-zero elements, because, if the task τ1 com-
pletes execution, the stochastic process may transit to a state in which
no task is running.

Because of the property described above, the expression for com-
puting a submatrix QU,V of the infinitesimal generator of the CTMC
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that approximates the SMP, slightly differs from the one given in Equa-
tion 5.1. The new expression of QU,V is given below:

QU,V =
∑
i∈U


 ⊗

j∈U∪V

Fij


⊗Di

Fij =




Irj if j ∈ U ∧ j ∈ V ∧ j 6= i

Bi if j 6∈ V ∧ j = i

Bi ⊗ eri if j ∈ V ∧ j = i

erj if j 6∈ U

Note that the alternative j ∈ U ∧ j 6∈ V ∧ j 6= i appearing in the
expression of Fij in Equation 5.2 is impossible in the case of rejection,
reducing the number of non-null submatrices of Q. Summing up, in the
case of a rejection policy, the size of the CTMC (and implicitly of the
matrix Q) is larger than in the case of discarding. This, however, is
compensated, to a certain extent, by the fact that the number of null
elements in matrix Q is larger in the case of rejection, which limits the
increase of the analysis time.
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Chapter 7

Conclusions and Future
Work

7.1 Conclusions

The design process of real-time embedded systems is an extremely com-
plex task, requiring a disciplined and systematic methodology as well
as the support of design space exploration and performance estimation
tools.

It is of capital importance that the predicted performance of a not
yet implemented system is an accurate estimate of the performance to
be achieved by the implemented system. In order to obtain such accu-
rate results and still not commit to an implementation, the performance
estimation tool has to be fed with an architecture alternative, a mapping
alternative, and a scheduling alternative.

This thesis presented two approaches for the performance estima-
tion of real-time systems with stochastic execution times in the context
mentioned above.

The first approach delivers exact results and it is applicable, but
theoretically not limited, to mono-processor systems. In this case, ap-
plications under a fairly relaxed set of assumptions are considered. The
innovative way of concurrently constructing and analysing the stochas-
tic process underlying the application, as well as the economic method
of parsing the stochastic process allows for the consideration of larger,
real-world applications.

The second approach may trade result accuracy for analysis resources
(time and memory space) and it is applicable to multi-processor systems

95
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as well. It relies on a designer controlled approximation of real-world
execution time probability distribution functions by means of Coxian
distributions and on the efficient way of solving the resulting Markov
chain without the need to explicitly store the generator matrix.

Experiments were carried out for both approaches in order to assess
their applicability.

7.2 Future work

Future work could focus on three possible directions:

1. Better support for design space exploration,

2. More efficient extraction of the performance indicators,

3. Extending the assumptions regarding the applications amenable to
analysis.

Along the first line, further performance indicators, besides the ex-
pected deadline miss ratios, have to be found, such that they better
support the design exploration phase. Such information could be useful
for deciding on different scheduling policies, task mappings and architec-
tures. If significantly different implementations of the same application
need to be compared, the accuracy of the results is not very important.
Rather, the results should provide crude guidelines for further explo-
ration of one of the evaluated implementation. Therefore, the trade-off
analysis complexity versus result accuracy has to be further investigated
in more detail.

Along the second line, symmetries at the application level, as well
as at the intermediate representation level, could be exploited in order
to further reduce the analysis complexity and still obtain the desired
performance indicators of interest.

Along the third line, the class of applications amenable to analysis
could encompass applications with shared resources, and applications
where the task mapping is not unique, but rather a set of alternative
mappings is concurrently evaluated.



Appendix A

Notation Summary

Notation Meaning
A, B, F , Q matrices
αi the probability of a token leaving a subnet modelling

a Coxian distribution after the ith stage
αij the probability of a token leaving a subnet modelling

the ith Coxian distribution after the jth stage
B the set of buses
Bi a bus
Bounds the set of bounds
bi the upper bound of concurrently active instances

of the task graph Gi

CT the set of communication tasks
CTMC continuous time Markov chain
χi a communication task
∆ the set of task graph deadlines
δi the deadline of the task graph Gi

Ei the set of edges in graph Gi

ET the set of ETPDFs
ETPDF execution time probability distribution function
εi the ETPDF of task τi

Exi the execution time of the task τi

G the set of task graphs
Gi a task graph
GSPN Generalised Stochastic Petri Net
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Notation Meaning
h the number of task graphs
l the number of buses
M the number of processors
Missed the set of expected miss deadline ratios

of the task graphs
mi the expected deadline miss ratio of the task graph Gi

m the number of communication tasks
MapP the mapping function for processing tasks
MapC the mapping function for communication tasks
Map the mapping function
µi the average firing rate of the ith stage

of a Coxian distrib.
µij the average firing rate of the jth stage of the Coxian

approximation of a the ith generalised transition
n the number of processing tasks
N the number of tasks
p the number of processing processors
P the set of processors
Pi a processor
PE the set of processing elements
PEi a processing element
PT the set of processing tasks
Π the set of task graph periods
πi the period of the task graph Gi

r the number of stages of a Coxian approximation
ri the number of stages of the Coxian approximation of

the ith generalised transition
S stochastic process state space
SMP semi-Markov process
T the set of tasks
TRG tangible reachability graph
ti a processing task
τi a task
◦τi the set of predecessor tasks of the task τi

τ◦
i the set of successor tasks of the task τi

Vi the set of vertices of graph Gi



Appendix B

Elements of Probability
Theory and Stochastic
Processes

Definition 1 Let Ω be a set and F ⊆ 2Ω. F is a σ-algebra if

1. ∅ ∈ F
2. A ∈ F ⇒ A ∈ F
3. ∀i ∈ I ⊆ N, Ai ∈ F , Ai ⊆ Aj , ∀i < j ⇒ ⋃

i∈I Ai ∈ F

Definition 2 The tuple (Ω,F) is a measurable space if F is a σ-algebra.

Definition 3 A set function λ : F → R is countably additive if Ai ∈
F , i ∈ I ⊆ N, Ak ∩ Al = ∅, ∀k, l ∈ I, k 6= l,⇒ λ(

⋃
i∈I Ai) =

∑
i∈I λ(Ai).

Definition 4 The countably additive set function P : F → R is a prob-
ability measure if it is positively defined, (Ω,F) is a measurable space
and P(Ω) = 1.

Definition 5 The tuple (Ω,F , P) is a probability space if (Ω,F) is a
measurable space and P is a probability measure defined on F .

Definition 6 Let (Ω,F) and (S,S) be two measurable spaces and X :
Ω → S. If ∀A ∈ S, {ω : X(ω) ∈ A} ∈ F then X is a measurable function
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Definition 7 Let (Ω,F , P) be a probability space, (S,S) a measurable
space and X : Ω → S a measurable function. Then X is a random
variable.

Definition 8 Let (Ω,F , P) be a probability space, (S,S) a measurable
space and X : Ω → S a random variable. The probability measure
P : S → R, P (A) = P(X−1A) = P{ω : X(ω) ∈ A}, ∀A ∈ S is the
distribution of X.

Theorem 1 Let (R,B) be a real measurable space, where B is a Borel al-
gebra, i.e. the σ-algebra of open sets (open intervals in this case). For ev-
ery monotone increasing right-continuous real function F : R → R with
limt→∞ F (t) = 1, there exists a unique probability measure PF which is
the extension on Borel sets of the unique measure function P∗

F ((a, b]) =
F (b) − F (a). Conversely, for every probability measure P on (R,B)
there exists a unique monotone increasing right-continuous real function
FP : R → R, limt→∞ F (t) = 1 such that FP(b) − FP(a) = P((a, b]).

Definition 9 Let (Ω,F , P) be a probability space, (R,B) a real measur-
able space, where B are the Borel sets of the line, let X : Ω → R be a
random variable and let F : R → R be the monotone increasing right-
continuous real function corresponding to the distribution of X. If F
is continuous, then X is a continuous random variable. Conversely, if∑

t∈D F (t) = 1, where D is the set of discontinuity points of F , then X
is a discrete random variable.

Definition 10 Let (Ω,F , P) be a probability space. The set {Xt : t ∈ I}
of random variables with values in some arbitrary real measurable space
(S,S), set is a stochastic process. If I is discrete, then {Xt} is a discrete
time stochastic process. Otherwise, {Xt} is a continuous time stochastic
process. If S is finite, the stochastic process is a discrete state stochastic
process or a chain.

Definition 11 Let (Ω,F , P) be a probability space and the family of
random variables on Ω {Xt : t ∈ I} be a stochastic process. xω : I → R,
xω(t) = Xt(ω) is a sample path or a sample function of the stochastic
process.

Definition 12 Let {Xt : t ∈ I} be a stochastic process. The intervals
during which the sample paths are constant are called the state holding
times.

Definition 13 Let {Xt : t ∈ I ⊆ R} be a stochastic process with state
space S. If P(Xt+u = j|Xt = i, Xs, 0 ≤ s < t, u > 0) = P(Xt+u =
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j|Xt = i, u > 0), ∀t ∈ I, ∀i, j ∈ S, ∀u > 0, then the process exhibits the
Markovian property and is a Markov process.

Definition 14 Let F : [0,∞) → R be the distribution of a real valued
random variable X. If F is of the form F (t) = 1 − e−λt then X is
exponentially distributed or is an exponential random variable.

Definition 15 Let X be a real valued random variable and let P be its
distribution. If P(X ≤ x+u|X > x) = P(X ≤ u), then P is a memoryless
distribution.

Theorem 2 The exponential distributions are the only continuous mem-
oryless distributions.

Theorem 3 A Markovian continuous time stochastic process has expo-
nentially distributed state holding times.

Definition 16 Let {Xt : t ∈ I} be a continuous time stochastic process.
Let t1 < t2 < · · · < tk < . . . be the points where the process changes state
and let I ′ be their set. If the discrete time stochastic process {Xn : tn ∈
I ′} is Markovian, then {Xt} is a semi-Markov process and the {Xn} is
its embedded Markov process.
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