
Schedulability Analysis of Applications with

Stochastic Task Execution Times

SORIN MANOLACHE, PETRU ELES and ZEBO PENG

Linköping University, Sweden

In the past decade, the limitations of models considering fixed (worst case) task execution times
have been acknowledged for large application classes within soft real-time systems. A more realistic
model considers the tasks having varying execution times with given probability distributions.
Considering such a model with specified task execution time probability distribution functions, an
important performance indicator of the system is the expected deadline miss ratio of the tasks and
of the task graphs. This article presents an approach for obtaining this indicator in an analytic
way.

Our goal is to keep the analysis cost low, in terms of required analysis time and memory,
while considering as general classes of target application models as possible. The following main
assumptions have been made on the applications which are modelled as sets of task graphs:
the tasks are periodic, the task execution times have given generalised probability distribution
functions, the task execution deadlines are given and arbitrary, the scheduling policy can belong

to practically any class of non-preemptive scheduling policies, and a designer supplied maximum
number of concurrent instantiations of the same task graph is tolerated in the system.

Experiments show the efficiency of the proposed technique for monoprocessor systems.

Categories and Subject Descriptors: B.8.0 [Hardware]: Performance and Reliability—General;
C.4 [Computer Systems Organization]: Performance of Systems—Performance attributes;
D.4.7 [Software]: Operating Systems—Organization and Design; G.3 [Mathematics of Com-

puting]: Probability and Statistics—Markov Processes

General Terms: Performance, Theory

Additional Key Words and Phrases: Schedulability analysis, soft real-time systems, stochastic
task execution times

1. INTRODUCTION

The design process of embedded real-time systems typically starts from an informal
specification together with a set of constraints. This initial informal specification
is then captured as a more rigorous model, formulated in one or several modelling
languages [Powell Douglass et al. 1996; Sarkar et al. 1995]. During the system
level design space exploration phase, different architecture, mapping and scheduling
alternatives are assessed in order to meet the design requirements and possibly
optimise the values of certain quality or cost indicators [De Micheli and Gupta
1997; Beck and Siewiorek 1998; Lee et al. 1999; Potkonjak and Rabaey 1999; Wolf

Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 2004 ACM 0000-0000/2004/0000-0001 $5.00

ACM Journal Name, Vol. 3, No. 4, November 2004, Pages 1–29.



2 · Sorin Manolache et al.

1994; Ernst 1998]. The existence of accurate, fast and flexible automatic tools for
performance estimation in every design phase is of capital importance for cutting
down design process iterations, time, and cost.

Performance estimation tools used in the early design stages do not benefit from
detailed information regarding the design and, hence, can provide only rough es-
timates of the final performance of the system to be implemented. In the later
design stages, before proceeding to the synthesis and/or integration of the soft-
ware, hardware and communication components of the system, it is important that
the system performance, as predicted by the estimation tools based on the now
more detailed system model, is accurate with respect to the real performance of
the manufactured and deployed product. An accurate performance estimation at
this stage would leverage the design process by allowing the designer to efficiently
explore several design alternatives. Such a performance estimation algorithm is the
topic of this article.

Historically, real-time system research emerged from the need to understand,
design, predict, and analyse safety critical applications such as plant control and
aircraft control, to name a few [Liu and Layland 1973; Kopetz 1997; Buttazzo 1997].
Therefore, the community focused on hard real-time systems, where breaking a
timeliness requirement is intolerable as it may lead to catastrophic consequences.
In such systems, if not all deadlines are guaranteed to be met, the system is said
to be unschedulable. The schedulability analysis of hard real-time systems answers
the question whether the system is schedulable or not [Audsley et al. 1995; Fidge
1998; Balarin et al. 1998; Stankovic and Ramamritham 1993]. The only way to
ensure that no real-time requirement is broken is to make conservative assumptions
about the systems, such as, for example, that every task instantiation is assumed
to run for a worst case time interval, called the worst case execution time (WCET)
of the task.

Applications belonging to a different class of real-time systems, the soft real-time
systems, are considered to still correctly function even if some timeliness require-
ments are occasionally broken, as this leads to a tolerable reduction of the service
quality [Buttazzo et al. 1998]. For example, multimedia applications, like JPEG
and MPEG encoding, audio encoding, etc., exhibit this property [Abeni and But-
tazzo 1998]. In this context, we would be interested in the degree to which the
system meets its timeliness requirements rather than in the binary answer provided
by the hard real-time system schedulability analysis. In our work, this degree is
expressed as the expected ratio of missed deadlines for each task graph or task.

The execution time of a task is a function of application-dependent, platform-
dependent, and environment-dependent factors. The amount of input data to be
processed in each task instantiation as well as its value and type (pattern, configura-
tion) are application-dependent factors. The type of processing unit that executes a
task is a platform-dependent factor influencing the task execution time. If the time
needed for communication with the environment (database lookups, for example)
is to be considered as a part of the task execution time, then network load is an
example of an environmental factor influencing the task execution time.

Input data amount and type may vary, as for example is the case for differently
coded MPEG frames. Platform-dependent characteristics, like cache memory be-

ACM Journal Name, Vol. 3, No. 4, November 2004.



Schedulability Analysis of Applications with Stochastic Task Execution Times · 3

haviour, pipeline stalls, write buffer queues, may also introduce a variation in the
task execution time. Thus, obviously, all of the enumerated factors influencing the
task execution time may vary. Therefore, a model considering variable execution
time would be more realistic as the one considering fixed, worst case execution
times. In a more general model of task execution times, arbitrary task execution
time probability distribution functions (ETPDFs) are considered. These distribu-
tions can be extracted from performance models [van Gemund 1996] by means of
analytic methods or simulation and profiling [van Gemund 2003; Gautama and van
Gemund 2000; Gautama 1998]. Obviously, the fixed task execution time model is
a particular case of such a stochastic one.

An approach based on a worst case execution time model would implement the
task on an expensive system which guarantees the imposed deadline for the worst
case situation. This situation, however, will usually occur with a very small proba-
bility. If the nature of the application is such that a certain percentage of deadline
misses is affordable, a cheaper system, which still fulfils the imposed quality of
service, can be designed.

This article proposes an algorithm for obtaining the expected ratio of missed
deadlines per task graph or task, given a set of task graphs with the following as-
sumptions: the tasks are periodic, the task execution times have given generalised
probability distribution functions, the task execution deadlines are given and ar-
bitrary, the scheduling policy belongs to practically any class of non-preemptive
scheduling policies, and a designer supplied maximum number of concurrent in-
stantiations of the same task graph is tolerated in the system.

The sequel of the article is structured as follows. The next section surveys related
work and comparatively comments on our approach. Section 3 captures the prob-
lem formulation. Section 4 discusses our algorithm in detail. Section 5 presents
experiments and the last section draws the conclusions.

2. RELATED WORK

Atlas and Bestavros [Atlas and Bestavros 1998] extend the classical rate monotonic
scheduling policy [Liu and Layland 1973] with an admittance controller in order to
handle tasks with stochastic execution times. They analyse the quality of service of
the resulting schedule and its dependence on the admittance controller parameters.
The approach is limited to rate monotonic analysis and assumes the presence of an
admission controller at run-time.

Abeni and Buttazzo’s work [Abeni and Butazzo 1999] addresses both scheduling
and performance analysis of tasks with stochastic parameters. Their focus is on
how to schedule both hard and soft real-time tasks on the same processor, in such
a way that the hard ones are not disturbed by ill-behaved soft tasks. The perfor-
mance analysis method is used to assess their proposed scheduling policy (constant
bandwidth server), and is restricted to the scope of their assumptions.

Tia et al. [Tia et al. 1995] assume a task model composed of independent tasks.
Two methods for performance analysis are given. One of them is just an estimate
and is demonstrated to be overly optimistic. In the second method, a soft task is
transformed into a deterministic task and a sporadic one. The latter is executed
only when the former exceeds the promised execution time. The sporadic tasks are

ACM Journal Name, Vol. 3, No. 4, November 2004.



4 · Sorin Manolache et al.

handled by a server policy. The analysis is carried out on this particular model.

Zhou et al. [Zhou et al. 1999] and Hu et al. [Hu et al. 2001] root their work in
Tia’s. However, they do not intend to give per-task guarantees, but characterise
the fitness of the entire task set. Because they consider all possible combinations
of execution times of all requests up to a time moment, the analysis can be applied
only to very small task sets due to complexity reasons.

De Veciana et al. [de Veciana et al. 2000] address a different type of problem.
Having a task graph and an imposed deadline, their goal is to determine the path
that has the highest probability to violate the deadline. In this case, the problem
is reduced to a non-linear optimisation problem by using an approximation of the
convolution of the probability densities.

Lehoczky [Lehoczky 1996] models the task set as a Markovian process. The ad-
vantage of such an approach is that it is applicable to arbitrary scheduling policies.
The process state space is the vector of lead-times (time left until the deadline). As
this space is potentially infinite, Lehoczky analyses it in heavy traffic conditions,
when the underlying stochastic process weakly converges to a reflected Brownian
motion with drift. As far as we are aware, the heavy traffic theory fails yet to
smoothly apply to real-time systems. Not only that there are cases when such a re-
flected Brownian motion with drift limit does not exist, as shown by Dai and Wang
[Dai and Wang 1993], but also the heavy traffic phenomenon is observed only for
processor loads close to 1, leading to very long (infinite) queues of ready tasks and
implicitly to systems with very large latency. This aspect makes the heavy traffic
phenomenon undesirable in real-time systems.

Other researchers, such as Kleinberg et al. [Kleinberg et al. 2000] and Goel and
Indyk [Goel and Indyk 1999], apply approximate solutions to problems exhibiting
stochastic behaviour but in the context of load balancing, bin packing and knapsack
problems. Moreover, the probability distributions they consider are limited to a few
very particular cases.

Kim and Shin [Kim and Shin 1996] considered applications implemented on mul-
tiprocessors and modelled them as queueing networks. They restricted the task
execution times to exponentially distributed ones, which reduces the complexity of
the analysis. The tasks were considered to be scheduled according to a particular
policy, namely first-come-first-served (FCFS). The underlying mathematical model
is then the appealing continuous time Markov chain.

Dı́az et al. [Dı́az et al. 2002] derive the expected deadline miss ratio from the
probability distribution function of the response time of a task. The response time
is computed based on the system-level backlog at the beginning of each hyperpe-
riod, i.e. the residual execution times of the jobs at those time moments. The
stochastic process of the system-level backlog is Markovian and its stationary solu-
tion can be computed. Dı́az et al. consider only sets of independent tasks and the
task execution times may assume values only over discrete sets. In their approach,
complexity is mastered by trimming the transition probability matrix of the un-
derlying Markov chain or by deploying iterative methods, both at the expense of
result accuracy. According to the published results, the method is exercised only
on extremely small task sets.

Kalavade and Moghé [Kalavade and Moghé 1998] consider task graphs where the

ACM Journal Name, Vol. 3, No. 4, November 2004.



Schedulability Analysis of Applications with Stochastic Task Execution Times · 5

τ1 τ2

τ3

2 1

2

Fig. 1. Application example

task execution times are arbitrarily distributed over discrete sets. Their analysis is
based on Markovian stochastic processes too. Each state in the process is charac-
terised by the executed time and lead-time. The analysis is performed by solving
a system of linear equations. Because the execution time is allowed to take only a
finite (most likely small) number of values, such a set of equations is small.

Our work is mostly related to the ones of Zhou et al. [Zhou et al. 1999], Hu et al.
[Hu et al. 2001], Kalavade and Moghé [Kalavade and Moghé 1998] and Dı́az et al
[Dı́az et al. 2002]. It differs mostly by considering less restricted application classes.
As opposed to Kalavade and Moghé’s work and to Dı́az et al.’s work, we consider
continuous ETPDFs. In addition to Dı́az et al.’s approach, we consider task sets
with dependencies among tasks. Also, we accept a much larger class of scheduling
policies than the fixed priority ones considered by Zhou and Hu. Moreover, our
original way of concurrently constructing and analysing the underlying stochastic
process, while keeping only the needed stochastic process states in memory, allows
us to consider larger applications [Manolache et al. 2001].

3. NOTATION AND PROBLEM FORMULATION

This section introduces the notation used throughout the article and gives the
problem formulation.

3.1 Notation

Let T = {τ1, τ2, . . . , τN} be a set of N tasks and G = {G1, G2, . . . , Gh} denote h

task graphs. A task graph Gi = (Vi, Ei ⊂ Vi×Vi) is a directed acyclic graph (DAG)
whose set of vertices Vi is a non-empty subset of the set of tasks T . The sets Vi,
1 ≤ i ≤ h, form a partition of T . There exists a directed edge (τj , τk) ∈ Ei if and
only if the task τk is dependent on the task τj . This dependency imposes that the
task τk is executed only after the task τj has completed execution.

Let Gi = (Vi, Ei) and τk ∈ Vi. Then let ◦τk = {τj : (τj , τk) ∈ Ei} denote the set
of predecessor tasks of the task τk. Similarly, let τ◦

k = {τj : (τk, τj) ∈ Ei} denote
the set of successor tasks of the task τk. If ◦τk = ∅ then task τk is a root. If τ◦

k = ∅

then task τk is a leaf.
Let Π = {πi ∈ N : τi ∈ T} denote the set of task periods, or task inter-arrival

times, where πi is the period of task τi. Instantiation u ∈ N of task τi demands
execution (is released) at time moment u · πi. The period πi of any task τi is
assumed to be a common multiple of all periods of its predecessor tasks (πj divides
πi, where τj ∈ ◦τi). Let kij denote πi

πj
, τj ∈ ◦τi. Instantiation u ∈ N of task τi may

start executing only if instantiations u · kij , u · kij + 1, . . . , (u + 1) · kij − 1 of tasks
τj , ∀τj ∈ ◦τi, have completed.

Let us consider the example in Figure 1. The circles indicate the tasks, the num-

ACM Journal Name, Vol. 3, No. 4, November 2004.



6 · Sorin Manolache et al.

bers outside the circles indicate the task periods. In this example, instantiation 0 of
task τ1 and instantiations 0 and 1 of task τ2 have to complete in order instantiation
0 of task τ3 to be ready to run. Instantiation 1 of task τ1 and instantiations 2 and
3 of task τ2 have to complete in order instantiation 1 of task τ3 to be ready to
run. However, there is no execution precedence constraint between instantiation 0
of task τ1 and instantiations 0 and 1 of task τ2 on one hand and instantiation 1 of
task τ3 on the other hand.

πGj
will denote the period of the task graph Gj and πGj

is equal to the least
common multiple of all πi, where πi is the period of τi and τi ∈ Vj .

The model, where task periods are integer multiples of the periods of predecessor
tasks, is more general than the model assuming equal task periods for tasks in
the same task graph. This is appropriate, for instance, when modelling protocol
stacks. For example, let us consider a part of baseband processing on the GSM
radio interface [Mouly and Pautet 1992]. A data frame is assembled out of 4 radio
bursts. One task implements the decoding of radio bursts. Each time a burst is
decoded, the result is sent to the frame assembling task. Once the frame assembling
task gets all the needed data, that is every 4 invokations of the burst decoding task,
the frame assembling task is invoked. This way of modelling is more modular and
natural than a model assuming equal task periods which would have crammed the
four invokations of the radio burst decoding task in one task. We think that more
relaxed models, with regard to relations between task periods, are not necessary,
as such applications would be more costly to implement and are unlikely to appear
in common engineering practice.

The real-time requirements are expressed in terms of relative deadlines. Let
∆T = {δi ∈ N : τi ∈ T} denote the set of task deadlines. δi is the deadline of task
τi. Let ∆G = {δGj

∈ N : 1 ≤ j ≤ h} denote the set of task graph deadlines, where
δGj

is the deadline of task graph Gj . If there is at least one task τi ∈ Vj that has
missed its deadline δi, then the entire graph Gj missed its deadline.

If Di(t) denotes the number of missed deadlines of the task τi (or of the task
graph Gi) over a time span t and Ai(t) denotes the number of instantiations of task

τi (task graph Gi) over the same time span, then limt→∞
Di(t)
Ai(t)

denotes the expected

deadline miss ratio of task τi (task graph Gi).

Let Exi denote an execution time of an instantiation of the task τi. Let ET =
{ε1, ε2, . . . , εN} denote a set of N execution time probability density functions. εi is
the probability density of the execution time of task τi. The execution times are
assumed to be statistically independent. All the tasks are assumed to execute on
the same processor. In this case, the inter-task communication time is comprised
in the task execution time.

If a task misses its deadline, the real-time operating system takes a decision based
on a designer-supplied late task policy. Let Bounds = {b1, b2, . . . , bh} be a set of h

integers greater than 0. The late task policy specifies that at most bi instantiations
of the task graph Gi are allowed in the system at any time. If an instantiation
of graph Gi demands execution when bi instantiations already exist in the system,
the instantiation with the earliest arrival time is discarded (eliminated) from the
system. An alternative to this late task policy will be discussed in Section 5.5

In the common case of more than one task mapped on the same processor, the

ACM Journal Name, Vol. 3, No. 4, November 2004.



Schedulability Analysis of Applications with Stochastic Task Execution Times · 7

designer has to decide on a scheduling policy. Such a scheduling policy has to be
able to unambiguously determine the running task at any time on that processor.

Let an event denote a task arrival or discarding. In order to be acceptable in
the context described in this article, a scheduling policy is assumed to preserve the
sorting of tasks according to their execution priority between consecutive events
(the priorities are allowed to change in time, but the sorting of tasks according
to their priorities is allowed to change only at event times). All practically used
priority based scheduling policies [Liu and Layland 1973; Buttazzo 1997; Fidge
1998; Audsley et al. 1995], both with static priority assignment (rate monotonic,
deadline monotonic) and with dynamic assignment (earlier deadline first (EDF),
least laxity first (LLF)), fulfill this requirement.

The scheduling policy is nevertheless restricted to non-preemptive scheduling.
This limitation is briefly discussed in Section 4.1.

3.2 Problem formulation

3.2.1 Input. The following data is given as an input to the analysis procedure:

—The set of task graphs G,

—The set of task periods Π,

—The set of task deadlines ∆T and the set of task graph deadlines ∆G,

—The set of execution time probability density functions ET ,

—The late task policy Bounds, and

—The scheduling policy.

3.2.2 Output. The result of the analysis is the set MissedT = {mτ1
, mτ2

, . . . , mτN
}

of expected deadline miss ratios for each task and the set MissedG = {mG1
, mG2

, . . . , mGh
}

of expected deadline miss ratios for each task graph.

4. ANALYSIS ALGORITHM

The goal of the analysis is to obtain the expected deadline miss ratios of the tasks
and task graphs. These can be derived from the behaviour of the system. The
behaviour is defined as the evolution of the system through a state space in time.
A state of the system is given by the values of a set of variables that characterise
the system. Such variables may be the currently running task, the set of ready
tasks, the current time and the start time of the current task, etc.

Due to the considered periodic task model, the task arrival times are deter-
ministically known. However, because of the stochastic task execution times, the
completion times and implicitly the running task at an arbitrary time instant or
the state of the system at that instant cannot be deterministically predicted. The
mathematical abstraction best suited to describe and analyse such a system with
random character is the stochastic process.

In this section, we first sketch the stochastic process construction and analysis
procedure based on a simplified example. Then the memory efficient construction of
the stochastic process underlying the application is detailed. Third, the algorithm
is refined in order to handle multiple concurrently active instantiations of the same
task graph. Finally, the complete algorithm is presented.

ACM Journal Name, Vol. 3, No. 4, November 2004.



8 · Sorin Manolache et al.

4.1 The underlying stochastic process

Let us define LCM as the least common multiple of the task periods. For simplicity
of the exposition, we first assume that at most one instantiation of each task graph
is tolerated in the system at the same time (bi = 1, ∀1 ≤ i ≤ h). In this case, all
the late tasks are discarded at the time moments LCM, 2 ·LCM, . . . , k ·LCM, . . .

because at these moments new instantiations of all tasks arrive. The system behaves
at these time moments as if it has just been started. The time moments k · LCM ,
k ∈ N are called renewal points. Regardless of the chosen definition of the state
space of the system, the system states at the renewal points are equivalent to the
initial state which is unique and deterministically known. Thus, the behaviour
of the system over the intervals [k · LCM, (k + 1) · LCM), k ∈ N, is statistically
equivalent to the behaviour over the time interval [0, LCM). Therefore, in the case
when bi = 1, 1 ≤ i ≤ h, it is sufficient to analyse the system solely over the time
interval [0, LCM).

One could choose the following state space definition: S = {(τ, W, t) : τ ∈ T, W ∈
set of all multisets of T, t ∈ R}, where τ represents the currently running task, W

stands for the multiset of ready tasks at the start time of the running task, and t

represents the start time of the currently running task. A state change occurs at
the time moments when the scheduler has to decide on the next task to run. This
happens

— when a task completes its execution, or

— when a task arrives and the processor is idling, or

— when the running task graph has to be discarded.

The point we would like to make is that, by choosing this state space, the in-
formation provided by a state si = (τi, Wi, ti), together with the current time, is
sufficient to determine the next system state sj = (τj , Wj , tj). The time moment
when the system entered state si, namely ti, is included in si. Because of the
deterministic arrival times of tasks, based on the time moments tj and on ti, we
can derive the multiset of tasks that arrived in the interval (ti, tj ]. The multiset
of ready tasks at time moment ti, namely Wi, is also known. We also know that
τi is not preempted between ti and tj . Therefore, the multiset of ready tasks at
time moment tj , prior to choosing the new task to run, is the union of Wi and the
tasks arrived during the interval (ti, tj ]. Based on this multiset and on the time tj ,
the scheduler is able to predictably choose the new task to run. Hence, in general,
knowing a current state s and the time moment t when a transition out of state s

occurs, the next state s′ is unambiguously determined.
The following example is used throughout this subsection in order to discuss the

construction of the stochastic process. The system consists of one processor and
the following application: G = {({τ1}, ∅), ({τ2}, ∅)}, Π = {3, 5}, i.e. a set of two
independent tasks with corresponding periods 3 and 5. The tasks are scheduled
according to a non-preemptive EDF scheduling policy [Liu and Layland 1973]. In
this case, LCM , the least common multiple of the task periods is 15. For simplicity,
in this example it is assumed that the relative deadlines equal the corresponding
periods (δi = πi). The ETPDFs of the two tasks are depicted in Figure 2. Note
that ε1 contains execution times larger than the deadline δ1.

ACM Journal Name, Vol. 3, No. 4, November 2004.



Schedulability Analysis of Applications with Stochastic Task Execution Times · 9

30 1 2 4
time

0.66

pr
ob

ab
ili

ty
(a) ε1

30 1 2 4
time

5 6

0.66

pr
ob

ab
ili

ty

(b) ε2

Fig. 2. ETPDFs of tasks τ1 (ε1) and τ2 (ε2)

Let us assume a state representation like the one introduced above: each process
state contains the identity of the currently running task, its start time and the
multiset of ready task at the start time of the currently running one. For our
example application, the initial state is (τ1, {τ2}, 0), i.e. task τ1 is running, it
has started to run at time moment 0 and task τ2 is ready to run, as shown in
Figure 3(a). t1, t2, . . . , tq in the figure are possible finishing times for the task τ1

and, implicitly, possible starting times of the waiting instantiation of task τ2. The
number of next states equals the number of possible execution times of the running
task in the current state. In general, because the ETPDFs are continuous, the set of
state transition moments form a dense set in R leading to an underlying stochastic
process theoretically of uncountable state space. In practice, the stochastic process
is extremely large, depending on the discretisation resolution of the ETPDFs. Even
in the case when the task execution time probabilities are distributed over a discrete
set, the resulting underlying process becomes prohibitively large and practically
impossible to solve.

In order to avoid the explosion of the underlying stochastic process, in our ap-
proach, we have grouped time moments into equivalence classes and, by doing so,
we limited the process size explosion. Thus, practically, a set of equivalent states
is represented as a single state in the stochastic process.

As a first step to the analysis, the interval [0, LCM) is partitioned in disjunct
intervals, the so-called priority monotonicity intervals (PMI). A PMI is delimited

ACM Journal Name, Vol. 3, No. 4, November 2004.



10 · Sorin Manolache et al.

τ1, {τ2}, 0

τ2, Ø, t1 tk+1 tqτ2, {τ1}, τ2, Ø, t τ2, Ø, t τ2, {τ12 k },  ...

(a) Individual task completion times

τ1, {τ2}, pmi1

τ2, Ø, pmi1 τ2, {τ1}, pmi2

(b) Intervals containing task completion times

Fig. 3. State encoding

pmi3pmi1 pmi2 pmi4 pmi5 pmi6 pmi7τ1

τ2

0 3 5 6 9 10 12 15

Fig. 4. Priority monotonicity intervals

by task arrival times and task execution deadlines. Figure 4 depicts the PMIs
for the example above. The only restriction imposed on the scheduling policies
accepted by our approach is that inside a PMI the ordering of tasks according to
their priorities is not allowed to change. This allows the scheduler to predictably
choose the next task to run regardless of the completion time within a PMI of the
previously running task. All the widely used scheduling policies we are aware of
(rate monotonic (RM), EDF, first come first served (FCFS), LLF, etc.) exhibit this
property.

Consider a state s characterised by (τi, W, t): τi is the currently running task, it
has been started at time t, and W is the multiset of ready tasks. Let us consider two
next states derived from s: s1 characterised by (τj , W1, t1) and s2 by (τk , W2, t2).
Let t1 and t2 belong to the same PMI. This means that no task instantiation has
arrived or been discarded in the time interval between t1 and t2, and the relative
priorities of the tasks inside the set W have not changed between t1 and t2. Thus,
τj = τk = the highest priority task in the multiset W , and W1 = W2 = W\{τj}.
It follows that all states derived from state s that have their time t belonging to
the same PMI have an identical currently running task and identical sets of ready

ACM Journal Name, Vol. 3, No. 4, November 2004.



Schedulability Analysis of Applications with Stochastic Task Execution Times · 11

3 4 5 6 time
pr

ob
ab

ili
ty

5 643 time

pr
ob

ab
ili

ty

τ1 , {τ2 }, pmi1

−, Ø, pmi1 τ1 , {τ2 }, pmi3

τ2 , {τ1 }, pmi2τ2 , Ø, pmi1

τ1 , Ø, pmi2

s1

s2

s4 s5 s6

s3

z3

z5 z6

1 2 3 4 time

pr
ob

ab
ili

ty

z2

1 2 3 4 time

pr
ob

ab
ili

ty

z4

time

pr
ob

ab
ili

ty

1 2 3 4

Fig. 5. Stochastic process example

tasks. Therefore, instead of considering individual times we consider time intervals,
and we group together those states that have their associated start time inside the
same PMI. With such a representation, the number of next states of a state s equals
the number of PMIs the possible execution time of the task that runs in state s is
spanning over.

We propose a representation in which a stochastic process state is a triplet
(τ, W, pmi), where τ is the running task, W the multiset of ready tasks, and pmi

is the PMI containing the start time of the running task. In our example, the
execution time of task τ1 (which is in the interval [2, 3.5], as shown in Figure 2(a))
is spanning over the PMIs pmi1— [0, 3)—and pmi2—[3, 5). Thus, there are only
two possible states emerging from the initial state, as shown in Figure 3(b).

Figure 5 depicts a part of the stochastic process constructed for our example. The
initial state is s1 : (τ1, {τ2}, pmi1). The first field indicates that an instantiation
of task τ1 is running. The second field indicates that an instantiation of task τ2

is ready to execute. The third field shows the current PMI (pmi1—[0, 3)). If
the instantiation of task τ1 does not complete until time moment 3, then it will
be discarded. The state s1 has two possible next states. The first one is state
s2 : (τ2, ∅, pmi1) and corresponds to the case when the τ1 completes before time
moment 3. The second one is state s3 : (τ2, {τ1}, pmi2) and corresponds to the case
when τ1 was discarded at time moment 3. State s2 indicates that an instantiation
of task τ2 is running (it is the instance that was waiting in state s1), that the
PMI is pmi1—[0, 3)—and that no task is waiting. Consider state s2 to be the
new current state. Then the next states could be state s4 : (−, ∅, pmi1) (task τ2

completed before time moment 3 and the processor is idle), state s5 : (τ1, ∅, pmi2)
(task τ2 completed at a time moment sometime between 3 and 5), or state s6 :
(τ1, {τ2}, pmi3) (the execution of task τ2 reached over time moment 5 and, hence,
it was discarded at time moment 5). The construction procedure continues until all
possible states corresponding to the time interval [0, LCM), i.e. [0, 15) have been
visited.

Let Pi denote the set of predecessor states of a state si, i.e. the set of all states
that have si as a next state. The set of successor states of a state si consists of
those states that can directly be reached from state si. Let Zi denote the time

ACM Journal Name, Vol. 3, No. 4, November 2004.



12 · Sorin Manolache et al.

when state si is entered. State si can be reached from any of its predecessor states
sj ∈ Pi. Therefore, the probability P(Zi ≤ t) that state si is entered before time t

is a weighted sum over j of probabilities that the transitions sj → si, sj ∈ Pi, occur
before time t. The weights are equal to the probability P(sj) that the system was in
state sj prior to the transition. Formally, P(Zi ≤ t) =

∑
j∈Pi

P(Zji ≤ t|sj) · P(sj),
where Zji is the time of transition sj → si. Let us focus on Zji, the time of
transition sj → si. If the state transition occurs because the processor is idle and a
new task arrives or because the running task graph has to be discarded, the time of
the transition is deterministically known as task arrivals and deadlines have fixed
times. If, however, the cause of the state transition is a task completion, the time
Zji is equal to to Zj + Exτ , where task τ is the task which runs in state sj and
whose completion triggers the state transition. Because Zji is a sum involving the
random variable Exτ , Zji too is a random variable. Its probability density function,
is computed as the convolution zj ∗ ετ =

∫ ∞

0 zj(t − x) · ετ (x)dx of the probability
density functions of the terms.

Let us illustrate the above based on the example depicted in Figure 5. z2, z3,
z4, z5, and z6 are the probability density functions of Z2, Z3, Z4, Z5, and Z6

respectively. They are shown in Figure 5 to the left of their corresponding states
s2, s3, . . . , s6. The transition from state s4 to state s5 occurs at a precisely known
time instant, time 3, at which a new instantiation of task τ1 arrives. Therefore,
z5 will contain a scaled Dirac impulse at the beginning of the corresponding PMI.
The scaling coefficient equals the probability of being in state s4 (the integral of
z4, i.e. the shaded surface below the z4 curve). The probability density function
z5 results from the superposition of z2 ∗ ε2 (because task τ2 runs in state s2) with
z3 ∗ ε2 (because task τ2 runs in state s3 too) and with the aforementioned scaled
Dirac impulse over pmi2, i.e. over the time interval [3, 5).

The probability of a task missing its deadline is easily computed from the tran-
sition probabilities of those transitions that correspond to a deadline miss of a task
instantiation (the thick arrows in Figure 5, in our case). The probabilities of the
transitions out of a state si are computed exclusively from the information stored
in that state si. For example, let us consider the transition s2 → s6. The system
enters state s2 at a time whose probability density is given by z2. The system
takes the transition s2 → s6 when the attempted completion time of τ2 (running
in s2) exceeds 5. The completion time is the sum of the starting time of τ2 (whose
probability density is given by z2) and the execution time of τ2 (whose probability
density is given by ε2). Hence, the probability density of the completion time of
τ2 is given by the convolution z2 ∗ ε2 of the above mentioned densities. Once this
density is computed, the probability of the completion time being larger than 5 is
easily computed by integrating the result of the convolution over the interval [5,∞).
If τ2 in s2 completes its execution at some time t ∈ [3, 5), then the state transition
s2 → s5 occurs (see Figure 5). The probability of this transition is computed by
integrating z2 ∗ ε2 over the interval [3, 5).

As can be seen, by using the PMI approach, some process states have more than
one incident arc, thus keeping the graph “narrow”. This is because, as mentioned,
one process state in our representation captures several possible states of a repre-
sentation considering individual times (see Figure 3(a)).

ACM Journal Name, Vol. 3, No. 4, November 2004.



Schedulability Analysis of Applications with Stochastic Task Execution Times · 13

1

2

3

4

5 6

Fig. 6. State selection order

The non-preemption limitation could, in principle, be overcome if we extended
the information stored in the state of the underlying stochastic process. Namely,
the residual run time probability distribution function of a task instantiation, i.e.
the PDF of the time a preempted instantion still has to run, has to be stored
in the stochastic process state. This would several times multiply the memory
requirements of the analysis. Additionally, preemption would increase the possible
behavious of the system and, consequently, the number of states of its underlying
stochastic process.

Because the number of states grows rapidly even with our state reduction ap-
proach and each state has to store its probability density function, the memory
space required to store the whole process can become prohibitively large. Our solu-
tion to master memory complexity is to perform the stochastic process construction
and analysis simultaneously. As each arrow updates the time probability density
z of the state it leads to, the process has to be constructed in topological order.
The result of this procedure is that the process is never stored entirely in memory
but rather that a sliding window of states is used for analysis. For the example in
Figure 5, the construction starts with state s1. After its next states (s2 and s3) are
created, their corresponding transition probabilities determined and the possible
deadline miss probabilities accounted for, state s1 can be removed from memory.
Next, one of the states s2 and s3 is taken as current state, let us consider state s2.
The procedure is repeated, states s4, s5 and s6 are created and state s2 removed.
At this moment, one would think that any of the states s3, s4, s5, and s6 can be
selected for continuation of the analysis. However, this is not the case, as not all
the information needed in order to handle states s5 and s6 are computed. More
exactly, the arcs emerging from states s3 and s4 have not yet been created. Thus,
only states s3 and s4 are possible alternatives for the continuation of the analysis in
topological order. The next section discusses the criteria for selection of the correct
state to continue with.

4.2 Memory efficient analysis method

As shown in the example in Section 4.1, only a sliding window of states is simul-
taneously kept in memory. All states belonging to the sliding window are stored
in a priority queue. Once a state is extracted from this queue and its information

ACM Journal Name, Vol. 3, No. 4, November 2004.



14 · Sorin Manolache et al.

processed, it is eliminated from the memory. The key to the process construction
in topological order lies in the order in which the states are extracted from this
queue. First, observe that it is impossible for an arc to lead from a state with a
PMI number u to a state with a PMI number v such that v < u (there are no arcs
back in time). Hence, a first criterion for selecting a state from the queue is to
select the one with the smallest PMI number. A second criterion determines which
state has to be selected out of those with the same PMI number. Note that inside
a PMI no new task instantiation can arrive, and that the task ordering according
to their priorities is unchanged. Thus, it is impossible that the next state sk of a
current state sj would be one that contains waiting tasks of higher priority than
those waiting in sj . Hence, the second criterion reads: among states with the same
PMI, one should choose the one with the waiting task of highest priority. Figure 6
illustrates the algorithm on the example given in Section 4.1 (Figure 5). The shades
of the states denote their PMI number. The lighter the shade, the smaller the PMI
number. The numbers near the states denote the sequence in which the states are
extracted from the queue and processed.

4.3 Flexible discarding

The examples considered so far dealt with applications where at most one active
instance of each task graph is allowed at any moment of time (bi = 1, 1 ≤ i ≤ h).

In order to illustrate the construction of the stochastic process in the case bi > 1,
when several instantiations of a task graph Gi may exist at the same time in the
system, let us consider an application consisting of two independent tasks, τ1 and τ2,
with periods 2 and 4 respectively. LCM = 4 in this case. The tasks are scheduled
according to a rate monotonic (RM) policy [Liu and Layland 1973]. At most one
active instantiation of τ1 is tolerated in the system at a certain time (b1 = 1) and
at most two concurrently active instantiations of τ2 are tolerated in the system
(b2 = 2).

Figure 7 depicts a part of the stochastic process underlying this example. It is
constructed using the procedure sketched in Sections 4.1 and 4.2. The state indexes
show the order in which the states were analysed (extracted from the priority queue
mentioned in Section 4.2).

Let us consider state s6 = (τ2, ∅, [2, 4)), i.e. the instantiation of τ2 that arrives
at time moment 0 has been started at a moment inside the PMI [2, 4) and there
have not been any ready tasks at the start time of τ2. Let us assume that the
finishing time of τ2 lies past the LCM = 4. At time moment 4, a new instantiation
of τ2 arrives and the running instantiation is not discarded, as b2 = 2. On one
hand, if the finishing time of the running instantiation belongs to the interval
[6, 8), the system performs the transition s6 → s14 (Figure 7). If, on the other
hand, the running instantiation attempts to run past the time moment 8, then
at this time moment a third instantiation of τ2 would require service from the
system and, therefore, the running task (the oldest instantiation of τ2) is eliminated
from the system. The transition s6 → s19 in the stochastic process in Figure 7
corresponds to this latter case. We observe that when a task execution spans
beyond the time moment LCM , the resulting state is not unique. The system does
not behave as if it has just been restarted at time moment LCM , and, therefore,
the intervals [k · LCM, (k + 1) · LCM), k ∈ N, are not statistically equivalent to

ACM Journal Name, Vol. 3, No. 4, November 2004.



Schedulability Analysis of Applications with Stochastic Task Execution Times · 15

τ1,{τ2},[0,2)

τ1,{τ2},[2,4)

τ2,Ø ,[0,2)

τ1,Ø ,[2,4)

τ2,Ø ,[2,4)−, Ø ,[2,4)

−, Ø ,[0,2)

τ2,

τ1,

τ2,

τ1,{τ2},[8,10) τ1,{τ2,τ2},[8,10)

s1

s3

s10

s12

s17

s18

s30

20s

τ1,{τ2},[10,12)
s25

τ1,{τ2,τ2},[4,6)τ1,{τ2

Ø

Ø−, Ø τ1,{τ2

τ2,{τ2 τ1,{τ2,τ2

τ2,{τ2

−, Ø Ø

},[4,6)

,[4,6) },[4,6) },[6,8)

,[4,6) ,[6,8) },[6,8) },[6,8)

,[6,8) ,[6,8)

τ1,{τ2,τ2},[12,14)

s2

s5

s4

s6

s7

s8
s9

s11
s13

s14 s15
s16

s19

Fig. 7. Part of the stochastic process underlying the example application

the interval [0, LCM). Hence, it is not sufficient to analyse the system over the
interval [0, LCM) but rather over several consecutive intervals of length LCM .

Let an interval of the form [k · LCM, (k + 1) · LCM) be called the hyperperiod
k and denoted Hk. Hk′ is a lower hyperperiod than Hk (Hk′ < Hk) if k′ < k.
Consequently, Hk is a higher hyperperiod than Hk′ (Hk > Hk′) if k > k′.

For brevity, we say that a state s belongs to a hyperperiod k (denoted s ∈ Hk)
if its PMI field is a subinterval of the hyperperiod k. In our example, three hyper-

ACM Journal Name, Vol. 3, No. 4, November 2004.



16 · Sorin Manolache et al.

periods are considered, H0 = [0, 4), H1 = [4, 8), and H2 = [8, 12). In the stochastic
process in Figure 7, s1, s2, . . . , s7 ∈ H0, s8, s9, . . . , s18 ∈ H1, and s19, s20, s25 ∈ H2

(note that not all states have been depicted in Figure 7).
In general, let us consider a state s and let Ps be the set of its predecessor states.

Let k denote the order of the state s defined as the lowest hyperperiod of the states
in Ps (k = min{j : s′ ∈ Hj , s

′ ∈ Ps}). If s ∈ Hk and s is of order k′ and k′ < k,
then s is a back state. In our example, s8, s9, s14, and s19 are back states of order
0, while s20, s25 and s30 are back states of order 1.

Obviously, there cannot be any transition from a state belonging to a hyperperiod
H to a state belonging to a lower hyperperiod than H (s → s′, s ∈ Hk, s′ ∈ Hk′ ⇒
Hk ≤ Hk′). Consequently, the set S of all states belonging to hyperperiods greater
or equal to Hk can be constructed from the back states of an order smaller than k.
We say that S is generated by the aforementioned back states. For example, the
set of all states s8, s9, . . . , s18 ∈ H1 can be derived from the back states s8, s9, and
s14 of order 0. The intuition behind this is that back states are inheriting all the
needed information across the border between hyperperiods.

Before continuing our discussion, we have to introduce the notion of similarity
between states. We say that two states si and sj are similar (si ∼ sj) if all the
following conditions are satisfied:

(1) The task which is running in si and the one in sj are the same,

(2) The multiset of ready tasks in si and the one in sj are the same,

(3) The PMIs in the two states differ only by a multiple of LCM , and

(4) zi = zj (zi is the probability density function of the times when the system
takes a transition to si).

Let us consider the construction and analysis of the stochastic process, as de-
scribed in Sections 4.1 and 4.2. Let us consider the moment x, when the last state
belonging to a certain hyperperiod Hk has been eliminated from the sliding win-
dow. Rk is the set of back states stored in the sliding window at the moment x. Let
the analysis proceed with the states of the hyperperiod Hk+1 and let us consider
the moment y when the last state belonging to Hk+1 has been eliminated from the
sliding window. Let Rk+1 be the set of back states stored in the sliding window at
moment y.

If the sets Rk and Rk+1 contain pairwise similar states, then it is guaranteed that
Rk and Rk+1 generate identical stochastic processes during the rest of the analysis
procedure (as stated, at a certain moment the set of back states unambiguously de-
termines the rest of the stochastic process). In our example, R0 = {s8, s9, s14, s19}
and R1 = {s19, s20, s25, s30}. If s8 ∼ s19, s9 ∼ s20, s14 ∼ s25, and s19 ∼ s30 then
the analysis process may stop as it reached convergence.

Consequently, the analysis proceeds by considering states of consecutive hyperpe-
riods until the information captured by the back states in the sliding window does
not change any more. Whenever the underlying stochastic process has a steady
state, this steady state is guaranteed to be found.

4.4 Construction and analysis algorithm

The analysis is performed in two phases:

ACM Journal Name, Vol. 3, No. 4, November 2004.



Schedulability Analysis of Applications with Stochastic Task Execution Times · 17

divide [0, LCM) in PMIs;
pmi no = number of PMIs between 0 and LCM ;
put first state in the priority queue pqueue;
Rold = ∅; // Rold is the set of densities z

// of the back states after iteration k

(Rnew , Missed) = construct and analyse(); // Missed is the set

// of expected deadline miss ratios

do
Rold = Rnew;
(Rnew , Missed) = construct and analyse();

while Rnew 6= Rold;

construct and analyse:
while ∃s ∈ pqueue such that s.pmi ≤ pmi no do

sj = extract state from pqueue;
τi = sj .running; // first field of the state

ξ = convolute(εi, zj);
nextstatelist = next states(sj); // consider task dependencies!

for each su ∈ nextstatelist do
compute the probability of the transition

from sj to su using ξ;
update deadline miss probabilities Missed;
update zu;
if su 6∈ pqueue then

put su in the pqueue;
end if;
if su is a back state and su 6∈ Rnew then

Rnew = Rnew ∪ {su};
end if;

end for;
delete state sj;

end while;
return (Rnew , Missed);

Fig. 8. Construction and analysis algorithm

(1) Divide the interval [0, LCM) in PMIs,

(2) Construct the stochastic process in topological order and analyse it.

The concept of PMI (called in their paper “state”) was introduced by Zhou et
al. [Zhou et al. 1999] in a different context, unrelated to the construction of a
stochastic process. Let A denote the set of task arrivals in the interval [0, LCM ],
i.e. A = {x|0 ≤ x ≤ LCM, ∃1 ≤ i ≤ N, ∃k ∈ N : x = kπi}. Let D denote the set
of deadlines in the interval [0, LCM ], i.e. D = {x|0 ≤ x ≤ LCM, ∃1 ≤ i ≤ N, ∃k ∈
N : x = kπi + δi}. The set of PMIs of [0, LCM) is {[a, b)|a, b ∈ A ∪ D∧ 6 ∃x ∈
(A ∪ D) ∩ (a, b)}. If PMIs of a higher hyperperiod Hk, k > 0, are needed during
the analysis, they are of the form [a + k ·LCM, b + k ·LCM), where [a, b) is a PMI
of [0, LCM).

ACM Journal Name, Vol. 3, No. 4, November 2004.



18 · Sorin Manolache et al.

next states(sj = (τi, Wi, ti)):
nextstates = ∅;
max exec time = sup{t : ξ(t) > 0}; // the largest finishing time of τi

max time = max{max exec time, discarding timei}; // the maximum between

// finishing time and discarding time of τi

PMI = {[lop, hip) ∈ PMIs : lop ≥ ti ∧ hip ≤ max time} // the set of PMIs

// included in the interval [ti, max time]
for each [lop, hip) ∈ PMI do

Arriv = {τ ∈ T : τ arrived in the interval [ti, hip)};
Discarded = {τ ∈ Wi : τ was discarded in the interval [ti, hip)};
Enabled = {τ ∈ T : τ becomes ready to execute as an effect of τi’s

completion}
W = (Wi\Discarded) ∪ Enabled ∪ {τ ∈ Arriv : Pτ = ∅}; // add

the newly

// arrived tasks with no predecessors, as they are

// ready to execute, and the newly enabled ones

select the new running task τu from W

based on the scheduling policy

Wu = W\{τu};
add (τu, Wu, [lop, hip)) to nextstatelist;

done;
return nextstates;

Fig. 9. next states procedure

The algorithm proceeds as discussed in Sections 4.1, 4.2 and 4.3. An essential
point is the construction of the process in topological order, which allows only
parts of the states to be stored in memory at any moment. The algorithm for the
stochastic process construction is depicted in Figure 8.

A global priority queue stores the states in the sliding window. The state pri-
orities are assigned as shown in Section 4.2. The initial state of the stochastic
process is put in the queue. The explanation of the algorithm is focused on the
construct and analyse procedure. Each invocation of this procedure constructs
and analyses the part of the underlying stochastic process which corresponds to one
hyperperiod Hk. It starts with hyperperiod H0 (k = 0). The procedure extracts
one state at a time from the queue. Let sj = (τi, Wi, pmii) be such a state. The
probability density of the time when a transition occurs to sj is given by the func-
tion zj . The priority scheme of the priority queue ensures that sj is extracted from
the queue only after all the possible transitions to sj have been considered, and
thus zj contains accurate information. In order to obtain the probability density of
the time when task τi completes its execution, the probability density of its starting
time (zj) and the ETPDF of τi (εi) have to be convoluted. Let ξ be the probability
density resulting from the convolution.

Figure 9 presents an algorithmic description of the next state procedure. Based
on ξ, the finishing time PDF of task τi if task τi is never discarded, we compute
max exec time, the maximum execution time of task τi. max time is the maximum
between max exec time and the time at which task τi would be discarded. PMI

will then denote the set of all PMIs included in the interval between the start of

ACM Journal Name, Vol. 3, No. 4, November 2004.



Schedulability Analysis of Applications with Stochastic Task Execution Times · 19

the PMI in which task τi started to run and max time. Task τi could, in principle,
complete its execution during any of these PMIs. We consider each PMI as being the
one in which task τi finishes its execution. A new underlying stochastic process state
corresponds to each of these possible finishing PMIs. For each PMI, we determine
the multiset Arriv of newly arrived tasks while task τi was executing. Also, we
determine the multiset Discarded of those tasks which were ready to execute when
task τi started, but were discarded in the mean time, as the execution of task τi

spanned beyond their deadlines. Once task τi completes its execution, some of its
successor tasks may become ready to execute. These successor tasks which become
ready to execute as a result of task τi’s completion form the set Enabled. The new
multiset of ready tasks, W , is the union of the old multiset of ready tasks except the
ones that were discarded during the execution of task τi, Wi\Discarded, and the set
Enabled and those newly arrived tasks which have no predecessor and therefore are
immediately ready to run. Once the new set of ready tasks is determined, the new
running task τu is selected from multiset W based on the scheduling policy of the
application. A new stochastic process state (τu, W\{τu}, [lop, hip)) is constructed
and added to the list of next states.

The probability densities zu of the times a transition to su ∈ nextstatelist is
taken are updated based on ξ. The state su is then added to the priority queue
and sj removed from memory. This procedure is repeated until there is no task
instantiation that started its execution in hyperperiod Hk (until no more states
in the queue have their PMI field in the range k · pmi no, . . . , (k + 1) · pmi no,
where pmi no is the number of PMIs between 0 and LCM). Once such a situa-
tion is reached, partial results, corresponding to the hyperperiod Hk are available
and the construct and analyse procedure returns. The construct and analyse

procedure is repeated until the set of back states R does not change any more.

5. EXPERIMENTAL RESULTS

The most computation intensive part of the analysis is the computation of the
convolutions zi ∗ εj . In our implementation we used the FFTW library [Frigo and
Johnson 1998] for performing convolutions based on the Fast Fourier Transform.
The number of convolutions to be performed equals the number of states of the
stochastic process. The memory required for analysis is determined by the maxi-
mum number of states in the sliding window. The main factors on which the size
of the stochastic process depends are LCM (the least common multiple of the task
periods), the number of PMIs, the number of tasks N , the task dependencies, and
the maximum allowed number of concurrently active instantiations of the same task
graph.

As the selection of the next running task is unique, given the pending tasks
and the time moment, the particular scheduling policy has a reduced impact on
the process size. Hence, we use the non-preemptive EDF scheduling policy in the
experiments below. On the other hand, the task dependencies play a significant
role, as they strongly influence the set of ready tasks and, by this, the process size.

The ETPDFs were randomly generated. An interval [Emin, Emax] has been
divided into smaller intervals. For each of the smaller intervals, the ETPDF has
a constant value, different from the value over other intervals. The curve shape

ACM Journal Name, Vol. 3, No. 4, November 2004.



20 · Sorin Manolache et al.

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

10 11 12 13 14 15 16 17 18 19

S
to

ch
as

tic
 p

ro
ce

ss
 s

iz
e 

[n
um

be
r 

of
 s

ta
te

s]

Number of tasks

a=15.0
a=8.8

a=10.9
a=4.8

Fig. 10. Stochastic process size vs. number of tasks

has of course an influence on the final result of the analysis, but it has little or no
influence on the analysis time and memory consumed by the analysis itself. The
interval length Emax − Emin influences the analysis time and memory, but only
marginally.

The periods are randomly picked from a pool of periods with the restriction that
the period of task τ has to be an integer multiple of the periods of the predecessors of
task τ . The pool comprises periods in the range 2, 3, . . . , 24. Large prime numbers
have a lower probability to be picked, but it occurs nevertheless.

In the following, we report on six sets of experiments. The first four investigate
the impact of the enumerated factors (LCM , the number N of tasks, the task
dependencies, the maximum allowed number of concurrently active instantiations
of the same task graph) on the analysis complexity. The fifth set of experiments
considers a different problem formulation. The sixth experiment is based on a
real-life example in the area of telecommunication systems.

The aspects of interest were the stochastic process size, as it determines the anal-
ysis execution time, and the maximum size of the sliding window, as it determines
the memory space required for the analysis. Both the stochastic process size and
the maximum size of the sliding window are expressed in number of states. All
experiments were performed on an UltraSPARC 10 at 450 MHz.

5.1 Stochastic process size vs. number of tasks

In the first set of experiments we analysed the impact of the number of tasks on the
process size. We considered task sets of 10 up to 19 independent tasks. LCM , the
least common multiple of the task periods, was 360 for all task sets. We repeated
the experiment four times for average values of the task periods a = 15.0, 10.9,

ACM Journal Name, Vol. 3, No. 4, November 2004.



Schedulability Analysis of Applications with Stochastic Task Execution Times · 21

0

2000

4000

6000

8000

10000

12000

10 11 12 13 14 15 16 17 18 19

S
lid

in
g 

w
in

do
w

 s
iz

e 
[n

um
be

r 
of

 s
ta

te
s]

Number of tasks

a=15.0
a=8.8

a=10.9
a=4.8

Fig. 11. Size of the sliding window of states vs. number of tasks

8.8, and 4.8 (keeping LCM = 360). The results are shown in Figure 10. Figure 11
depicts the maximum size of the sliding window for the same task sets. As it can
be seen from the diagram, the increase, both of the process size and of the sliding
window, is linear. The steepness of the curves depends on the task periods (which
influence the number of PMIs). It is important to notice the big difference between
the process size and the maximum number of states in the sliding window. In the
case of 19 tasks, for example, the process size is between 64356 and 198356 while
the dimension of the sliding window varies between 373 and 11883 (16 to 172 times
smaller). The reduction factor of the sliding window compared to the process size
was between 15 and 1914, considering all our experiments.

5.2 Stochastic process size vs. application period LCM

In the second set of experiments we analysed the impact of the application period
LCM (the least common multiple of the task periods) on the process size. We
considered 784 sets, each of 20 independent tasks. The task periods were chosen
such that LCM takes values in the interval [1, 5040]. Figure 12 shows the variation
of the average process size with the application period.

5.3 Stochastic process size vs. task dependency degree

With the third set of experiments we analysed the impact of task dependencies
on the process size. A task set of 200 tasks with strong dependencies (28000 arcs)
among the tasks was initially created. The application period LCM was 360. Then
9 new task graphs were successively derived from the first one by uniformly removing
dependencies between the tasks until we finally got a set of 200 independent tasks.
The results are depicted in Figure 13 with a logarithmic scale for the y axis. The

ACM Journal Name, Vol. 3, No. 4, November 2004.



22 · Sorin Manolache et al.

0

200000

400000

600000

800000

1e+06

1.2e+06

1.4e+06

1.6e+06

1.8e+06

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500

S
to

ch
as

tic
 p

ro
ce

ss
 s

iz
e 

[n
um

be
r 

of
 s

ta
te

s]

Least common multiple of task periods

Fig. 12. Stochastic process size vs. application period LCM

1000

10000

100000

1e+06

0 1 2 3 4 5 6 7 8 9

S
to

ch
as

tic
 p

ro
ce

ss
 s

iz
e 

[n
um

be
r 

of
 s

ta
te

s]

Dependency degree (0 - independent tasks, 9 - highest dependency degree)

Fig. 13. Stochastic process size vs. task dependency degree

ACM Journal Name, Vol. 3, No. 4, November 2004.



Schedulability Analysis of Applications with Stochastic Task Execution Times · 23

1000

10000

100000

1e+06

1e+07

1 1.5 2 2.5 3

S
to

ch
as

tic
 p

ro
ce

ss
 s

iz
e 

[n
um

be
r 

of
 s

ta
te

s]

Average of maximum number of concurrently active instantiations of the same task graph

12 tasks
15 tasks
18 tasks
21 tasks
24 tasks
27 tasks

Fig. 14. Stochastic process size vs. average number of concurrently active instantiations of the
same task graph

x axis represents the degree of dependencies among the tasks (0 for independent
tasks, 9 for the initial task set with the highest amount of dependencies).

As mentioned, the execution time for the analysis algorithm strictly depends on
the process size. Therefore, we showed all the results in terms of this parameter.
For the set of 200 independent tasks used in this experiment (process size 1126517)
the analysis time was 745 seconds. In the case of the same 200 tasks with strong
dependencies (process size 2178) the analysis took 1.4 seconds.

5.4 Stochastic process size vs. average number of concurrently active instantiations

of the same task graph

In the fourth set of experiments, the impact of the average number of concurrently
active instantiations of the same task graph on the stochastic process size was
analysed. 18 sets of task graphs containing between 12 and 27 tasks grouped in 2
to 9 task graphs were randomly generated. Each task set was analysed between 9
and 16 times considering different upper bounds for the maximum allowed number
of concurrently active task graph instantiations. These upper bounds ranged from
1 to 3. The results were averaged for the same number of tasks. The dependency of
the underlying stochastic process size as a function of the average of the maximum
allowed number of instantiations of the same task graph that are concurrently
active is plotted in Figure 14. Note that the y-axis is logarithmic. Different curves
correspond to different sizes of the considered task sets. It can be observed that
the stochastic process size is approximately linear in the average of the maximum
allowed number of concurrently active instantiations of the same task graph.

ACM Journal Name, Vol. 3, No. 4, November 2004.



24 · Sorin Manolache et al.

5.5 Rejection versus discarding

As formulated in Section 3.1, when there are bi concurrently active instantiations
of task graph Gi in the system, and a new instantiation of Gi demands service,
the oldest instantiation of Gi is eliminated from the system. Sometimes, such a
strategy is not desired, as the oldest instantiation might have been very close to
finishing, and by discarding it, the invested resources (time, memory, bandwidth,
etc.) are wasted.

Therefore, our problem formulation has been extended to support a late task
policy in which, instead of discarding the oldest instantiation of Gi, the newly
arrived instantiation is denied service (rejected) by the system.

In principle, the rejection policy is easily supported by only changing the next states

procedure in the algorithm presented in Section 4.4. However, this has a strong im-
pact on the analysis complexity as shown in Table I. The significant increase in the
stochastic process size (up to two orders of magnitude) can be explained considering
the following example. Let s be the stochastic process state under analysis, let τj

belonging to task graph Gi be the task running in s and let us consider that there
are bi concurrently active instantiations of Gi in the system. The execution time
of τj may be very large, spanning over many PMIs. In the case of discarding, it
was guaranteed that τj will stop running after at most bi · πGi

time units, because
at that time moment it would be eliminated from the system. Therefore, when
considering the discarding policy, the number of next states of a state s is upper
bounded. When considering the rejection policy, this is not the case any more.

Moreover, let us assume that bi instantiations of the task graph Gi are active in
the system at a certain time. In the case of discarding, capturing this information
in the system state is sufficient to unambiguously identify those bi instantiations:
they are the last bi that arrived, because always the oldest one is discarded. For
example, the two ready instantiations of τ2 in the state s13 = (τ1, {τ2, τ2}, [6, 8))
in Figure 7 are the ones that arrived at the time moments 0 and 4. However,
when the rejection policy is deployed, just specifying that bi instantiations are in
the system is not sufficient for identifying them. We will illustrate this by means
of the following example. Let bi = 2, and let the current time be kπGi

. In a first
scenario, the oldest instantiation of Gi, which is still active, arrived at time moment
(k − 5)πGi

and it still runs. Therefore, the second oldest instantiation of Gi is the
one that arrived at time moment (k − 4)πGi

and all the subsequent instantiations
were rejected. In a second scenario, the instantiation that arrived at time moment
(k − 5)πGi

completes its execution shortly before time moment (k − 1)πGi
. In this

case, the instantiations arriving at (k− 3)πGi
and (k − 2)πGi

were rejected but the
one arriving at (k − 1)πGi

was not. In both scenarios, the instantiation arriving
at kπGi

is rejected, as there are two concurrently active instantiations of Gi in the
system, but these two instantiations cannot be determined without extending the
definition of the stochastic process state space. Extending this space with the task
graph arrival times is partly responsible for the increase in number of states of the
underlying stochastic process.

The fifth set of experiments reports on the analysis complexity when the rejection
policy is deployed. 101 task sets of 12 to 27 tasks grouped in 2 to 9 task graphs were
randomly generated. For each task set two analysis were performed, one considering

ACM Journal Name, Vol. 3, No. 4, November 2004.



Schedulability Analysis of Applications with Stochastic Task Execution Times · 25

Average stochastic process size
[number of states]

Tasks Discarding Rejection Relative increase

12 2223.52 95780.23 42.07

15 7541.00 924548.19 121.60

18 4864.60 364146.60 73.85

21 18425.43 1855073.00 99.68

24 14876.16 1207253.83 80.15

27 55609.54 5340827.45 95.04

Table I. Discarding compared to rejection

Demodulating Disassembling Deciphering

A5

Fire decoding
Trimming

Hopping

DeinterleavingConvolutional
decoding

Fig. 15. Decoding of a GSM dedicated signalling channel

the discarding policy and the other considering the rejection policy. The results
were averaged for task sets with the same cardinality and shown in Table I.

5.6 Decoding of a GSM dedicated signalling channel

Finally, we present an example from industry, in particular the mobile communica-
tion area. Figure 15 depicts a set of 8 tasks that co-operate in order to decode the
digital bursts corresponding to a GSM 900 signalling channel [Mouly and Pautet
1992]. The incoming bursts are demodulated by the demodulation task, based on
the frequency indexes generated by the frequency hopping task. The demodulated
bursts are disassembled by the disassembling task. The resulting digital blocks
are deciphered by the deciphering task based on a key generated by the A5 task.
The deciphered block proceeds through bit deinterleaving, convolutional decoding
(Viterbi decoding) and the so called fire decoding. The whole application runs
on a single DSP processor and the tasks are scheduled according to fixed priority
scheduling. All tasks have the same period, imposed by the TDMA scheme of the
radio interface.

In this example, there are two sources of variation in execution times. The de-
modulating task has both data and control intensive behaviour, which can cause
pipeline hazards on the deeply pipelined DSP it runs on. Its execution time prob-

ACM Journal Name, Vol. 3, No. 4, November 2004.



26 · Sorin Manolache et al.

τ1 τ2

τ3

τ4

1 2

3

1

Fig. 16. Example of multiprocessor application

τ1
t1

P2

P1 τ2 τ3
t’

τ4

(a) Scenario 1

τ1

τ4τ2

t1

P2

P1

t’’

τ3

(b) Scenario 2

Fig. 17. Two execution scenarios

ability density is derived from the input data streams and measurements. Another
task will finally implement a deciphering unit. Due to the lack of knowledge about
the deciphering algorithm A5 (its specification is not publicly available), the deci-
phering task execution time is considered to be uniformly distributed between an
upper and a lower bound.

When two channels are scheduled on the DSP, the ratio of missed deadlines is 0
(all deadlines are met). Considering three channels assigned to the same processor,
the analysis produced a ratio of missed deadlines, which was below the one enforced
by the required QoS. It is important to note that using a hard real-time model
with WCET, the system with three channels would result as unschedulable on the
selected DSP. The underlying stochastic process for the three channels had 130
nodes and its analysis took 0.01 seconds. The small number of nodes is caused by
the strong harmony among the task periods, imposed by the GSM standard.

6. LIMITATIONS AND EXTENSIONS

Although our proposed method is, as shown, efficiently applicable to the analysis of
applications implemented on monoprocessor systems, it can handle only small scale
multiprocessor applications. This section identifies the causes of this limitation and
sketches an alternative approach to handle multiprocessor applications.

When analysing multiprocessor applications, one approach could be to decom-
pose the analysis problem into several subproblems, each of them analysing the
tasks mapped on one of the processors. We could attempt to apply the presented
approach in order to solve each of the subproblems. Unfortunately, in the case of
multiprocessors and with the assumption of data dependencies among tasks, this
approach cannot be applied. The reason is that the set of ready tasks cannot be

ACM Journal Name, Vol. 3, No. 4, November 2004.



Schedulability Analysis of Applications with Stochastic Task Execution Times · 27

determined based solely on the information regarding the tasks mapped on the
processor under consideration. To illustrate this, let us consider the example in
Figure 16. Tasks τ2, τ3, and τ4 are mapped on processor P1 and task τ1 is mapped
on processor P2. The numbers near the tasks indicate the task priorities. For sim-
plicity, let us assume that all tasks have the same period π, and hence there is only
one priority monotonicity interval [0, π). Let us examine two possible scenarios.
The corresponding Gantt diagrams are depicted in Figure 17. At time moment 0
task τ1 starts running on processor P2 and task τ2 starts running on processor P1.
Task τ1 completes its execution at time moment t1 ∈ [0, π). In the first scenario,
task τ2 completes its execution at time moment t′ > t1 and task τ3 starts executing
on the processor P1 at time moment t′ because it has the highest priority among the
two ready tasks τ3 and τ4 at that time. In the second scenario, task τ2 completes
its execution at time moment t′′ < t1. Therefore, at time moment t′′, only task
τ4 is ready to run and it will start its execution on the processor P1 at that time.
Thus, the choice of the next task to run is not independent of the time when the
running task completes its execution inside a PMI. This makes the concept of PMIs
unusable when looking at the processors in isolation.

An alternative approach would be to consider all the tasks and to construct the
global state space of the underlying stochastic process accordingly. In principle, the
approach presented in the previous sections could be applied in this case. However,
the number of possible execution traces, and implicitly the stochastic process, ex-
plodes due to the parallelism provided by the application platform. As shown, the
analysis has to store the probability distributions zi for each process state in the
sliding window of states, leading to large amounts of needed memory and limiting
the appropriateness of this approach to very small multi-processor applications.
Moreover, the number of convolutions zi ∗ εj , being equal to the number of states,
would also explode, leading to prohibitive analysis times.

We have addressed these problems [Manolache et al. 2002] by using an approx-
imation approach for the task execution time probability distribution functions.
Approximating the generalised ETPDFs with weighted sums of convoluted expo-
nential functions leads to approximating the underlying generalised semi-Markov
process with a continuous time Markov chain. By doing so, we avoid both the com-
putation of convolutions and the storage of the zi functions. However, as opposed
to the method presented in this paper, which produces exact values for the expected
deadline miss ratios, the alternative approach [Manolache et al. 2002] generates just
approximations of the real ratios.

7. CONCLUSIONS

This work proposes a method for the schedulability analysis of task sets with prob-
abilistically distributed task execution times. Our method improves the currently
existing ones by providing exact solutions for larger and less restricted task sets.
Specifically, we allow continuous task execution time probability distributions, and
we do not restrict our approach to one particular scheduling policy. Additionally,
task dependencies are supported, as well as arbitrary deadlines.

The analysis of task sets under such generous assumptions is made possible by
three complexity management methods:

ACM Journal Name, Vol. 3, No. 4, November 2004.



28 · Sorin Manolache et al.

(1) the introduction and exploitation of the PMI concept,

(2) the concurrent construction and analysis of the stochastic process, and

(3) the usage of a sliding window of states made possible by the construction in
topological order.

As the presented experiments demonstrate, the proposed method can efficiently
be applied to applications implemented on monoprocessor systems.

REFERENCES

Abeni, L. and Butazzo, G. 1999. QoS guarantee using probabilistic deadlines. In Proceedings
of the 11th Euromicro Conference on Real-Time Systems. 242–249.

Abeni, L. and Buttazzo, G. C. 1998. Integrating multimedia applications in hard real-time
systems. In Proceedings of the 19th Real Time Systems Symposium. 4–13.

Atlas, A. and Bestavros, A. 1998. Statistical rate monotonic scheduling. In Proceedings of the
19th IEEE Real-Time Systems Symposium. 123–132.

Audsley, N. C., Burns, A., Davis, R. I., Tindell, K. W., and Wellings, A. J. 1995. Fixed
priority pre-emptive scheduling: An historical perspective. Journal of Real-Time Systems 8, 2-3
(March-May), 173–198.

Balarin, F., Lavagno, L., Murthy, P., and Sangiovanni-Vincentelli, A. 1998. Scheduling
for embedded real-time systems. IEEE Design and Test of Computers, 71–82.

Beck, J. E. and Siewiorek, D. P. 1998. Automatic configuration of embedded multicom-
puter systems. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Sys-
tems 17, 2, 84–95.

Buttazzo, G. C. 1997. Hard Real-Time Computing Systems. Kluwer Academic.

Buttazzo, G. C., Lipari, G., and Abeni, L. 1998. Elastic task model for adaptive rate control.
In Proceedings of the 19th Real Time Systems Symposium. 286–295.

Dai, J. G. and Wang, Y. 1993. Nonexistence of Brownian models for certain multiclass queueing
networks. Queueing Systems 13, 41–46.

De Micheli, G. and Gupta, R. K. 1997. Hardware/software co-design. Proceedings of the
IEEE 85, 3 (March), 349–365.

de Veciana, G., Jacome, M., and Guo, J.-H. 2000. Assessing probabilistic timing constraints
on system performance. Design Automation for Embedded Systems 5, 1 (February), 61–81.

Dı́az, J. L., Garćıa, D. F., Kim, K., Lee, C.-G., Lo Bello, L., López, J. M., Min, S. L., and

Mirabella, O. 2002. Stochastic analysis of periodic real-time systems. In Proceedings of the
23rd Real-Time Systems Symposium.

Ernst, R. 1998. Codesign of embedded systems: Status and trends. IEEE Design and Test of
Computers, 45–54.

Fidge, C. J. 1998. Real-time schedulability tests for preemptive multitasking. Journal of Real-
Time Systems 14, 1, 61–93.

Frigo, M. and Johnson, S. G. 1998. FFTW: An adaptive software architecture for the FFT. In
Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing.
Vol. 3. 1381–1384.

Gautama, H. 1998. A probabilistic approach to the analysis of program execution time. Tech.
Rep. 1-68340-44(1998)06, Faculty of Information Technology and Systems, Delft University of
Technology.

Gautama, H. and van Gemund, A. J. C. 2000. Static performance prediction of data-dependent
programs. In Proceedings of the 2nd International Workshop on Software and Performance.
216–226.

Goel, A. and Indyk, P. 1999. Stochastic load balancing and related problems. In IEEE Sym-
posium on Foundations of Computer Science. 579–586.

Hu, X. S., Zhou, T., and Sha, E. H.-M. 2001. Estimating probabilistic timing performance
for real-time embedded systems. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems 9, 6 (December), 833–844.

ACM Journal Name, Vol. 3, No. 4, November 2004.



Schedulability Analysis of Applications with Stochastic Task Execution Times · 29

Kalavade, A. and Moghé, P. 1998. A tool for performance estimation of networked embedded

end-systems. In Proceedings of the 35th Design Automation Conference. 257–262.

Kim, J. and Shin, K. G. 1996. Execution time analysis of communicating tasks in distributed
systems. IEEE Transactions on Computers 45, 5 (May), 572–579.

Kleinberg, J., Rabani, Y., and Tardos, E. 2000. Allocating bandwidth for bursty connections.
SIAM Journal on Computing 30, 1, 191–217.

Kopetz, H. 1997. Real-Time Systems. Kluwer Academic.

Lee, C., Potkonjak, M., and Wolf, W. 1999. Synthesis of hard real-time application specific
systems. Design Automation of Embedded Systems 4, 215–242.

Lehoczky, J. P. 1996. Real-time queueing theory. In Proceedings of the 18th Real-Time Systems
Symposium. 186–195.

Liu, C. L. and Layland, J. W. 1973. Scheduling algorithms for multiprogramming in a hard-
real-time environment. Journal of the ACM 20, 1 (January), 47–61.

Manolache, S., Eles, P., and Peng, Z. 2001. Memory and time-efficient schedulability analysis
of task sets with stochastic execution time. In Proceedings of the 13th Euromicro Conference
on Real Time Systems. 19–26.

Manolache, S., Eles, P., and Peng, Z. 2002. Schedulability analysis of multiprocessor real-
time applications with stochastic task execution times. In Proceedings of the 20th International
Conference on Computer Aided Design. 699–706.

Mouly, M. and Pautet, M.-B. 1992. The GSM System for Mobile Communication. Palaiseau.

Potkonjak, M. and Rabaey, J. M. 1999. Algorithm selection: A quantitative optimization-
intensive approach. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems 18, 5 (May), 524–532.

Powell Douglass, B., Harel, D., and Trakhtenbrot, M. 1996. Statecharts in Use: Structured
Analysis and Object-Orientation. Springer, 368–394.

Sarkar, A., Waxman, R., and Cohoon, J. P. 1995. Specification-Modeling Methodologies for
Reactive-System Design. Kluwer Academic Publishers, 1–34.

Stankovic, J. and Ramamritham, K., Eds. 1993. Advances in Real-Time Systems. IEEE
Computer Society Press.

Tia, T.-S., Deng, Z., Shankar, M., Storch, M., Sun, J., Wu, L.-C., and Liu, J. W. S. 1995.
Probabilistic performance guarantee for real-time tasks with varying computation times. In
Proceedings of the IEEE Real-Time Technology and Applications Symposium. 164–173.

van Gemund, A. J. 1996. Performance modelling of parallel systems. Ph.D. thesis, Delft Univer-
sity of Technology.

van Gemund, A. J. C. 2003. Symbolic performance modeling of parallel systems. IEEE Trans-
actions on Parallel and Distributed Systems. to be published.

Wolf, W. 1994. Hardware-software co-design of embedded systems. Proceedings of the
IEEE 82, 7, 967–989.

Zhou, T., Hu, X. S., and Sha, E. H.-M. 1999. A probabilistic performace metric for real-time
system design. In Proceedings of the 7th International Workshop on Hardware-Software Co-
Design. 90–94.

ACM Journal Name, Vol. 3, No. 4, November 2004.


