
Low Overhead Dynamic QoS Optimization Under
Variable Task Execution Times

Sergiu Rafiliu, Petru Eles, Zebo Peng
Department of Computer and Information Science,

Linköping University, Sweden
{serra,petel,zpe} @ida.liu.se

Abstract—Today’s embedded systems are typically
exposed to varying load, due to e.g. changing num-
ber of tasks and variable task execution times. At
the same time, many of the most frequent real-life
applications are not characterized by hard real-time
constraints and their design goal is not to satisfy certain
hard deadlines in the worst case. Moreover, from the
user’s perspective, achieving a high level of processor
utilization is also not a primary goal. What the user
needs, is to exploit the available resources (in our case
processor time) such that a high level of quality of
service (QoS) is delivered. In this paper we propose
efficient run-time approaches, able to distribute the
processor bandwidth such that the global QoS pro-
duced by a set of applications is maximized, in the
context in which the processor demand from individual
tasks is continuously varying. Extensive experiments
demonstrate the efficiency of the proposed approaches.

I. Introduction and Related Work

Today’s embedded systems, together with the real-time
applications running on them, have achieved a high level of
complexity. Moreover, such systems very often are exposed
to a continuously varying load due to e.g. variable number
of tasks in the system or variable execution times for tasks.
In such circumstances, guaranteeing timing constraints in
worst-case scenarios is, in most of the cases, not possible
or, if possible, comes at the cost of severe under-utilization
of resources. In this context, on-line quality of service
(QoS) schemes may come handy, both in improving the
resource utilization and in dealing with the complex nature
of the application and system. At runtime, and depending
on the current level of demand, resources are allocated
such that the overall quality obtained from the system is
maximized.

Quality of service management systems can be described
as control systems where, at certain time instances, sam-
ples of performance metrics in the system (deadline misses,
response times, utilization, etc.) are taken. With this
data, an actuation decision is produced, with the goal
of maximizing a certain quality metric. This metric may
be implicit – linked with one of the performance metrics
sampled – or explicit, related to an application specific
quantification of quality. Actuation can mean admission
of new jobs, changing of task rates, switching task modes,
etc.

A vast amount of research has been done regarding QoS,
focusing on different goals and system architectures. A
general model is given by Rajkumar et al. [3], [1], [2]. The
model considers a number of resources that tasks use and
a number of quality dimensions for each task. Each quality
dimension is represented as an abstract curve. Assuming
concave, increasing curves, the developed algorithms per-
form optimal allocation of resources to each task, such
that quality is maximized. The QoS manager is triggered
every time a task is added to or removed from the system,
or when the abstract quality curves are changed by the
user. The main shortcoming of this line of works is that
they do not address variations in the amount of resources
required by the task. Also the proposed algorithms can be
considered heavy-weight for on-line approaches.

Butazzo et al. [4] introduced the elastic model where
each task’s rate can change within a certain interval.
The change of rate is proportional with the task’s weight
and the QoS manager runs every time when a task is
added or removed from the system. Further work deals
with unknown and variable execution times [5], optimal
control, when the applications are controllers [6], and when
dealing with energy minimization problems [7]. Because it
considers a fixed objective of optimization dependent on
task rate variation [17], the elastic model less expressive.

Lu et al. [9] described a framework for feedback control
scheduling, where the source of undeterminism is task
execution time variation, and the actuation method is
admission control and task rate change. Due to the non-
adaptive nature of this method, which is not based on
execution time prediction, it only works for applications
with small execution time variations.

Cervin et al. [12] proposed a method for adjusting
control performance of tasks that implement feedback con-
trollers. This system assumes that feedforward information
is available to the QoS manager, every time one of the
controlled tasks changes its operational mode.

Combaz et al. [10] proposed a QoS scheme for ap-
plications composed of tasks, each described as graphs
of subtasks. A subtask has a number of modes, each
corresponding to a different quality level. When early
subtasks of a task execute with higher execution times
than expected, subsequent subtasks will run in modes with
lower quality level and lower resource demand.

Yao et al. [11] presented a Recursive Least Squares based
controller to control the utilization of a distributed system
by means of rate adjustment. The task model is a set of
task chains distributed across multiple CPUs and having
end-to-end deadlines that must be kept. In this work, it is
assumed that the quality level, for each task, is given by an
external block, according to some unknown and possibly
time varying functions. The controller needs to adjust itself
to the system, by learning this functions, before it can
output useful actuations. The adjustment of the controller
means that it is very slow to respond to execution time
changes in the system.

In this paper we consider a uniprocessor system and
we focus on controlling its utilization, under large, unpre-
dictable variations of execution times of the different tasks.
We achieve this by developing several algorithms which
modify task rates, and try to maximize the global quality
of service delivered by the system. The QoS functions
for every task in the system are defined as mappings
from task rates to quality. They may be chosen by ob-
jective means (e.g. quality of control functions, if the
tasks implement controllers) or by subjective means [14]
(e.g. perceived quality of a multimedia application). Since
execution times potentially change with every job release,
the QoS manager has to run at a high rate itself. Therefore
it is important to find an approach that, while efficiently
distributing the processor bandwidth, such that global
QoS is maximized, does not incur an excessive run-time
overhead. The development of such a resource allocation
technique is the goal of this paper.

II. Preliminaries

In this section we describe our system model, together with
other definitions and concepts that are used throughout
the paper.

A. System and Application Model

Our system (Γ) consists of a set of independent tasks,
running on a single CPU.

Γ = {τi|i ∈ I},
where I is a finite index set and τi it the ith task in the
system. A task releases jobs at variable rates, and jobs
have execution times that vary in unknown ways. A task
can support any rate in a continuous interval.

Each task has a quality degradation function (qD(ρ) –
quality degradation versus rate), associated with its rate
interval. This function describes the absolute performance
loss when a task runs at a suboptimal rate. We assume
that a task running at a higher rate will produce better
quality outputs, the optimal rate being the upper bound of
its rate interval. The qD function, based on our definition,
is a positive, smooth, strictly monotonic and descending
function. By contrast, quality functions would be smooth,
strictly monotonic and ascending functions (Figure 1).
Convex quality functions correspond to concave quality

q

ρ

qD

ρ
(a) (b)

Figure 1. (a) quality curves and (b) quality degradation curves.

degradation functions, and vice versa. If the tasks have
different importance levels or weights, we consider them
included in the qD functions, by scaling the functions with
the corresponding weights.

The tasks in the system may be scheduled according
to any scheduling policy. In this paper we use earliest
deadline first(EDF) [13], but other policies, such as rate
monotonic(RM) can also be used.

Our goal is to maximize the total quality during the
runtime of the system. To solve our problem, we employ a
controller, running on the system in parallel with the other
tasks, that will adjust task rates subject to the current load
demand generated by the variable execution times of the
tasks. The controller will also adjust its own rate.

A task is defined as a tuple:

τi = (Pi = [ρmini , ρmaxi]; qDi (ρi))

where Pi is the rate interval and qDi is the quality degra-
dation function. Throughout the rest of the paper, we use
the notations qDi and ρi to mean both a function and a
value. It will be clear from the context, which one we are
referring to. A job of τi is defined as:

τij = (cij , ρij , qDij = qDi (ρij), qD
actual

ij , rij , dij =
1
ρij

)

where: cij , ρij , rij , dij , are the jth job’s execution time,
rate, response time, and working deadline for the sched-
uler. qDij is the job’s expected quality degradation level, de-
fined based on its rate. Due to the variability of execution
times, transient overloads may occur, when jobs are not
executed before their deadlines. Therefore we also define
an actual quality degradation level (qDactualij) for each job.
qD

actual
ij is dependent on the job’s response time, and is

defined as:

qD
actual

ij =

qDij = qDi (ρij) if rij ≤ 1

ρij
(= dij)

qDi (1
rij

) if 1
ρij
≤ rij ≤ 1

ρmin
ij

Φi(1
rij

) if rij > 1
ρmin

ij

where Φi(ρ) is a penalty function, for the case when
response times are larger than the largest period admitted
for the task (1

ρmin
ij

).

B. Overall Quality of Service

The quality degradation level of a system, at time instance
k is the sum of quality degradation levels corresponding

to the running jobs:

ω[k] =
∑
i∈I

qDi [k]

qDi [k] represents the quality degradation level of task i’s
job, running at time k, with the assigned rate ρi[k]

The total quality degradation level of a system, over its
whole runtime Θ, is

Ω =
∑
i∈I

∑[Θ]i
j=1 q

D
ij

[Θ]i
,

where the inner sum is the cumulative quality degradation
level of all jobs released by task τi during the system’s
runtime. We denote with [Θ]i the number of jobs released
by task i during the whole runtime Θ.

We have defined ω and Ω based on the expected quality
degradation level. However, we are interested in the ac-
tual quality degradation, therefore we define ωactual and
Ωactual in similar fashion, but considering qDactual instead
of qD.

C. Load Demand

The load demand of a task i, at time instance k, is

Li[k] = γi[k] · ρi[k]

where ρi[k] is the rate of the last released job τij of task
i, and γi[k] is the processor time demand of τi at time
instance k. As will be discussed in Section II-D, in the
case of no overload, γi[k] is the execution time of τij . The
load demand of the whole system, at time instance k is

L[k] =
∑
i∈I

Li[k] = −→γ [k]−→ρ [k] (1)

where −→γ [k] is the vector of processor time demands γi’s
and −→ρ [k] is the vector of task rates ρi’s.

We can observe that the load demand depends both on
job rates and job execution times. Execution times are
variable and our task is to assign job rates such that we
maximize quality.

In order for all tasks to run with assigned rates, as
selected by the controller, it is needed that the total load
on the processor does not exceed a certain threshold Lref :

L[k] ≤ Lref ,∀k ∈ [0,Θ]

For the EDF scheduler, this threshold is represented by
its schedulability bound (Lref = 1). To the extent to
which this constraint is violated, job response times are
increased and that translates to large quality degradation.
This phenomenon is captured by the qDactual attribute.

D. Execution Time Prediction

If the schedulability bound was not kept, we say that the
system overloaded. In this case previous jobs have not yet
finished and will continue executing into the current job’s
periods. When computing the load demand of a task, at

the current time instance, we account for the overload by
considering that the processor time demand is the sum
of execution times of all jobs of that task, that have
to be executed within the current job’s period. Figure 2
illustrates this problem for a task τi. The last released
job at the current time instance is τij , however due to
previous overloads, when τij was released, job τij−2 was
only partially executed and job τij−1 was waiting in the
queue to be executed. To accurately compute the load
demand of task τi during the interval of time 1/ρij , we
must consider all the execution time that the CPU should
spend processing jobs of τi during this interval. This is the
processor time demand of τi at the time instance k.

cij−2 cij−1 cij

γi[k]

ρi[k] = ρij

Li[k] = γi[k] ∗ ρi[k]

τi
t[sec]

τij − release k

τij−2 τij−1 τij

Figure 2. Load model

Figure 2 also shows another problem. At a certain
moment, we only know execution times of jobs that have
finished (τij−2 and τij−1 in our example). For jobs that
have not yet finished, we need to predict them. We have
chosen to predict execution times using the single expo-
nential average method [16]:

cpredij = cpredij−1 + (1− α) · (cij−1 − cpredij−1), α ∈ [0, 1]

This formula uses the history of previous measurements
to predict the future values. The amount of history that
is used, is controlled by the coefficient α. A value of α = 0
corresponds to a prediction which is equal to the last
known measurement. A value of α = 1 corresponds to
a prediction which is the initial value (cpredi0) which we
consider chosen close to the average execution time of the
task. For the experiments presented in Section VI, the
value α = 0.4 has been found to be appropriate.

III. Problem Formulation

Our goal is to maximize the total quality level, of all
tasks, over the whole runtime of the system. This implies
minimizing the total quality degradation over the total
system runtime Θ.

min{Ωactual} = min

∑
i∈I

∑
j∈[Θ]i

qD
actual
ij

[Θ]i

 (2)

Because of unknown execution times, the load demand
and actual quality are unknown. Moreover, when the
control decision is taken, the number of released jobs and
Θ are also unknown. To solve our problem, we adopt a
greedy approach by minimizing the expected total quality
degradation level at a time instance k, and adding the

constraint that overloads should be avoided:

min{ω[k]} = min

{∑
i∈I

qDi [k]

}
(3)

subject to:
L[k] ≤ Lref , ∀k ∈ [0,Θ] (4)

.

IV. Solutions

To meet our goal, we will construct a QoS controller to
(1) keep the load by adjusting task rates and (2) minimize
quality degradation by properly choosing the adjustments
for task rates.

A necessary, but not sufficient, condition for minimiz-
ing ω is maximizing the use of processor bandwidth.
Therefore, we instruct our controller to follow a reference
load (Lref) which we set close to the schedulability bound
of our scheduler. Equation (4) thus becomes:

min{Lref − L[k]}, ∀k ∈ [0,Θ] (5)

A general layout of the controller is given in Figure 3.
The controlled plant consists of the system of tasks, which
are represented by blocks containing their execution times
ci. The variation of execution times, from job to job, is
represented by the noises ni[k]. The inputs to the plant
are task rates ρi[k] and the output are task load demand
Li[k]. The output of the system is the global load demand
L[k]. This is fed back into the controller and compared
to the reference load Lref that the system is supposed
to follow. The controller takes as an input the difference
between the actual load demand and the reference and
adjusts task rates accordingly. The controller uses the
tasks’ quality degradation curves and employs a QoS
manager to minimize the expected quality degradation,
for each change that is done in the system.

From Equation (1) we can observe that the load demand
is a non-linear equation, where both −→γ [k] and −→ρ [k] are
unknown. According to current practice in control the-
ory [15], we linearize our controller, by considering the
non-controllable variables, processor time demand, and
thus the execution times, to be constant. The real, non-
constant execution times of jobs are composed of this
constant values and some noise ni. This provides the
source of perturbations that the controller reacts to. When
running the controller, we will consider predicted, vari-
able, execution times instead of this hypothetical constant
values. We can rewrite the load demand as a function
of quality degradation, because the quality degradation
functions are inversable:

L[k] =
∑
i∈I

γi · ρi(qDi [k])

The minimization goal stated in Equation (5) thus be-

Controller

c2

cn

+Lref

L[k]

n1

n2

nn

+

−1

ρ2(qD
2)

c1qD
1

qD
2

qD
n

QoS

Plant
ρ1

ρ2

ρn

ρ1(qD
1)

ρn(qD
n)

L1[k]

L2[k]

Ln[k]

Figure 3. General controller layout.

comes

Lref − L[k] ≈ L[k + 1]− L[k] =

= ∆L[k] = −→γ −→dρ[k] = ∇L[k]
−−→
dqD[k] = 0 (6)

where

∇L[k] =
(
γ1[k] · ρ′1(qD1 [k]), . . . , γn[k] · ρ′n(qDn [k])

)
is the gradient of the load demand, −→γ is the vector of
processor time demand for all tasks,

−→
dρ is the difference

vector of rates, and
−−→
dqD is the difference vector of expected

quality degradation levels which is the unknown variable
in our equation.

The controller will choose new task rates by solving a
system of equations formed by Equation (6) and a set
of relations between all dqDi ’s. We will further specify
this relations when we present our alternative solutions
in the following subsections. In Figure 3, Equation (6) is
represented by the final summation and the feedback loop,
and the set of relation between dqDi ’s is embedded into the
QoS manager.

We have described our controller layout by considering a
fixed number of tasks. However, in practice, our layout can
accept a variable number of tasks, coming in, or leaving
the system.

The controller’s job is also to set its next activation
point, which might not be based on a fixed period. At
a given time, not all tasks may be important for the
controller’s outcome, therefore the controller also has to
determine the relevant subset of tasks (J ⊆ I) that
must be considered. We will further discuss these issues
in Section V.

For our problem, we have developed four different so-
lutions. The first two do not explicitly consider quality
maximization, and have been mainly introduced as base-
lines for comparison. The other two explicitly approach
the goal stated in Equation (3).

A. Constant Bandwidth

Our first approach, called the constant bandwidth method,
allocates apriori, a constant bandwith (Bi) to each task in
the system, by some means (e.g. based on their wheights).
Whenever a new job of a task is released, a prediction of

CPU

Lref

Controller
L1[k]

c1ρ1

n1

B1

c2ρ2
B2

L2[k]

n2

cnρn

nn

Bn

Ln[k]

Figure 4. Controller layout for the constant bandwidth method.

that jobs execution time is made, and based on it, the job’s
rate is computed, such that the job uses all its allocated
bandwidth. Formally put:

ρij =
Bi

cpredij

where
Lref =

∑
i∈I

Bi

and cpredij is the predicted execution time for the jth job
of task i. Figure 4 presents the controller layout for this
method. The controller is composed of several independent
loops, one for each task in the system. A control loop is
activated when its corresponding task releases a new job
in the system.

This method does not consider quality degradation
curves, and therefore does not meet our goal of maximizing
quality. It only addresses the load control aspect. However,
this method has a very low overhead.

B. Uniform QoS

Our second approach is called the uniform QoS method.
This method uses the general controller layout described
in Figure 3. In this method, we try to satisfy our goal
stated in Equation (3) by choosing task rates such that all
tasks have the same expected quality degradation level:

qDi [k + 1] = qDj [k + 1] = λ, ∀i 6= j ∈ J (7)

where
qDi [k + 1] = qDi [k] + dqDi [k], ∀i ∈ J (8)

Equations 7 and 8 describe the relations between all
dqDi .

Our controller will solve the system of equations formed
of Equation (6) and Equation (7). We can observe that all
dqDi ’s can be described in terms of one value (dqDi [k] =
λ − qDi [k]) . This value (λ) can then be obtained by
solving Equation (6). Since all equations are linear, the
solution can be hard-wired in the code and, therefore, is
fast to compute.

This approach can be seen as a superset of the elastic
model described in [4], considering variable elastic coef-
ficients, and their values given by the corresponding qD

τ1 :: qD
1 (ρ1)

τ2 :: qD
2 (ρ2)

L1 = γ1 · ρ1

L2 = γ2 · ρ2

qD

ρ

qD

L

optimal solution (QoS derivative)

(a) (b)

Figure 5. Transformation from qD(ρ) to qD(L).

functions.

C. QoS Derivative
Our third approach is called QoS derivative and it uses the
general controller layout (Figure 3). Unlike the previous
two methods, this method addresses the minimization of
the total expected quality degradation level.

To understand how to solve the minimization as re-
quired by Equation (3), we will first define quality degra-
dation functions in terms of the resource used (qDi [k] =
qDi (Li[k])). We do this by applying the linear transfor-
mation L = γ · ρ to each qD curve. These curves change
with every change of execution time. Figure 5(a) shows an
example of two tasks having quality functions qD1 and qD2 .
At a certain moment in time, by predicting for these tasks
processor task demands γ1 and γ2 we can represent the
quality functions as functions of load instead (Figure 5(b)).
The solution to minimizing ω appears when the derivatives
of all qD(L) curves, in the set points, are equal. A proof
of this can be found in [3]. The intuition behind it is
the following: when we set rates such that the derivatives
are not equal, it happens that one task has the steepest
derivative or slope, therefore a slight increase in resources
produces a large quality degradation reduction. Another
task has the shallowest slope, therefore, the corresponding
reduction in resources will produce only a small increase
in quality degradation. This rearrangement reduces ω. We
can continue doing so until all derivatives become equal.
This method only finds the minimum quality degradation
if all tasks have convex qD curves (concave quality curves).
This leads to the following equation:

γi[k] · ρ′i(qDi [k + 1]) = γj [k] · ρ′j(qDj [k + 1]),
∀i 6= j ∈ J (9)

Because the unknowns qDi [k + 1]1 appear as arguments
to ρi(qDi) functions, we cannot use these relations directly,
therefore we manipulate them using Taylor’s approxima-
tion. Equation (9) thus becomes:

γi[k] · (ρ′i(qDi [k]) + ρ′′i (qDi [k]) · dqDi [k]) =

γj [k] · (ρ′j(qDj [k]) + ρ′′j (qDj [k]) · dqDj [k]) = λ,

∀i 6= j ∈ J (10)

1We remind the reader that qD
i [k], qD

i [k + 1] represent expected
quality degradation levels.

As with the previous method, our controller solves
online the system of equations formed by Equation (10)
and Equation (6). We can write all the unknown ∆Li[k]
in terms of one value λ, that we obtain by solving Equa-
tion (6). The solution to this system of equations can also
be hard-wired into the code and has an overhead similar
to the one of our previous approach.

D. Corner Case
Our final approach is called corner-case. Similarly to QoS
derivative, this method addresses the minimization of the
total expected quality degradation level, but for tasks
with concave qD curves. The controller implementing this
approach is not based on feedback control theory and does
not have the structure described in Figure 3.

The following theorem provides a necessary condition
for a resource allocation to minimize ω[k] , in the case of
concave quality degradation curves:

Theorem 1. A necessary condition for a resource alloca-
tion to be optimal, when all quality degradation curves
are concave, is the following: there ∃ at most one i ∈ J

such that: qDmini ≤ qD
sol
i ≤ qD

max
i . ∀j ∈ J�{i}, qDsolj ∈

{qDminj , qD
max
j }. We call such solutions corner-cases.

Proof:
Since qDi (ρi) are concave, then qDi (Li) are concave, and

ω[k] in Equation (3) is a concave function as well. We reach
the minimum of ω[k], therefore, when we choose a point on
the borders of its definition space. For the purpose of this
proof, we will replace ω[k] with ωn =

∑
i∈J q

D
i [k], where

n = size{J}.
A border of the definition space of ωn, has the fol-

lowing property: ∃i ∈ J for which qD
sol
i = qD

min
i or

qD
sol
i = qD

max
i . Constructing the overall minimum of

our function requires, constructing the minimum in each
border and comparing them. To construct the minimum
value in a border qDsoli ∈ {qDmini , qD

max
i }, we have to

minimize the border function ωn−1 = ωn − qDsoli . We can
observe that the border function represents the original
function, without one of its dimensions. Its minimum value
sits on its borders which are constructed by removing
another dimension. Through induction we can see that the
minimum value of ω[k] is a corner-case.

At every iteration of the controller, we have to con-
struct all corner-cases and determine which is the one
that satisfies Equation (3) and Equation (5). It is not
feasible, in general, to generate all corner-cases, and then
compare them. Therefore, we will use a greedy algorithm
to construct a solution, close to the optimum. The idea
behind it is the following: at each step determine the
task with the highest expected quality degradation drop,
between its maximum and minimum rate, and set its rate
to the maximum. The algorithm performs the following
steps:

1) Set all tasks to their minimum rate and determine the
amount of resources used by all tasks.

2) For each task, compute the slope:
si = qD

i (ρmax
i)−qD

i (ρmin
i)

ci·(ρmax
i −ρmin

i
).

3) Sort all tasks according to their slopes.
4) While resources are still available, choose the task

with the highest slope and give it resources until it
reaches its maximum rate, or until there are no more
resources available.

V. Controller period and relevant task subset

Except for the constant bandwidth method, our controllers
work by considering that an overload or underload dis-
covered at the current time instance, will be corrected
until the next time instance, by assigning new task rates
to tasks, and thus reallocating resources. However tasks
only change their rate when they release new jobs. If no
job is released between two controller actuations, then no
change in rate and load demand occurs. From this, we can
observe that we should have a controller period sufficiently
large, such that all tasks can release a new job by the next
actuation. However, high rate tasks will release several jobs
in that period, and any new job can potentially produce
a large variation in load demand, due to large execution
time variations.

We try to mitigate this problems by changing the con-
troller period and the number of tasks that the controller
acts upon, for each controller actuation.

We have experimented with different period assignment
policies for the controller (see experiments in Section VI).
We have reached the conclusion that between two suc-
cessive job releases of the same task there should be at
least one actuation of the controller. We approximate this
behavior by choosing the next actuation of the controller
to be equal with the current smallest period out of all
running jobs (see also Figure 10).

As stated earlier, it might happen that between two
controller actuations, some tasks will not release new
jobs, and will not contribute to meeting the controller’s
design goal. We therefore should instruct the controller not
to consider these tasks (see experiments in Section VI).
Figure 6 shows an example of a system with two tasks:
τ1 with a high rate and τ2 with a low rate. By the next
controller actuation, only τ1 releases a new job therefore
only it can mitigate the overload or underload observed at
the current time instance.

τ1

τ2

current actuation
next actuation, task τ2 doesn’t release a new job

t

t

job releases

Figure 6. Actuation model

In order to implement such policies, we first determine
our next actuation time for the controller. After that,

we determine all tasks that will release new jobs by that
time, and these tasks form the relevant subset of tasks (J)
considered by the controller at the current time instance.

VI. Experiments

In order to evaluate our solutions we have built a simula-
tion environment that accepts as an input a description
of a real-time system, as presented in Section II-A. In
a configuration file different configuration parameters are
set, such as the simulated runtime of the system, the
policy for generating execution times, controllers used,
logging options and CPU speed. The simulator outputs the
task schedule produced during the runtime of the system,
together with a number of metrics such as load demand,
utilization, deadline misses and overall actual quality.

Amount of Resources

A
ct

ua
l Q

ua
lit

y
D

eg
ra

da
tio

n
Le

ve
l

0.0
0.2
0.4
0.6
0.8
1.0

C
or

ne
r−

ca
se

Q
oS

 d
er

iv
at

iv
e

C
on

st
an

t b
an

dw
id

th
U

ni
fo

rm
 Q

oS

low
concave

C
or

ne
r−

ca
se

Q
oS

 d
er

iv
at

iv
e

C
on

st
an

t b
an

dw
id

th
U

ni
fo

rm
 Q

oS

medium
concave

C
or

ne
r−

ca
se

Q
oS

 d
er

iv
at

iv
e

C
on

st
an

t b
an

dw
id

th
U

ni
fo

rm
 Q

oS

high
concave

low
convex

medium
convex

0.0
0.2
0.4
0.6
0.8
1.0

high
convex

Figure 7. Actual quality degradation level for low, medium, and high
amount of resources (convex and concave qD curves are considered).

For our experiments we have generated a set of 240
uniformly distributed [8] synthetic applications, with the
number of tasks varying between 5 and 100. Each task
has a rate interval where ρmax is between 2 and 100 times
larger then ρmin, and an execution time interval where
cmax is 100 times larger then cmin. We have divided our
test cases into two sets, where all tasks have randomly
genrated convex and concave qD curves, respectively. In
all experiments, for the constant bandwidth method the
amount of bandwidth assigned to each task is proportional
to its weight. For all other methods, the task weights are
included in the qD functions, as mentioned in Section II-A.
In all our experiments we required the controllers to keep
a load of Lref = 0.95. We run the test cases for a simulated
runtime of Θ = 106 time units. This makes the controllers
used, activate between 2000 and 20000 times.

We use the overall actual quality degradation level as a
metric for performance. In order to compare different test
cases, we scale this metric in the following way: by knowing

the number of jobs released during a simulation run, one
can know the maximum and minimum quality degradation
that can be obtained, and thus scale the expected overall
quality degradation level so that it’s values lie between 0
and 1. The overall actual quality degradation level, since it
also contains the penalty due to deadline misses (see Sec-
tion II), can, based on this scaling, become larger than
1 for some test cases. In all our experiments we present
the average scaled overall actual quality degradation level,
during a simulation run of all targeted test cases, with the
system set to the same configuration parameters. For ease
of presentation, in this section we will call this averaged,
scaled metric the actual quality degradation level.

Figure 7 presents the actual quality degradation level,
considering cases with convex and concave qD curves. For
each type of curve, three different cases are considered
with regard to the available amount of resources: (1) “low”
– the processor speed is considered such that Lref is
reached when all tasks are run with rates close to ρmin;
(2) “medium” – the processor speed is considered such
that Lref is reached when all tasks are run with rates
around (ρmin+ρmax)/2; (3)“high”– the processor speed is
considered such that Lref is reached when all tasks are run
with rates close to ρmax. These experiments have been run
considering that execution times of tasks vary randomly,
with a uniform distribution between their corresponding
minimum and maximum execution time.

Amount of Resources

A
ct

ua
l Q

ua
lit

y
D

eg
ra

da
tio

n
Le

ve
l

0.0

0.2

0.4

0.6

0.8

1.0

C
or

ne
r−

ca
se

Q
oS

 d
er

iv
at

iv
e

C
on

st
an

t b
an

dw
id

th
U

ni
fo

rm
 Q

oS

low
concave

−l

C
or

ne
r−

ca
se

Q
oS

 d
er

iv
at

iv
e

C
on

st
an

t b
an

dw
id

th
U

ni
fo

rm
 Q

oS

medium
concave

−l

C
or

ne
r−

ca
se

Q
oS

 d
er

iv
at

iv
e

C
on

st
an

t b
an

dw
id

th
U

ni
fo

rm
 Q

oS

high
concave

−l

C
or

ne
r−

ca
se

Q
oS

 d
er

iv
at

iv
e

C
on

st
an

t b
an

dw
id

th
U

ni
fo

rm
 Q

oS

low
convex

−l

C
or

ne
r−

ca
se

Q
oS

 d
er

iv
at

iv
e

C
on

st
an

t b
an

dw
id

th
U

ni
fo

rm
 Q

oS

medium
convex

−l

C
or

ne
r−

ca
se

Q
oS

 d
er

iv
at

iv
e

C
on

st
an

t b
an

dw
id

th
U

ni
fo

rm
 Q

oS

high
convex

−l

low
concave

−sl

medium
concave

−sl

high
concave

−sl

low
convex

−sl

medium
convex

−sl

0.0

0.2

0.4

0.6

0.8

1.0
high

convex
−sl

0.0

0.2

0.4

0.6

0.8

1.0
low

concave
−ssl

medium
concave

−ssl

high
concave

−ssl

low
convex

−ssl

medium
convex

−ssl

high
convex

−ssl

Figure 8. Actual quality degradation level for different amount of
resources and different execution time policies (convex and concave
qD curves are considered).

We also consider other policies for generating execution

times for jobs. For a task, execution times can keep con-
stant for several iterations, before they change to another
value (“-l”). Execution times can also change to new,
values, simultaneously, for all tasks, at certain moments
in time (“-ssl”) or they can change simultaneously and in
the same direction (all increasing or all decreasing) for all
tasks (“-sl”). The idea behind these policy assignments is
the following: tasks might represent pieces of code that
have several branches and inputs to tasks might trigger
them to take a certain branch ore another for a number
of iterations. Also tasks might share a common input and
therefore change their execution times at the same time
instance. Figure 8 shows the same type of experiments
as in Figure 7, but considering the different policies for
execution times.

For the above experiments, we have considered no over-
head for our controllers, and we have used our best policies
for controller period assignment and relevant subset of
tasks at each actuation. We will present these policies
later on in this section (see Section V). In both Figure 7
and Figure 8 we compare the actual quality degradation
level obtained with the approaches described in Section IV.
We can observe that for test cases with concave quality
curves, the corner-case method is the best, and by far
better than the rest of the methods. For test cases with
convex qD curves, the best methods are the corner-case
and the QoS derivative methods, with a slight advantage
for the last one. The worst methods are the constant
bandwidth and the uniform QoS, which is not surprising
since they do not explicitly consider the QoS optimization
aspect. We remind that for these experiments we have
ignored the controller time overhead (considering that it
executes in zero time). We will consider the overhead later
in this section.

Number of Tasks

A
ct

ua
l Q

ua
lit

y
D

eg
ra

da
tio

n
Le

ve
l

0.0
0.2
0.4
0.6
0.8
1.0

C
or

ne
r−

ca
se

Q
oS

 d
er

iv
at

iv
e

C
on

st
an

t b
an

dw
id

th
U

ni
fo

rm
 Q

oS

5
concave

C
or

ne
r−

ca
se

Q
oS

 d
er

iv
at

iv
e

C
on

st
an

t b
an

dw
id

th
U

ni
fo

rm
 Q

oS

10
concave

C
or

ne
r−

ca
se

Q
oS

 d
er

iv
at

iv
e

C
on

st
an

t b
an

dw
id

th
U

ni
fo

rm
 Q

oS

30
concave

C
or

ne
r−

ca
se

Q
oS

 d
er

iv
at

iv
e

C
on

st
an

t b
an

dw
id

th
U

ni
fo

rm
 Q

oS

50
concave

C
or

ne
r−

ca
se

Q
oS

 d
er

iv
at

iv
e

C
on

st
an

t b
an

dw
id

th
U

ni
fo

rm
 Q

oS

70
concave

C
or

ne
r−

ca
se

Q
oS

 d
er

iv
at

iv
e

C
on

st
an

t b
an

dw
id

th
U

ni
fo

rm
 Q

oS

100
concave

5
convex

10
convex

30
convex

50
convex

70
convex

0.0
0.2
0.4
0.6
0.8
1.0

100
convex

Figure 9. Actual quality degradation level versus number of tasks
for test cases of tasks with concave and convex qD curves.

Our next experiment, presented in Figure 9, looks at
test cases with different number of tasks and compares
their results. We can observe that our approaches behave

Period Assignment Policy

A
ct

ua
l Q

ua
lit

y
D

eg
ra

da
tio

n
Le

ve
l

0.0

0.2

0.4

0.6

0.8

1.0

−a
pe

rio
di

c
−s

po
ra

di
c

−m
in

−a
vg

−A
VG

−m
ax

−M
AX

Corner−case
concave

−a
pe

rio
di

c
−s

po
ra

di
c

−m
in

−a
vg

−A
VG

−m
ax

−M
AX

QoS derivative
concave

−a
pe

rio
di

c
−s

po
ra

di
c

−m
in

−a
vg

−A
VG

−m
ax

−M
AX

Uniform QoS
concave

Corner−case
convex

QoS derivative
convex

0.0

0.2

0.4

0.6

0.8

1.0
Uniform QoS

convex

Figure 10. Actual quality degradation level for different controller
period assignment policies.

consistently independent of the number of tasks in the
system.

We have run several experiments in order to evaluate
various approaches to controller activation (see Section V).
The alternative policies are: (1) “-aperiodic” – where the
controller is activated every time a new job is released;
(2) “-sporadic” – where the controller runs for every job
release, but not more often than the highest possible rate
in the system; (4) “-min” – where the controller’s period is
the minimum period among the currently last released jobs
of every task; (4) “-avg” – where the controller’s period is
the average period among the currently last released jobs
of every task; (5) “-max” – the controller’s period is the
maximum period among the currently last released jobs
of every task; and (6) “-MAX” – the controller’s period
is the maximum possible period in the system. We have
enumerated our controller period assignment policies in
decreasing order of the amount of controller activations
that they demand. It is expected that the “-aperiodic”
method has the largest overhead, since it demands the
largest number of controller actuations, and the “-MAX”
method has the lowest overhead. Figure 10 shows, for each
of our methods, which controller period assignment leads
to the smallest increase in quality degradation. We can
observe that the policies “-aperiodic”, “-sporadic”, and “-
min”generally give the best results. We consider the“-min”
policy to be the overall best method because of its lower
overhead among these three.

Regarding the relevant subset of tasks to be considered
by the controller (see Section V), we have run experiments
considering two policies: (1) “-all” – where we consider
all tasks, all the time; and (2) “-release” – where we
consider only the tasks that will release new jobs until the
controller’s next actuation point. Figure 11 presents our

Period Assignment Policy

A
ct

ua
l Q

ua
lit

y
D

eg
ra

da
tio

n
Le

ve
l

0.0

0.2

0.4

0.6

0.8

1.0

−a
ll

−r
el

ea
se

Corner−case
concave

−a
ll

−r
el

ea
se

QoS derivative
concave

−a
ll

−r
el

ea
se

Uniform QoS
concave

Corner−case
convex

QoS derivative
convex

0.0

0.2

0.4

0.6

0.8

1.0
Uniform QoS

convex

Figure 11. Actual quality degradation level for different
task subset policies.

Controller Overhead T(1)

A
ct

ua
l Q

ua
lit

y
D

eg
ra

da
tio

n
Le

ve
l

0.0
0.2
0.4
0.6
0.8
1.0

C
or

ne
r−

ca
se

Q
oS

 d
er

iv
at

iv
e

C
on

st
an

t b
an

dw
id

th
U

ni
fo

rm
 Q

oS

P1
concave

C
or

ne
r−

ca
se

Q
oS

 d
er

iv
at

iv
e

C
on

st
an

t b
an

dw
id

th
U

ni
fo

rm
 Q

oS

P2
concave

C
or

ne
r−

ca
se

Q
oS

 d
er

iv
at

iv
e

C
on

st
an

t b
an

dw
id

th
U

ni
fo

rm
 Q

oS

P3
concave

C
or

ne
r−

ca
se

Q
oS

 d
er

iv
at

iv
e

C
on

st
an

t b
an

dw
id

th
U

ni
fo

rm
 Q

oS

P4
concave

C
or

ne
r−

ca
se

Q
oS

 d
er

iv
at

iv
e

C
on

st
an

t b
an

dw
id

th
U

ni
fo

rm
 Q

oS

P5
concave

C
or

ne
r−

ca
se

Q
oS

 d
er

iv
at

iv
e

C
on

st
an

t b
an

dw
id

th
U

ni
fo

rm
 Q

oS

P6
concave

P1
convex

P2
convex

P3
convex

P4
convex

P5
convex

0.0
0.2
0.4
0.6
0.8
1.0

P6
convex

Figure 12. Actual quality degradation level considering controller overheads.

results. We can observe large improvements when using
the “-release” approach. This approach, also has the lowest
overhead, therefore we consider it to be the preferable
one2.

The experiments presented in Figure 10 and Figure 11
support the actuation technique presented in Section V.

We were also interested to determine the performance of
the various approaches considering their actual run-time
overhead.

We have run the same experiments as before but with
considering the actual overhead produced by the con-
troller. The processor load generated by the control actions
depends on the complexity of the control algorithm, the
number of tasks considered at each control step (see Sec-
tion V), the number of actuations per time unit and the
speed of the actual processor.

In Table I we show the time complexity of the four
control approaches. n represents the number of tasks
considered during the actuation andm denotes the number
of linear segments used to approximate the quality curves.

We have run our simulations considering seven different
processors, P1 to P6, in decreasing order of their speed.
The results show that, also when considering the actual
overhead, the corner-case method remains the most effi-
cient in the case of concave quality curves while, in the case
of convex curves, the derivative method still produces the
best results. Exceptions are the case with processor P6 for
concave curves and P5 and P6 for the convex ones. In these
last cases, due to the overhead produced on extremely slow
processors, the constant bandwidth method, with its very

2We have omitted the constant bandwidth method in the experi-
ments presented in Figure 10 and Figure 11. The issue of activation
policy is irrelevant to this approach since it consists of a number of
loops having the periods equal to that of their corresponding tasks.
At each actuation of a loop only that particular task is considered.

low overhead, produces the best results.
In Table II we show the actual average load produced

by the different control approaches when running on the
six different processors. As expected, the overhead im-
plied by the constant bandwidth approach is the smallest.
Nevertheless, with the exceptions indicated above, the
larger overhead produced by the corner-case and derivative
methods is compensated by their capacity to produce
resource allocations which maximize the obtained QoS.

We have also implemented the corner-case and QoS
derivative controllers on an AMD Athlon X2 based PC,
running at 2GHz. Considering 100 tasks and an average
number of controller activations of 1000 act/sec, the con-
troller load produced was 0.0043 for the corner-case and
0.0045 for QoS derivative. If we compare to the values
in Table II, we can observe that these loads are more than
an order of magnitude smaller than those produced with
processor P1 in the experiments illustraded in Figure 12.
This means that on a processor 10 times slower than the
one used above (e.g. running at 200MHz), the load pro-
duced with 100 tasks and a high activation rates such as
1000 act/sec is still so low that the two control approaches
are highly efficient.

Table I
Controller time complexity.

Controller Complexity
Octrl−method(ni)

corner-case O(n · log(n))
QoS derivative O(n · log(m))

constant bandwidth n ·O(1)
uniform QoS O(n · log(m))

Table II
Controller load overhead.

Controller T (1)
P1 P2 P3 P4 P5 P6

corner-case 0.047 0.083 0.112 0.134 0.153 0.219
QoS derivative 0.040 0.072 0.100 0.123 0.144 0.210

constant bandwidth 0.001 0.003 0.005 0.006 0.008 0.016
uniform QoS 0.032 0.059 0.082 0.102 0.120 0.186

VII. Discussions

In the previous section we have considered test cases with
different qD curves and different number of tasks, and we
have run them considering different amount of resources
and various policies for selection of the controller period
and of the subset of considered tasks. The actual runtime
overhead of the controllers has also been taken into consid-
eration. The experiments have confirmed the superiority
of the corner-case method in the case of concave quality
curves and the QoS derivative method in the case of
convex curves.

We have also identified the most efficient policies for
dynamic period selection (“-min” policy) and for selection
of the actual subset of tasks to consider at controller
activation (“-release” policy).

Another interesting observation is that, while the deriva-
tive method is the most efficient for convex quality curves,
it performs poorly for concave qD curves. The corner-case
method, however, while being the best one in the case of
concave curves, performs very well (close to the best) even
in the case of convex qD curves. Thus, if we have a mixed
set of applications, with both concave and convex curves,
the corner-case method will be the most efficient.

VIII. Conclusion

In this paper we have addressed the issue of efficiently
allocating resources to concurrent tasks with dynamically
varying execution times, based on the tasks’ abstract
quality curves. We have proposed QoS management ap-
proaches and policies and, based on extensive experiments,
we have demonstrated their efficiency.

References

[1] C. Lee, J. Lehoczky, R. Rajkumar, D. Siewiorek.“On Quality of
Service Optimization with Discrete QoS Options.” In proceed-
ings of Real-Time Technology and Applications Symposium,
pp.276, 1999.

[2] C. Lee. “On Quality of Service Management.” PhD thesis,
Carnegie Mellon University, August 1999.

[3] R. Rajkumar, C. Lee, J. Lehoczky, D. Siewiorek. “A Resource
Allocation Model for QoS Mangement.” In Proceedings of the
IEEE Real-Time Systems Symposium, pp. 298-307, December
1997.

[4] G. C. Buttazo, G. Lipari, L. Albeni. “Elastic Task Model for
Adaptive Rate Control.” In Proceedings of the IEEE Real-Time
Systems Symposium, pp. 286, December 1998.

[5] G. C. Buttazo, L. Albeni. “Adaptive Workload Management
through Elastic Scheduling.” Journal of Real-Time Systems, vol.
23, pp. 7-24, July 2002.

[6] G. C. Buttazo, M. Velasco, P. Marti and G. Fohler. “Managing
Quality-of-Control Performance Under Overload Conditions.”
In Proceedings of the Euromicro Conference on Real-Time
Systems, pp. 53-60, July, 2004.

[7] M. Marioni, G. C. Buttazo. “ Elastic DVS Management in Pro-
cessors With Discrete Voltage/Frequency Modes.” IEEE Trans-
actions on Industrial Informatics, vol. 3, pp. 51-62, February,
2007.

[8] E. Bini, G.C. Buttazzo.“Measuring the Performance of Schedu-
lability Tests”, Real-Time Systems, Vol. 30, pp. 127-152, March
2005.

[9] C. Lu, J. A. Stankovic, S. H. Son, G. Tao. “Feedback Control
Real-Time Scheduling: Framework, Modeling, and Algorithms.”
Real-Time Systems, vol. 23, pp. 85-126, 2002.

[10] J. Combaz, J. C. Fernandez, J. Sifakis, L. Strus.“Symbolic Qual-
ity Control for Multimedia Applications.” Real-Time Systems,
vol. 40, pp. 1-43, October, 2008.

[11] J. Yao, X. Liu, M. Yuan, Z. Gu. “Online Adaptive Utili-
zation Control for Real-Time Embedded Multiprocessor Sys-
tems.” In Proceedings of the International Conference on Hard-
ware/Software Codesign and System Synthesis, pp. 85-90, 2008.

[12] A. Cervin, J. Eker, B. Bernhardsson, K. E. Årzén. “Feedback-
Feedforward Scheduling of Control Tasks.” Real-Time Systems,
vol. 23, pp. 25-53, July, 2002.

[13] C. L. Liu, J. W. Layland. “Scheduling algorithms for multipro-
gramming in hard-real-time environment.”Journal of ACM, pp.
40-61, 1973.

[14] J. K. Ng, K. Leung, W. Wong, V. Lee, and C. Hui. “A Scheme
on Measuring MPEG Video QoS with Human Perspective.”
Proceedings of the 8th International Conference on Real-Time
Computing Systems and Applications, pp. 233-241, 2002.

[15] K. J. Åström and B. Wittenmark. “Computer-Controlled Sys-
tems.” Prentice Hall, 1997.

[16] Ya-lun Chou. “Statistical Analysis”. Holt International, 1975.
[17] T. Chantem, X. S. Hu, and M.D. Lemmon. “Generalized Elas-

tic Scheduling.” Proceedings of 27th IEEE Real-Time Systems
Symposium (RTSS), pp. 236-245, 2006.

