
d to a
) are
per-

ts of

kages

r sup-
i-

the Shell
Implementation Notes for the GSM BTS Model

Sorin Manolache, Razvan Jigorea
ESLAB, Linköping University

1. General Description
The general architecture of the model is depicted in Figure 1. Every block in the figure is mappe

package in the model, with a single exception: the two protocol interpreters (LAPDm PI and LAPD PI
mapped to the same package (PIs) as they are very similar and result from simple parameterizations of a su
class.

Additionally, the model has two more packages, “Globals” and “Shell”. Thus, the model consis
eight packages:

• Abis,

• BasebandCtrl,

• FunctionalUnits,

• Globals,

• PIs,

• Radio,

• Shell,

• TRX.

2. Description of Packages
First, the role of the two additional packages is described. Next, the mechanics of the pac

depicted in Figure 1 is explained starting from the interfaces towards the inner packages.

2.1 TheShell Package
TheShellpackage was introduced in order to interface the model with the environment (designe

plied events) easily. The package consists of a single class,Shell, which implements associations to various ent
ties in the model. All the events to be sent to the model from the exterior are sent to theShellobject, which in turn
dispatches them to the appropriate entities. The messages (events) which can be sent at the moment to
and implicitly to the model are:

• evAccess(AccessReason reason),

...

...

...FU FU FU FU

BCBCBC

TRX TRX
Radio
BuG

Abis
BlG

LAPDm PI LAPD PI

FU – functional unit
BC – baseband controller
TRX – transmitter-receiver

PI – protocol interpreter
BuG – burst generator
BlG – block generator

Abis interfaceRadio interface

Figure 1. Structure of the GSM BTS model
1



ntire

radio

is

n
S

nding on
in the

s,

is
an-

s,
h

ssing

all
urce of
opera-

s the
• evGrant(int trx, int timeslot, ChannelMode mode),

• evDeallocate(int trx, int timeslot).

2.2 TheGlobals Package
The Globals package consists of utility classes, global functions and variables used in the e

model. The classes are:

• BitAddressableBuffer,

• Buffer,

• GlobalClock,

• Queue,

• BTSConfig.

Several global functions provide a means to determine the position in the frame structure on the
interface. Such functions aregetTSN(), getFrame()etc. The global variables are the clock (clk) which gives the
timing on the radio interface and the variable that holds the initial channel configuration of the BTS (config). Of
particular interest is theBTSConfigclass. The information of greater importance contained in theconfigobject is
the following:

• The configuration for each TRX, i.e. the channel types for each physical channel (TRXconfig),

• The number of carriers (noOfFreq),

• An indication to the TRX responsible of the beacon channel (beacon).

2.3 TheRadio Package
TheRadiopackage corresponds to theRadio BuGblock in Figure 1. The main class in this package

RadioSubsytem. It registers itself to the GlobalClock, so it is notified every time a burst interval (577µs) has
passed. When it receives such a notification it commands to itsDemodulatorsandModulatorsto generate (emit
respectively) a burst. The generated bursts are then fed to theTRXs by means of the 1:N directed associatio
which exists betweenRadioSubsystemand theTRXs. This briefly described mechanism of simulating the BT
radio subassembly is depicted in the UML sequence diagramDispatchingMechUpLk(see model). Different types
of modulators and demodulators exist in the model because different types of bursts are generated depe
the physical channel type. The specialization hierarchy of the modulators and demodulators is depicted
ModemsUML object model diagram. Besides theRadioSubsytesmand the modulators/demodulators classe
classes modelling the bursts were implemented. TheBursts objects aggregate severalBitAddressableBuffer
objects. Methods for retrieving the useful parts of the bursts were provided (getInformation()). The specialization
hierarchy of theBursts classes is depicted in theBursts object model diagram (see model).

2.4 TheAbis Package
The Abis package is similar to theRadiopackage. It corresponds to theAbis BlG in Figure 1. The

package main class isBlockGenerator. It generatesAbisBlocks according to the multiplexing scheme on the Ab
interface. Such anAbisBlockobject provides methods to extract different kind of blocks depending on the ch
nel mode they are addressed to (toF24Block(), toSpeechBlocketc.). Those blocks (blocks for F96 channel
speech channels, and so on) are then dispatched to theTRXs by means of the 1:N directed association whic
exists between theBlockGeneratorand theTRXs. TheevAbisBlock(AbisBlock *block, int physChSlot)event car-
ries the block together with an indication for its destination on the radio path. It isBlockGenerator’s responsibil-
ity to set thephysChSlot parameter appropriately.

2.5 TheFunctional Units Package
TheFunctionalUnitspackage gathers a large number of functional units from the baseband proce

subassembly. The units and their inheritance relationships are depicted in theConvolutional codecs, CRCs, Dein-
terleavers, Interleaversand ParityEncDecobject diagrams. Despite the large number of those units, they
exhibit a simple interface, which basically consists of two messages: one that starts the operation, the so
which is a baseband controller, and one that notifies the baseband controller about the completion of the
tion. The processing algorithms are specified in C++ functions, with self-explanatory names (interleave, compu-
teCRCetc.). The processing-completion event is emitted after a specified time interval, which simulate
2



e and

re

e. The

wnlink

event
the
rsts in

order
ink con-

-

in the

t

n be

ill

el
-

h, in

y the
to an
ted by

et, the
execution delay of the unit. The time interval can be specified for each unit individually at construction tim
it is stored in an attribute in the superclass of all functional units,ProcessingUnit.

2.6 TheBasebandCtrl Package
The BasebandCtrlpackage corresponds to theBC blocks in Figure 1. For every channel mode the

exists such a baseband controller, which specializes one of the two more general controllersUpLkCtrler and
DownLkCtrl.A controller groups and manages two or three functional units, depending on the channel typ
structure of a generic baseband controller is shown in theGeneric Controllersobject diagram (see model), which
we consider quite important for the general understanding of the baseband internals. The activity of a do
controller is triggered by anevBlockevent. This event is sent by the TRX or, more precisely, by aphysical chan-
nel managed by a TRX. The uplink controller has a similar behaviour. When the controller receives anevBursts
event, it will command the appropriate functional unit. Data communication is modelled by means of
parameters. AnevBurstsevent carries four bursts. It is the responsibility of some TRX managed entities in
TRX package to buffer those four bursts. However some deinterleaving algorithms need 8 or even 22 bu
order to build up a block. It is then the deinterleaver responsibility to further buffer groups of four bursts in
to reach the needed number of bursts to fire a deinterleaving operation. The consequence is that the upl
troller behaviour will slightly differ from the downlink one. Thus, not every operation-starting event (evBursts)
will actually fire the entire processing chain. TheevTransientevent was introduced in the uplink controller state
chart in order to capture this aspect.

Further specialization of generic controllers, according to specific channel modes, is depicted
Controllers object diagram (see model).

2.7 TheTRX Package
Although it is not the highest in the control hierarchy, we consider theTRXpackage as being the mos

important unit in the model. The protocol interpreters are viewed more as servers for the TRX requests.
TheTRXpackage consists of severalPhysicalChannelsand theTRXclass. ATRXmanages eight phys-

ical channels. It has to keep track of the channeltypesand states (allocated or not). By channeltypewe mean
combined common, common, full traffic, half traffic, andsignalling, as opposite to the channelmodeswhich char-
acterize the data semantics of thelogical channels carried by the physical ones. The channel modes ca
speech, F96, F48, etc.

The TRX exhibits a rather complex behaviour with three orthogonal components:

• signalling (channel allocation and deallocation),

• dispatching of uplink bursts,

• dispatching of downlink blocks.

TheevAllocateandevDeallocateevents from the signalling component are sent by an entity in thePIs
package, which will be described in the next section.

The behaviour of the downlink component is the following: when the TRX receives anevAbis-
Block(AbisBlock *block, int physChSlot)event, the TRX extracts the useful information, and subsequently it w
forward this useful data block to thePhysicalChannelon thephysChSlottimeslot. Extraction of the useful infor-
mation is done by means of the methods provided in theAbisBlockclass (see 2.4) and according to the chann
type and channel mode information which are stored in theTRXclass andPhysicalChannelsubclasses respec
tively (see the TRXextractmethod). Forwarding is next done by means of theevABlockevent sent to the appro-
priatePhysicalChannel class.

The activity on the uplink component is triggered by anevBurstTickevent. This event is sent by the
RadioSubsytem, which in turn receives it from theclk singleton object (of classGlobalClock). This event only
specifies that an interval equal to a burst period has elapsed and that theRadioSubsystemmight have generated a
burst. It is the responsibility of the TRX to determine the “position” in the frame hierarchy on the radio pat
order to dispatch the burst correctly. This is done by means of the global functionsgetTSN(), getFrame(),etc., in
theGlobalspackage (see 2.2). If the TRX is the one in charge of the beacon carrier it will interpret differentl
bursts on timeslot 0 and will enter theaccessstate. If an access is requested, it will send a request message
entity in thePIs package. This will be discussed in the following paragraph. The access request is indica
theaccessAttemptboolean variable which is set by the shell when it receives anevAccessevent and unset by the
TRX when it takes the request into consideration. Otherwise, if the conditions for access request are not m
TRX checks whether a channel is allocated on the current timeslot. If not, theevBurstTickis ignored. Otherwise,
the TRX gets a burst from theRadioSubsystem and dispatches it to thePhysicalChannel on the current timeslot.
3



n-
re

els.
The
and

odel

i-
ber
ogical
ee the

s allo-
TRX

the

ts) are
es.
xing

ons
id not

eters.
odel
assem-
ility

e is

n),

),

ing a
The entire model is set up according to the information stored in theconfigsingleton object of class
BTSConfig(see 2.2). The TRX configuration, stored in theconfigobject, is sent as a parameter to the TRX co
structor. According to this configuration, the eightPhysicalChannelsmanaged by the TRX are constructed. The
are five suchPhysicalChannels:

• CombCommonCh (combined common channel),

• CommonCh,

• FullTrafficCh,

• HalfTrafficCh,

• TACH8Ch or SDCCH (dedicated signalling channel).

The CommonChphysical channel carries the RACH, FCH, SCH, BCCH, PAGCH logical chann
The FullTrafficCh carries the TCH/FS (full speech), TCH/F9.6, TCH/F4.8, TCH/F2.4 logical channels.
HalfTrafficChcarries two TCH/H4.8 logical channels or two TCH/H2.4 logical channels or one TCH/H2.4
one TCH/H4.8 logical channel. ATACH8Chcarries eight SDCCH logical channels. ACombCommonChcarries
the RACH, SCH, FCH, BCCH, PAGCH and four SDCCH logical channels. The configuration coded in the m
uses onlyCommonCh, FullTrafficCh andTACH8Ch physical channels, but the other ones should work also.

A physical channelrelates tobaseband controllers(see 2.6) for the logical channels it carries. Add
tionally, a physical channel class containsbuffers(2.2) where it buffers the bursts to be deinterleaved. Remem
that a deinterleaver works on groups of four bursts. Dispatching of incoming bursts to the appropriate l
channel, i.e. baseband controller, is done by means of interrogating the “position” in the frame hierarchy (s
dispatchToLogCh method).

The partitioning of information betweenPhysicalChannels andTRXs is made as follows. The TRX
stores thetypesof the eight physical channels it manages. It also keeps track whether a physical channel i
cated or not. A physical channel is allocated when it carries at least one logical channel. Additionally, a
keeps track of the subtimeslot, in case of half traffic channels (theroundmember variable). ThePhysicalChannel
stores only the channelmode(s)of the logical channel(s) it carries and their status (allocated or not). See
attributes part of the classes and the corresponding accessor and mutator methods.

At allocation the needed resources (baseband controllers and the appropriate functional uni
dynamically created. Thus, these units can be seen asvirtual units, and not necessary as physically existing on
In reality, two or more such virtual units can be mapped on existing physical units, if the time multiple
scheme allows their simultaneous usage.

The split betweenTRXandPhysicalChannelwas made because of complexity management reas
and not because of functionality reasons. We consider that they fulfil the same functions. This is why we d
depictPhysicalChannel as a separate block in Figure 1.

2.8 ThePIs Package
This package contains the classes needed for modelling the LAPDm and LAPD protocol interpr

TheLinkSenderandLinkReceiverclasses play key roles in the mechanics of signalling transmission. They m
the acknowledged transmission mode, the sliding window concept as well as frame fragmentation and re
bling. Both classes inherit from theLink class, whose only role is to concentrate all the common data and ut
methods of the two subclasses. Thus, both classes use the following attributes:

• frameLength, (Length of one frame, 184 bits for LAPDm and 260 bytes for LAPD),

• repetition, (A frame number can take values in the interval 0–repetition-1),

• windowSize, (Maximum number of frames which can be transmitted before an acknowledg
received),

• segments, (Buffers for storing the frames which result from a upper layer message decompositio

• segs, (Number of frames, actually thesegments array length),

• transmissionBuffers, (An array ofwindowSize buffers which store the yet not acknowledged frames

• transmissionTime, (The time needed for sequencing the frame bits on the line).

TheLinkSender class contains the following attributes:

• timeout, (How much the sender must wait for an acknowledge before signalling an error and try
retransmission),

• sent, (How many frames were already sent, not necessarily already acknowledged),
4



The

r a

d
ceives
d.

t),

e is
ansmis-

aits for

-

s the
can be

nt order
used in

the

r to con-

ple,

the
• va, (va-1 equals the last acknowledged frame),

• vs, (vs-1 equals the last frame sent),

• timerRunning, (Boolean variable which indicates whether the timer was already started or not.
timer is started whenever a frame is sent and the timer is not already running).

The activity of aLinkSenderobject is triggered by anevSendMessage(LinkMessage *inf)event. The
message to be transmitted is fragmented in frames which are stored in thesegmentsbuffers.windowSizeframes
are next downloaded in thetransmissionBuffers. The sender starts then transmitting the frames. Wheneve
frame is sent and the timer is not already running, it will be started. Transmission stops whenwindowSizeframes
were sent without being yet acknowledged. In such a situation the sender enters thecannotTransmitstate. Two
events can cause a transition from this state: either anevErroror anevAckevent is received. TheevErrormessage
is received when the timer indicates atimeoutelapsing. In this case the sender setsvs to va and starts retransmis-
sion. When anevAckis received, the timer is reset, all acknowledged frames in thetransmissionBuffersare dis-
carded, new ones are downloaded from thesegmentsbuffers andva is updated. If there are still unacknowledge
frames the timer is restarted. The sender returns to its initial state (the one which is exited only when it re
theevSendMessage event) when all the frames were sent and acknowledged. Then all the buffers are purge

TheLinkReceiver class contains the following attributes:

• entireMessage, (Boolean variable which indicates whether an entire message was received or no

• inf, (Buffer where the received upper layer message is assembled),

• toAck, (Integer variable that holds the number of next frame to acknowledge),

• vr, (vr-1 equals the last received frame),

• received, (How many frames were already received. Corresponds to thesentmember variable in the
LinkSender class).

TheLinkReceiveris composed also of aQueuewhich stores the acknowledge messages. This queu
used in order not to lose acknowledge commands. Such situation could be possible due to the fact that tr
sion of acknowledges takestransmissionTime milliseconds.

The activity of aLinkReceiveris triggered by anevGetFrame(LinkMessage *message)event. Regard-
less of the frame sequence number, the frame is acknowledged. If the frame is also the one the receiver w
(message->NS == vr) then the frame is stored in thesegmentsbuffers andvr is updated. If the last frame from a
message is received then the receiver returns to its initial state, aLinkMessageis assembled from thesegments,
the algorithms variables reinitialized, thesegments purged and the upper layer notified.

The LinkSenderandLinkReceiverclasses relate to theL2Channelclass. The latter models the trans
mission channel. Such a channel is characterized by the following attributes:

• recDelay, (Channel latency in carrying a frame in a particular direction),

• sndDelay, (Channel latency in carrying a frame in the opposite direction),

• recEff, (Receiving efficiency, i.e. the percent of transmitted frames in the first direction),

• sndEff, (Sending efficiency, i.e. the percent of transmitted frames in the opposite direction).

A L2ChannelHelperis created whenever a frame is conveyed by the channel. Actually the helper i
one that performs the transmission. Having one helper for every frame transmission, transmission delays
specified on a per frame basis. The consequence is that frames can arrive at their destination in a differe
than they were sent. Thus, a feature of packet data networks can be modelled. However this feature is not
the model.

By parameterizingLinkSenderandLinkReceiverby means of inheritance, senders and receivers for
particular LAPD and LAPDm protocols are created (e.g.windowSizeequals 8 for LAPD and 1 for LAPDm,rep-
etition equals 8 for LAPDm and is negociable for LAPD — defaults to 128 in our model).

For a more synthetic description of those classes see theLinkersobject diagram. Thecommunication
sequence diagram depicts the sequence of events which are exchanged between the main entities in orde
vey a layer 2 message.

The information carried by these layer 2 entities is encapsulated in anLinkMessageobject. ALinkMes-
sageconsists of aLinkAddrField, a LinkCtrlField and aBitAddressableBufferwhich models the information
field. The former two components provide methods for extraction of various information (like, for exam
sequence number). By specializing and extending theLinkMessageclass theLAPDMessageandLAPDmMessage
classes are built. For a more detailed view of the messages composition and inheritance relationships seeMes-
sages object diagram in the model.
5



s
he

e

e
ource

them.

pt

3

y dis-
A LinkLayerclass groups aLinkSender, LinkReceiverand aL2Channelclass. The specialized classe
LAPDLkLayerandLAPDmLkLayerresult fromLinkLayerby means of inheritance. They are also depicted in t
Linkers object diagram.

On top of those layer 2 entities theRRLkLayerclass is built. It models theradio resourcelink. This
layer 3 entity implements an association to aLinkLayerobject (actually to one ofLinkLayersubclasses). The
RRLkLayer interface consists of two events:

• evSendL3Message(RRMessage *message),

• evGotMessage(BitAddressableBuffer *message).

The former event is sent by theRRLkLayerexterior (is a command), while the latter is sent by th
lower layerLinkLayerwhich actually only forwards the same event received from aLinkReceiver(is a notifica-
tion). WhenRRLkLayerreceives anevGotMessageit calls theinterpret method to interpret the contents of th
messageaccording to the radio resource protocol. This is simply modelled by associating to the radio res
protocol procedures numerical values which in turn are associated to theBitAddressableBuffer.

There exist two specialization of theRRLkLayerclass:RRLkLayerFromBSCandRRLkLayerToBSC.
Actually, they only add some relations to other entities in the model creating thus layer 3 links between
RRLkLayerFromBSCsends layer 3 messages from theShell(which plays the role of the environment, implicitly
of the BSC) toconfig->noOfFreq TRXs. TheRRLkLayerToBSCconveys messages from theTRXresponsible of
the beacon carrier to theShell.

3. A Possible Scenario
An evAccessevent is sent to theShell(which plays the role of a mobile station is this case).TheShell

will set theaccessAttemptboolean variable of theTRX responsible of the beacon carrier. Upon access attem
detection, theTRXwill request the transmission of a layer 3 message from itsRRLkLayerToBSC. When the mes-
sage arrives, theShell(which plays the role of the BSC now) is notified. Next, the user will send anevGrant(int
trx, int timeslot, ChannelMode mode)to theShell.TheShellwill request the transmission of an allocation layer
message fromRRLkLayerFromBSC. When the message arrives, theRRLkLayerFromBSCnotifies theTRXspeci-
fied in the message. Next, theTRXallocates the channel, and updates its member variable values (allocatedetc.).
Next, whenever a burst or block arrives for the newly allocated channel timeslot, the burst or block is finall
patched to thefunctional units, after being “guided” and perhaps buffered by thephysical channelsandbaseband
controllers.This whole scenario is depicted in theChannel Activation Protocolsequence diagram. An intuitive
GUI (BTSExec/bts.exe) was built in order to support this scenario.
6


	Implementation Notes for the GSM BTS Model
	1. General Description
	2. Description of Packages
	2.1 The Shell Package
	2.2 The Globals Package
	2.3 The Radio Package
	2.4 The Abis Package
	2.5 The Functional Units Package
	2.6 The BasebandCtrl Package
	2.7 The TRX Package
	2.8 The PIs Package

	3. A Possible Scenario

