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Abstract
This paper addresses communication optimisation for applica-

tions implemented on networks-on-chip. The mapping of data pack-
ets to network links and the timing of the release of the pack-
ets are critical for avoiding destination contention. This reduces
the demand for communication buffers with obvious advantages in
chip area and energy savings. We propose a buffer need analysis
approach and a strategy for communication synthesis and packet
release timing with minimum communication buffer demand that
guarantees worst-case response times.

1 Introduction
Networks-on-chip (NoC) have been proposed as alternatives to

bus-based systems in the last few years [1, 2, 6]. A key factor to the
performance of applications implemented on NoC is the synthesis
of the communication. In the context of this paper, we mean by
communication synthesis the mapping of data packets transmitted
between communicating tasks on network links and the timing of
the release of the packets on the links.

A poor synthesis of the communication may lead to a high
degree of destination contention at ingress buffers of network
switches. Undesirable consequences of this contention include
long latency and an increased energy consumption due to repeated
reads from the buffers [10]. Moreover, a high degree of destina-
tion contention runs the risk of buffer overflow and consequently
packet drop with significant impact on the throughput [6]. Even
in the presence of a back pressure mechanism, which would pre-
vent packet drops, the communication latency would be severely
affected by the packet contention [4]. Thus, in this paper, we con-
centrate on the communication mapping and packet release timing
for applications implemented on NoC.

We focus on two design scenarios, namely the custom design of
application-specific NoCs and the implementation of applications
on general-purpose NoCs. In the former, the size and distribution
of communication buffers can be tailored to precisely fit the appli-
cation demands. Thus, synthesizing the communication in an intel-
ligent manner could significantly reduce the total need of buffering.
In this scenario, the optimisation objective for the communication
synthesis approach that we propose is the minimisation of the over-
all communication buffer space.

In the second design scenario, we assume that an application has
to be implemented on a given NoC, with fixed capacity for each
buffer. Thus, the challenge consists in mapping the data packets
such that no buffer overflow occurs. In both scenarios, it has to be
guaranteed that the worst-case task response times are less than the
given deadlines, and that the message arrival probability is equal or
above an imposed threshold.

Our approach relies on an analysis of both timing behaviour and
communication buffer space demand at each buffer in the worst
case. Thus, in both design scenarios, if a solution to the communi-
cation synthesis problem is found, we are able to guarantee worst
case timing behaviour and worst case buffer space demand, which
means that no buffer overflows/packet drops occur.

A related approach for buffer allocation on NoC is given by Hu
and Mărculescu [4]. They consider a design scenario in which
an NoC is custom designed for a particular application. Hu and

Mărculescu propose a method to distribute a given buffer space
budget over the network switches. The algorithm is based on a
buffer space demand analysis that relies on given Poisson traffic
patterns of the application. Therefore, their approach cannot pro-
vide application latency guarantees.

Our approach differs in several aspects. First, in addition to
buffer allocation, we perform off-line packet routing under time-
liness and buffer capacity constraints. Second, we are able to guar-
antee the application latency and that no packets are dropped due
to buffer overflows at the switches. Third, we propose a comple-
mentary technique that can be independently deployed for the min-
imisation of the buffer space demand. This technique consists of
delaying the release of packets in order to minimise destination con-
tention at the buffers. The method is sometimes referred to as traffic
shaping [9].

In previous work [7], we presented an approach for communica-
tion mapping with guaranteed latency and communication energy
minimisation under the assumption that the network links may fail
temporarily. The approach guarantees a designer-imposed lower
bound on the message arrival probability by deploying a combina-
tion of spatially and temporally redundant communication. In our
current work, we focus on buffer space demand analysis and min-
imisation, issues which we ignored in our previous work.

The rest of the paper is structured as follows. Section 2 describes
the system model and gives the problem formulation. Section 3 dis-
cusses the two techniques which we propose for solving the prob-
lems defined in Section 2.2. Section 4 presents our approach to
solving the formulated problems and the buffer demand analysis
procedure. Section 5 presents experimental results. Finally, Sec-
tion 6 draws the conclusions.

2 System model and problem formulation

2.1 System model

We describe the system model and introduce the notation based
on the example in Figure 1(a). The hardware platform consists of
a 2D array of cores, depicted as squares in the figure. They are de-
noted with Px,y, where x is the 0-based column index and y is the
0-based row index of the core in the array. The inter-core commu-
nication infrastructure consists of a 2D mesh network. The small
circles in Figure 1(a) denote the switches, while the thick lines con-
necting the switches denote the communication links. Each core
is connected to one switch, as shown in the figure. Each switch,
except those on the borders of the 2D mesh, contains five input
buffers: one for the link connecting the neighbouring core to the
switch, and the rest corresponding to the links conveying traffic
from the four neighbouring switches.

The application is modelled as a set of task graphs. Tasks are
denoted with τi, 0 < i≤ N, and are depicted by large circles in Fig-
ure 1(a). The application shown in the figure consists of three task
graphs, Γ1 = {τ1,τ2, . . . ,τ6}, Γ2 = {τ7,τ8}, and Γ3 = {τ9,τ10,τ11}.
Thin arrows between pairs of tasks τi→ τ j mean that task τi passes
a message to tasks τ j. Task τ j is a successor of τi, and τi is a pre-
decessor of τ j. A task with no predecessors is a root task, while a
task with no successors is a leaf task. A task may start its execution
only after it has received messages from all its predecessors.



Tasks are statically mapped to cores. The execution of tasks
sharing the same core is scheduled according to static task priori-
ties. The task execution is assumed to be preemptible. Every task τi

is characterised by its own period πi, deadline, priority, and worst
case execution time on their corresponding core.

Communication between pairs of tasks is performed by message
passing. Messages are characterised by their priority and length.
Their transmission on network links is done packet-wise, i.e. the
message is chopped into packets which are sent on links and re-
assembled at the destination core. If an output link of a switch is
busy sending a packet while another packet arrives at the switch and
demands forwarding on the busy link, the newly arrived packet is
stored in the input buffer corresponding to the input link on which it
arrived. When the output link becomes available, the switch picks
the highest priority packet that demands forwarding on the output
link.

Packet transmission on a link is modelled as a task, called com-
munication task. The worst case execution time of a communica-
tion task is given by the packet length divided by the link band-
width. The execution of communication tasks is non-preemptible.

Communication links may temporarily malfunction, with a
given probability, scrambling the data of the packets that they
carry at the time of the failure. The switches have the capacity
to detect scrambled packets, and they do not forward them fur-
ther. For each pair of communicating tasks τi → τ j , the designer
may require lower bounds Bi, j on the ratio of messages that are
received unscrambled at the destination. We define the message
arrival probability of the message τi → τ j as the long term ratio

MAPi, j = limt→∞
Si, j(t)

⌈t/πi⌉
, where Si, j is the number of messages be-

tween tasks τi and τ j that arrive unscrambled at the destination in
the time interval [0,t), and πi denotes the period of the sender task.

In order to satisfy message arrival probabilities imposed by the
designer, temporally and/or spatially redundant communication is
deployed. In order to define the mapping of redundant messages to
network links, we introduced the notion of communication supports
(CS) [7]. The communication support of a pair of communicating
tasks τi → τ j , denoted CSi j, is a set of tuples {(L,n)}, where L is
a network link, and n is a strictly positive integer. The packets of
the message τi → τ j are sent on the links in CSi j. Given a tuple
(L,n) ∈CSi j, n redundant copies of each packet are sent on link L.

For a message τi→ τ j, there exist several alternative CSs. Some
of them can be considered as possible candidates out of which to se-
lect the particular CSi j that will carry the message. They constitute
the set of CS candidates for message τi → τ j . The construction of
the set of CS candidates has been addressed by us in previous work
[7], where the trade-offs related to communication fault handling
have been taken into consideration. The buffer space minimisation
problem, discussed in this paper, is orthogonal to that of CS candi-
date set construction. Furthermore, in order to concentrate on the
buffer space minimisation issue, we will assume that no errors oc-
cur on the links throughout the motivational examples in the paper.
Nevertheless, we do consider that links may fail in the experimental
results section, and consequently we account for them.

2.2 Problem formulation

In this section we define the two problems that we solve in the
paper. The input common to both problems consists of:

• The hardware model, i.e. the size of the NoC, and, for each
link, the energy-per-bit, the bandwidth, and the probability of
a packet to be successfully conveyed by the link;
• The application model, i.e. the task graphs, the mapping of

tasks to cores, the task periods, deadlines, worst-case execu-
tion times, priorities and the amounts of data to be transmitted
between communicating tasks;

• The packet size and message priority for each message;
• The lower bounds Bi, j imposed on the message arrival proba-

bility MAPi, j, for each message τi→ τ j.

The constraints for both problems are:

• All message arrival probabilities satisfy MAPi, j ≥ Bi, j;
• All tasks meet their deadlines;

The communication synthesis problem with buffer space demand
minimisation (CSBSDM) is formulated as follows:

Given the above input, for each message τi → τ j find the com-
munication support CSi j, and determine the time each packet is de-
layed at each switch, such that the imposed constraints are satisfied
and the total buffer space demand is minimised. Additionally, de-
termine the needed buffer capacity of every input buffer at every
switch.

The communication synthesis problem with predefined buffer
space (CSPBS) is formulated as follows:

Given the above input, and additionally the capacity of every in-
put buffer at every switch, for each message τi → τ j find the com-
munication support CSi j, and determine the time each packet is de-
layed at each switch, such that the imposed constraints are satisfied
and no buffer overflow occurs at any switch.

3 Motivational example

Let us consider the application depicted in Figure 1(a). We as-
sume that each message consists of a single packet. Assuming that
messages are mapped on only shortest paths (paths traversing a
minimum number of switches), for each message, except the mes-
sage τ2 → τ3, there is only one mapping alternative, namely the
shortest path. For the message τ2 → τ3, however, there are two
such shortest paths, namely L1,1,E → L2,1,S and L1,1,S→ L1,0,E .

One way to minimise buffer space demand is to intelligently map
the message τ2→ τ3. Let us assume that the message is mapped on
path L1,1,E→ L2,1,S. Such a situation is depicted in Figure 1(b). The
corresponding Gantt diagram is shown in Figure 2(a). The rectan-
gles represent task executions (respectively message transmissions)
on the processing elements (respectively communication links) to
which the tasks (messages) are mapped.

Message τ2 → τ3 competes with τ7 → τ8 for link L2,1,S. Mes-
sage τ7→ τ8 arrives at the switch connecting tile P2,1 to the network
while τ2→ τ3 is conveyed on L2,1,S. Due to the unavailability of the
link, message τ7 → τ8 has to be buffered. The situations in which
buffering is necessary are highlighted by black ellipses. Messages
that have been buffered before being transmitted, due to momen-
tary resource unavailability, are depicted in hashed manner. The
total needed buffering space is proportional to the sum of hashed
areas. One more such situation occurs in Figure 2(a), caused by the
conflict between messages τ5→ τ6 and τ9→ τ10 on link L0,0,E .

We observe that message τ7→ τ8 needs a relatively large buffer-
ing space, which can be avoided by choosing a different mapping
alternative for τ2 → τ3. This mapping is depicted in Figure 1(c),
while its corresponding Gantt diagram is shown in Figure 2(b).
However, while saving the buffering space required by message
τ7→ τ8, the new mapping introduces a conflict between messages
τ2 → τ3 and τ5 → τ6 on link L1,0,E . As a result, the packet from
task τ5 to task τ6 has to be buffered at the switch S20 in the input
buffer corresponding to link L1,0,E . Nevertheless, because τ7→ τ8

does not need to be buffered, we reduced the overall buffer space
demand relative to the alternative in Figure 1(b).

As there are no other mapping alternatives, we resort to the sec-
ond technique, namely traffic shaping, in order to further reduce the
total amount of buffering space.

In Figure 2(b), we observe that message τ5 → τ6 is buffered
twice, the first time before being sent on L0,0,E , and the second
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Figure 1: Example application
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Figure 2: Impact of communication mapping and traffic shaping
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time before being sent on link L1,0,E . If we delayed the sending
of τ5 → τ6, as shown in Figure 2(c), we could avoid the need to
buffer the message at link L1,0,E . In the particular case of our ex-
ample, this message delaying comes with no task graph response
time penalty. This is because the task graph response time is given
by the largest response time among the tasks of the graph (τ4 in our
case), shown as the dotted line in Figure 2, which is unaffected by
the delaying of message τ5→ τ6. In general, traffic shaping may in-
crease the application latency. Therefore, we deploy traffic shaping
with predilection to messages on non-critical computation paths.

The above example demonstrates the efficiency of intelligent
communication mapping and traffic shaping when applied to the
problem of buffer need minimisation. Obviously, the techniques
are also effective in the case of the second problem formulated in
Section 2.2, the communication synthesis problem with predefined
buffer space.

4 Approach outline

The solution to both problems defined in Section 2.2 consists
of two components each: the set of message communication sup-
ports and the set of packet delays. Thus, each problem is divided
into two subproblems, the communication mapping subproblem
(CM), which determines the communication support for each mes-
sage, and the traffic shaping subproblem (TS), which determines
the possible delays applied to forwarding a particular packet. De-
pending on the actual problem, we will introduce CSBSDM-CM
and CSBSDM-TS, and CSPBS-CM and CSPBS-TS respectively.

The outline of our approach is depicted in Figure 3. Solving the
communication mapping as well as the traffic shaping subproblem
is itself decomposed into three subproblems:

1. Delimit the space of potential solutions (Section 4.1)
2. Deploy an efficient strategy for the exploration of the design

space (Section 4.2), and
3. Find a fast and accurate system analysis procedure for guiding

the search (Section 4.3).

4.1 Delimitation of the design space

For the CM problem, we addressed the issue of the delimitation
of the potential solution space in our previous work [7]. Including
all possible CSs for each message in the space of potential solu-
tions leads to a very large space, impossible to explore in reason-
able time. Thus, we established criteria for picking only promising
CS candidates which we include in the space of potential solutions.
For details, the reader is referred to the cited work.

The solution space for the TS problem is constructed as follows.
For each tuple (pi, j,S), where pi, j is a packet from task τi to task τ j

and S is a network switch on its route, we consider the set of delays
{0,∆,2∆, . . . ,D j}, where ∆ is the minimum amount of time it takes
for the packet to traverse a network link, and D j = δ j−WCETj−
H ·∆, where δ j is the deadline of task τ j, WCETj is the worst case
execution time of task τ j , and H is the Manhattan distance between
the two cores on which tasks τi and τ j are mapped. Delaying the
packet pi, j longer than D j would certainly cause task τ j to break its
deadline δ j if it executed for its worst case execution time WCETj.

4.2 Exploration strategy

4.2.1 Cost function

The value of the cost function that drives the design space explo-
ration is infinite for solutions in which there exists a task whose
response time exceeds its deadline.

The cost function for the CSBSDM-CM and CSBSDM-TS sub-
problems is ∑b∈B db, where B is the set of all switch input buffers,
b is a buffer in this set, and db is the maximum demand of buffer
space of the application at buffer b.

The cost function for the CSPBS-CM and CSPBS-TS subprob-
lems is maxb∈B(db− cb), where cb is the capacity of buffer b. So-
lutions of the CSPBS problem with strictly positive cost function



(1) sm = sort messages;
(2) for each msg in sm do
(3) CS[msg] = select(msg, candidates[msg]);
(4) if CS[msg] =NONE then
(5) abort NO SOLUTION;
(6) return CS;

select(msg, cand list):
(7) cost = ∞; selected =NONE;
(8) for each cnd in cand list do
(9) CS[msg] = cnd; crt cost = cost func;
(10) if crt cost < cost then
(11) selected = cnd; cost = crt cost;
(12) return selected;

Figure 4: Heuristic for communication mapping

(1) sct =sort comm tasks;
(2) for each τ in sct do delay[τ] =shape(τ);

shape(τ):
(3) cost = ∞;
(4) for delay[τ] = 0.0; delay[τ] < Dτ; delay[τ]← delay[τ]+∆
(5) crt cost = cost func;
(6) if crt cost < cost then
(7) best delay = delay[τ]; cost = crt cost;
(8) end for;
(9) return best delay;

Figure 5: Heuristic for traffic shaping

value do not satisfy the buffer space constraint and are thus unfea-
sible.

4.2.2 Communication mapping

We propose a greedy heuristic for communication mapping. We
map messages to CSs stepwise. At each step, we map one message
and we obtain a partial solution. When evaluating partial solutions,
the messages that have not yet been mapped are not considered.

The heuristic proceeds as shown in Figure 4, lines 1–6. It re-
turns the list of communication supports for each message if a fea-
sible solution is found (line 6) or aborts otherwise (line 5). Before
proceeding, we sort all messages in increasing order of their num-
ber of mapping alternatives (line 1). Then, we iterate through the
sorted list of messages sm. In each iteration, we select a mapping
alternative to the current message (line 3).

The selection of a mapping alternative out of the list of can-
didates (determined in the previous step, Section 4.1) is shown in
Figure 4, lines 7–12. We iterate over the list of mapping alternatives
(line 8) and evaluate each of them (line 9). We select the alternative
that gives the minimum cost (line 11).

The motivation for synthesizing the communication in the par-
ticular order of increasing number of mapping alternatives of mes-
sages is the following. We would like to minimise the chance that
the heuristic runs into the situation in which it does not find any fea-
sible solution, although at least one exists. If messages enjoying a
large number of mapping alternatives are mapped first, we restrict
the search space prematurely and gratuitously, running the risk that
no feasible mapping is found for other messages among their few
mapping alternatives.

4.2.3 Traffic shaping

The greedy heuristic, shown in Figure 5, determines the amount of
time each communication task has to be delayed (a.k.a. shaping de-
lay). As a first step, we sort the communication tasks according to
a criterion to be explained later (line 1). Let τ be a communication
task that is part of the message from task τi to task τ j. Then, for
all communication tasks in the sorted list we find the appropriate
shaping delay (line 2). The selection of a shaping delay of a com-
munication task is performed by the function shape (lines 3–9). We
probe shaping delays ranging from 0 to D j = δ j−WCETj−H ·∆ in

(1) Bu f = 0; b = 0; t = 0; F = R0(t); F1 = F;
(2) loop
(3) t ′ = next t ′;
(4) F ′ = R0(t

′);
(5) if t ′ = F ′ then
(6) return Bu f ;
(7) b′ = (F ′−F) ·bw+b− (t < F1)?1 : 0;
(8) if b′ > Bu f then
(9) Bu f = b′;
(10) if t ′ > F1 then
(11) b := b− (t ′−max(t,F1)− (F ′−F)) ·bw;
(12) t = t ′; F = F ′;
(13) end loop;

Figure 6: Buffer space analysis algorithm

increments of ∆ (see Section 4.1). For each probed shaping delay,
we evaluate the cost of the obtained partial solution (line 5). When
calculating it, we assume that the shaping delay of those tasks for
which none has yet been chosen is 0. We select the shaping delay
that leads to the minimum cost solution (lines 6–7).

Before closing this section, we will explain in which order to
perform the shaping delay selection. We observe that communica-
tion tasks on paths whose response times are closer to the deadline
have a smaller potential for delaying. Thus, delaying such commu-
nication tasks runs a higher risk to break the timeliness constraints.
In order to quantify this risk, we compute the worst case response
time Rτ of each leaf task τ. Then, for each task τi we determine
L (τi), the set of leaf tasks τ j such that there exists a computation
path between task τi and τ j. Then, to each task τi we assign the
value prti = minτ∈L (τi)(δτ−Rτ). Last, we sort the tasks in decreas-

ing order of their prti.
1 In case of ties, tasks with smaller depths2

in the task graph are placed after tasks deeper in the graph. (If tasks
with small depths were delayed first, their delay would seriously
restrict the range of feasible delays of tasks with large depths.)

4.3 System analysis procedure

In order to be able to compute the cost function as defined in
Section 4.2, we need to determine the worst-case response time of
each task as well as the buffering demand at each buffer in the worst
case. To do so, we extended the schedulability analysis algorithm
of Palencia and González [8].

At the core of the worst case response time calculation of task
τi is a fix-point equation of type wi = Ri(wi). Ri(t) gives the worst
case response time of task τi when considering interference of tasks
of higher priority than that of τi that arrive in the interval [0,t). The
time origin is considered the arrival time of task τi. Thus, evaluat-
ing Ri at two time moments, t1 and t2, allows us to determine the
execution time demanded by higher priority tasks arrived during the
interval [t1,t2). More details regarding the calculation of the worst
case response time can be found in cited work [8, 7]. Here we will
concentrate on our approach to buffer demand analysis. For com-
munication tasks, their “execution time” on their “processors” are
actually the transmission times of packets on network links. This
transmission time is proportional to the length of the packet. Thus,
by means of the analysis of Palencia and González, that can deter-
mine the execution time demanded during a time interval, we are
able to determine the buffering demand arrived during the interval.

The algorithm for the calculation of the buffer space demand of
an ingress buffer of an arbitrary network link is given in Figure 6.
We explain the algorithm based on the following example.

Let us consider the following scenario. Prior to time moment 0, a
400MHz link is idle. The links convey the bits of a word in parallel,
with one word per cycle. At time moment 0, the first word of a 6-
word packet p1 arrives at the switch and is immediately conveyed

1The procedure can be easily generalised for the case in which not only leaf tasks
have deadlines.

2The depth of a task τ is the length of the longest computation path from a root
task to task τ.
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Figure 7: Waiting time and buffer demand

on the link without buffering. The following packets subsequently
arrive at the switch and demand forwarding on the link: p2, 5 words
long, arrives at 5ns, p3, 3 words long, arrives at 10ns, p4, 2 words
long, arrives at 15.25ns, and p5, 1 word long, arrives at 17.5ns.
Let us assume that a fictive packet p0 of zero length and of very
low priority arrived at time 0+, i.e. immediately after time 0. We
compute the worst case buffer space need based on the worst case
transmission time of this fictive packet.

The scenario is shown in Figure 7. Time is shown on the ab-
scissa, while the saw-teeth function shows the instantaneous com-
munication time backlog, and the solid step function shows the in-
stantaneous amount of occupied buffer space. The arrows pointing
from the steps in the backlog line to the shaded areas show which
message arrival causes the corresponding buffering.

The time interval during which the link is busy sending packets
is called the busy period. In our example the busy period is the
interval [0,42.5), as can be seen on the figure. The main part of the
algorithm in Figure 6 consists of a loop (lines 2–13). A subinterval
[t,t ′) of the busy period is considered in each iteration of the loop.
In the first iteration t = 0 while in iteration i, t takes the value of
t ′ of iteration i− 1 for all i > 1 (line 12). F and F ′ are the times
at which the link would be idle if it has to convey just the packets
arrived sooner than or exactly at times t and t ′ respectively (lines
1 and 4). t ′, the upper limit of the interval under consideration in
each iteration, is obtained as shown in line 3. For the moment, let
us consider that next t ′ = F and we will discuss the rationale and
other possible choices later in the section.

For our example, only packet p1 of 6 words is to be sent just

after time 0. Hence, R0(0
+) = 6words/0.4 ·10−9words/sec = 15ns.

The first iteration of the loop considers the interval [t = 0,t ′ = F =
R0(0

+) = 15). We compute F ′ = R0(t
′ = 15) (line 4) and we get

35ns, i.e. the 15ns needed to convey the six words of packet p1 plus

the 5words/0.4 ·10−9words/sec = 12.5ns needed to convey packet
p2 plus the 7.5ns needed to convey packet p3 (p2 and p3 having
arrived in the interval [0,15)). The time by which the link would
become idle if it has to convey just the packets arrived prior to t ′ =
15ns is greater than t ′. Hence, there are unexplored parts of the
busy period left and the buffer space calculation is not yet over
(lines 5–6). The packets that arrived between 0 and 15ns extended
the busy period with F ′−F = 20ns, hence the number of newly

arrived words is (F ′−F)×bw = 20ns×0.4 ·10−9 = 8words. The
algorithm is unable to determine the exact time moments when the
8 words arrived. Therefore, we assume the worst possible moment
from the perspective of the buffer space demand. This moment is
time t+, i.e. immediately after time t. The 8 words are latched at the
next clock period after time t+ = 0, i.e. at 2.5ns. b′, the amount of
occupied buffer after latching, is b, the amount of occupied buffer
at time t, plus the 8 words, minus possibly one word that could have
been pumped out of the buffer between t and t + 2.5ns. During the
time interval [0,F1 = 15), where F1 is the time it takes to convey
packet p1, the words conveyed on the link belong to p1, which is
not stored. Therefore, no parts of the buffer are freed in the interval
[0,F1) (see line 7). If the required buffer space is larger than what

has been computed so far, the buffer space demand is updated (lines
8–9). Because no buffer space is freed during the interval [0,15),
lines 10–11 are not executed in the first iteration of the loop.

The second iteration considers the interval [t = 15,t ′= 35). F =
35ns and F ′ = 42.5ns in this case. Hence, (F ′−F) ·bw = 7.5ns×
0.4 ·10−9words/sec = 3words arrived during interval [15,35). The
three words are considered to have arrived at the worst moment,
i.e. at 15+. They are latched at time 17.5ns when b = 8− 1, i.e.
the 8 words that are stored in the buffer at 15ns minus one word
that is pumped out between 15 and 17.5ns. Thus b′, the amount of
occupied buffer at 17.5ns is 8−1+3= 10 (line 7). The value Bu f is
updated accordingly (lines 8–9). Between 15 and 35ns some words
that were stored in the buffer are sent on the link and therefore
we have to account for the reduction of the amount of occupied
buffer. Thus, the amount of occupied buffer at 35ns is equal to 8,
the amount present at 15ns, plus the 3 words that arrived between 15

and 35ns and minus the (35−15)×0.4 ·10−9 = 8 that are conveyed
on the link in the interval [15,35) (see lines 10–11).

The third iteration considers the interval [35,42.5). As no new
packets arrive during this interval, t ′ = R0(t

′) = 42.5 and the algo-
rithm has reached fix-point and returns the value of Bu f .

We will close the section with a discussion on next t ′, the com-
plexity of the algorithm, and the trade-off between the algorithm
execution speed and accuracy.

The actual amount of occupied buffer is shown as the thick solid
line in Figure 7, while the amount, as estimated by the algorithm, is
shown as thick dotted line. We observe that the analysis procedure
produces a pessimistic result. This is due to the fact that the analy-
sis assumes that the new packets which arrive in the interval [t,t ′)
arrive always at the worst possible moment, that is moment t+. If
we partitioned the interval in which the link is busy sending packets
into many shorter intervals, we could reduce the pessimism of the
analysis, because fewer arrivals would be amassed at the same time
moment. However, that would also imply that we invoke function
R0 more often, which is computationally expensive. Thus, there ex-
ists a trade-off between speed of the analysis and pessimism, which
is reflected in the choice of next t ′ (line 3). A value closer to t
would lead to short intervals, i.e. less pessimism and slower anal-
ysis, while a value farther from t would lead to longer intervals,
i.e. more pessimistic but possibly (not necessarily, as shown be-
low) faster analysis.

In our experiments, we use next t ′ = F , which is the finishing
time of the busy period if no new packets arrive after time t. Choos-
ing a value larger than F would incur the risk to overestimate the
busy period. As a result, packets that arrive after the real finishing
time of the busy period might wrongly be considered as part of the
current busy period. On one hand that leads to the overestimation
of the buffer space, and on the other hand it increases the time until
the loop in Figure 6 reaches fix-point. In our experiments, choos-
ing next t ′ = 1.6 ·F results in a 10.3% buffer overestimation and
a 2.3× larger analysis time relative to the case when next t ′ = F .
Conversely, choosing smaller values for next t ′ lead to reductions
of at most 5.3% of the buffer space estimate while the analysis time
increased with up to 78.5%.

The algorithm is of pseudo-polynomial complexity due to the
calculation of function R [8].

5 Experimental results

We use a set of 225 synthetic applications in order to assess the
efficiency of our approach to solve the CSBSDM problem. The ap-
plications consist of 27 to 79 tasks which are mapped on a 4× 4
NoC. The probability that a 110-bit packet traverses one network
link unscrambled is 0.99, while the imposed lower bound on the
message arrival probability is also 0.99. Due to the fact that the
implementation of the packet delay capability could excessively
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Figure 8: Experimental results

increase the complexity of the switches, we have considered that
traffic shaping is performed only at the source cores. This has the
advantage of no hardware overhead.

For each application, we synthesized the communication using
three approaches and we determined the total buffer space demand
obtained in each of the three cases. In the first case, we use the
buffer space minimisation approach presented in the current paper.
In the second case, we replaced the greedy heuristics described in
Section 4.2 with tabu search based [3] heuristics that are assumed
to generate close to optimal solutions provided that they are let to
explore the design space for a very long time. In the third case,
we deployed the communication synthesis approach presented by
us in previous work [7] in which we do not considered buffer space
minimisation. The resulting total buffer space as a function of the
number of tasks is shown in Figure 8(a) as the curves labelled with
“greedy”, “tabu”, and “no buffer minimisation” respectively.

First, we observe that buffer space minimisation is worth pur-
suing, as it results in 22.3% reduction of buffer space on average
when compared to the case when buffer space minimisation is ne-
glected. Second, traffic shaping is an effective technique, reducing
the buffer space demand with 14.2% on average relative to the ap-
proach that is based solely on communication mapping. Third, the
greedy heuristic performs well as it obtains results on average of
only 3.6% worse than the close-to-optimal tabu search. The run-
ning times of the tabu search based and the greedy heuristic, as
measured on a 1533 MHz AMD Athlon processor, are shown in
Figure 8(b). The greedy heuristic performs about two orders of
magnitude faster (note the logarithmic scale of the y axis) than the
tabu search based heuristic. Thus, we are able to synthesize the
communication for applications of 79 tasks in 1′40′′, while the tabu
search based heuristic requires around 1h30′ for applications of 59
tasks.

We use 50 different 4×4 NoCs in order to assess the efficiency
of our approach to solve the CSPBS problem. The total buffering
capacities at switches range between 9,000 and 30,000 bits, uni-
formly distributed among the switches. We map 200 applications,
one at a time, each consisting of 40 tasks, on each of the 50 NoCs,
and we attempt to synthesize the communication of the application
such that no buffer overflows or deadline violations occur. For each
NoC, we count the applications for which we succeeded to find
feasible solutions to the CSPBS problem. The percentage of the
number of applications for which feasible communication synthe-
sis solutions were found is plotted as a function of the total buffer
capacity of the NoC in Figure 8(c). The proposed heuristic soundly
outperforms the approach that neglects the buffering aspect as the
percentage of found solutions is on average 53 points higher in the
former case than in the latter. Also, the deployment of traffic shap-
ing results in leveraging the percentage of found solutions to the
CSPBS problem with 18.5% compared to the case when no traf-
fic shaping is deployed. The results of the greedy heuristic come

within 9% of the results obtained by tabu search, while the greedy
heuristic runs on average 25 times faster.

Finally, we applied our approach to a multimedia application [5],
namely an image encoder implementing the H263 algorithm. The
application is composed of 24 tasks running on a platform consist-
ing of 6 DSPs, 2 CPUs, 4 ASICs, and 2 memory cores (organised as
a 4× 4 NoC with two unused tiles). The communication mapping
heuristic reduced the total buffer space with 12.6% relative to the
approach that synthesized the communication without attempting
to reduce the total buffer space demand. Traffic shaping allowed
for a further reduction of 31.8%.

6 Conclusions

In this paper, we developed an approach to the worst case buffer
need analysis of time constrained applications implemented on
NoCs. Based on this analysis we solved two related problems:
(1) the total buffer space need minimisation for application-specific
NoCs and (2) communication synthesis with imposed buffer space
constraints. For both cases we guarantee that imposed deadlines
and message arrival probability thresholds are satisfied. We argued
that traffic shaping is a powerful method for buffer space minimi-
sation. We proposed two efficient greedy heuristics for the com-
munication mapping and traffic shaping subproblems and we pre-
sented experimental results which demonstrate the efficiency of the
approach.
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