
Stability Conditions of On-line Resource Managers
for Systems with Execution Time Variations

Sergiu Rafiliu, Petru Eles, Zebo Peng
Department of Computer and Information Science,

Linköping University, Sweden
{serra,petel,zpe} @ida.liu.se

Abstract—Today’s embedded systems are exposed to
variations in load demand due to complex software
applications, hardware platforms, and impact of the run-
time environments. When these variations are large, and
efficiency is required, on-line resource managers may be
deployed on the system to help it control its resource
usage. An often neglected problem is whether these
resource managers are stable, meaning that the resource
usage is controlled under all possible scenarios. In this
paper we develop mathematical models for the real-
time embedded system and we derive conditions which,
if satisfied, lead to stable systems. For the developed
system models, we also determine bounds on the worst
case response times of tasks.

I. Introduction and Related Work

Today’s embedded systems, together with the real-time
applications running on them, have achieved a high level of
complexity. Moreover, such systems very often are exposed
to varying resource demand (load demand) due to e.g.
variable number of tasks in the system or variable execution
times of tasks. When these variations are large and system
efficiency is required, on-line resource managers may be
deployed, to control the system’s resource usage. Such
managers take the shape of algorithms which run at key
moments in time and adjust system parameters (task rates,
modes, offsets, priorities, etc.) subject to the measured
variations. Among the goals of such a resource manager
is to maximize the resource usage while minimizing the
amount of time the system spends in overload situations.

One, often overlooked, question is whether the deployed
resource managers are safe, meaning that the resource de-
mand is bounded under all possible runtime scenarios. This
notion of safety can be linked with the notion of stability
of control systems. In control applications, a controller
controls the state of a plant towards a desired stationary
point. The combined system is stable if the plant’s state
remains within a bounded distance from the stationary
point, under all possible scenarios. By modeling the real-
time system as the plant and the resource manager as the
controller, one may be able to reason about the stability of
the combined system.

When considering resource managers to control utili-
zation, the existing literature can be classified into two
categories: ad-hoc approaches and control theory based
approaches. There is a vast literature on ad-hoc approaches,
targeting different types of real-time systems. Lee et al.

proposed the QRAM algorithm in [1]. The model consists of
a number of resources that tasks use and a number of qual-
ity dimensions. When the algorithm runs, it optimizes the
overall quality subject to keeping the resource constraints.

Buttazzo et al. [2] introduced the elastic model where
each task’s rate can change within a certain interval. Rates
change when a task is added or removed from the system.
Further work deals with unknown and variable execution
times [3], optimal control, when the applications are con-
trollers [4], and when dealing with energy minimization [5].

In our previous work [16], we have proposed a number of
control algorithms to deal with execution time variations
in a uniprocessor system.

Lu et al. [6] described a framework for feedback control
scheduling, where the source of nondeterminism is execu-
tion time variation, and the actuation method is admission
control and task rate change.

Palipoli et al. [7], [8] proposed a feedback based technique
for adjusting the parameters of a resource reservation
scheduling algorithm in reaction to task execution time
variations.

Cervin et al. [13], [14] proposed a method for adjusting
control performance of tasks that implement feedback con-
trollers.

Combaz et al. [9] proposed a QoS scheme for applications
composed of tasks, each described as graphs of subtasks,
and each subtask has a number of modes.

Liu et al. [10], [11] presented a Recursive Least Squares
based controller to control the utilization of a distributed
system by means of rate adjustment.

Ad-hoc approaches suffer due to their lack of formal
guarantees. Control theory based approaches potentially
address this issue, but the results they offer are typically
restrictive, due to the simplicity of the models used. In most
cases, the models are coarse-grain, linear models, where
variations in load are modeled as Poisson processes or white
noise [6], [12]. Stability is only shown, if at all, under very
particular and restrictive assumptions.

In this work, we overcome the above limitations. We
consider a real-time system running a set of independent
tasks and resource managers that control the processor’s
utilization. Our aim is to develope general models of the
system and determine conditions that a resource manager
must meet in order to render it stable. For the developed
system models, we also determine bounds on the worst case

response times of tasks.

II. Preliminaries

A. System and Application
We consider a uniprocessor system running a set of inde-
pendent tasks (Λ):

Λ = {τi, i ∈ I}
where τi is a task and I is a finite index set. A task in the
system is defined as a tuple:

τi = (Pi = [ρmin
i , ρmax

i],Ci = [cmin
i , cmax

i])

where Pi is the interval of possible job release rates for the
task and Ci is the interval of possible execution times for
jobs of this task. The response time of any job of a task
represents the interval of time between the release and the
finish time of the job. We denote by P =

∏
i∈I Pi and

C =
∏
i∈I Ci the spaces of rates and execution times for

the tasks in Λ, and with ρ and c points in this spaces. A
job of a task in the system is defined as:

τij =
(
cij , ρij , rij

)
where: cij , ρij , and rij , are the execution time, rate, and
response time of the jth job of task i.

The tasks in the system are scheduled using any sched-
uler which has the following properties:

1) it is non-idling : it does not leave the processor idle if
there are pending jobs;

2) it executes successive jobs of the same task in the order
of their release time.

A resource manager is running on the processor, whose
goal is to measure execution times, and then adjust job
release rates for all tasks, such that the CPU utilization
is kept high, and the amount of time spent in overload
situations is minimized. We consider the system stable if
under the worst possible run-time scenario, the overload in
the system is kept finite, meaning that the system does not
keep accumulating jobs without having a way of executing
them.

B. Processor Behavior in Overload Situations
In overload situations jobs cannot be executed at the rate at
which they are released, because of the larger than expected
job execution times. In this condition, newly released jobs
need to wait for the previous ones to finish. We consider
that newly released jobs queue up in queues, one for each
task. A job τij gets executed only after all previous queued
up jobs of task τi finished executing.

C. Resource Utilization and Schedulability
The resource considered in this paper is the CPU time. The
resource utilization, in any interval of time h, is the fraction
of h when the CPU is non-idle. This is a positive number
less/equal 1:

u =
non-idle time

h
, u ∈ [0, 1]

The resource demand, in an interval of time h, is:

uD =
Cprevious + Ccurrent

h
, uD ≥ 0

where Ccurrent is the sum of execution times of all jobs
released during h and Cprevious is the sum of execution
times of all queued up jobs, released before the beginning
of the interval. The resource demand may be larger then
1. Figure 1 shows an example with three tasks. At time
instance t[k−1], task τ1 has 2 jobs in its queue, τ2 has 4,
and τ3 has 1. Cprevious will be the sum of the execution
times of all these jobs. Between t[k−1] and t[k], τ1 releases
3 new jobs, τ2 releases 2, and τ3 1. In this case Ccurrent will
be equal to the sum of execution times of all these six jobs.

There are two observations to be made: 1) at t[k−1] some
of the jobs in the queues will be partially executed; in this
case we consider only their remaining execution time in
Cprevious

1; 2) jobs are meant to finish by the end of their
period2, not by the end of the time interval h; therefore,
when a job has its end of the period after t[k], we will only
consider the part of its execution time, corresponding to
the portion of its period inside the interval of time h, as
part of Ccurrent.

When the resource demand is less or equal to 1, then it
will be equal with the resource utilization and the system
will be schedulable; all the demand can be executed. When
the resource demand is above 1 the system is overloaded,
only a portion of the demand can be executed (namely
1), and jobs start accumulating in queues. Also, we must
note that execution times change with every job, and they
are unknown before the job’s completion. Therefore, at any
moment, the resource demand can only be predicted.

We consider that the employed resource manager con-
trols the system by adjusting job release rates and, thus,
controlling the resource demand.

III. Problem Formulation

We consider any task set Λ and a resource manager whose
job is to keep the resource demand uD = 1 by adjusting
task rates. Our goal is to model the resource demand, the
behavior of the real-time system and resource manager
in order to determine conditions under which the whole
system is stable. By stability we mean that the resource
demand in the system is bounded and job response times
do not grow infinitely.

IV. System Modeling

In loose terms, the model of our system can be depicted as
in Figure 2. While the tasks and the resource manager run
on the same CPU, from the modeling perspective the tasks
form the plant, and the resource manager is the controller
controlling the resource demand of the plant by means of
adjusting task rates.

1if a queue has 5 jobs in it, and one was half executed, then we
consider the sum of execution times for the remaining 4.5 jobs

2a jobs period is the inverse of its rate.

S
ch

e
d
u
le

r

CPU

τ3

q3

τ1

q1

τ2

q2 [time]

[time]

[time]h
t[k−1] t[k]

Cprevious Ccurrent

t[k−1]

τ3

τ1

τ2

Figure 1. Resource demand in the system, during time
interval h.

uD

Plant
ρ1

ρ2

ρ3

τ1

τ2

τ3R
e
so

u
rc

e
M

a
n
a
g
e
r

CPU

Figure 2. A system is
seen as a control loop, where
the resource manager con-
trols the resource demand
by adjusting task rates. The
tasks constitute the con-
trolled plant.

[time]

[time]

[time]

h
t[k] t[k+1]

[time]

ρi[k]
φi[k]

ρi[k+1]
ci[k+1]

φi[k+1]

τ1

τ2

τ3

τn

Figure 3. Parameters related to the resource
demand, and the state of the system.

A. Modeling of the Real-Time System

When modeling a system, the goal is to know at each
moment in time t[k] what will the system’s state be, in the
future. This is a discrete-time dynamical system where the
control is done at discrete moments in time t[k]. We model
our real-time system (the ensemble of resource manager
and plant) as a system of difference equations:

F (x[k+1], x[k], · · ·) = 0 (1)

where x[k+1] and x[k] are the state vectors of the system
at the future (t[k+1]) and the current (t[k]) moments of
time, and F is some function of the state vectors and
possibly other parameters (e.g. noise). In our real-time
system, the state is represented by the resource demand
uD and, therefore, the state vector will be comprised of
the elements that determine it: queue sizes, task rates, and
execution times.

Figure 3 presents a system with n tasks, and shows
how its state evolves between two successive actuations
of the resource manager (controller). In order to control
the resource demand during the time interval [t[k], t[k+1]],
at time instance t[k], the controller will choose new task
rates ρi[k+1], based on queue sizes (qi[k] – not shown in this
figure) and future average job execution times (ci[k+1]). The
future average execution times are unknown and must be
predicted based on previously finished jobs.

There are several observations to be made. It can happen
that some tasks (such as τ1) release jobs precisely at
the time instance at which the controller runs, and have
periods (inverse of the rates) that are multiple of the time
interval between the two actuations. However, in general,
this is not the case and new jobs will be released with an
offset (φi[k]) from the start of the time interval (t[k]) and
do not typically end at the end of the time interval. Also
there may be tasks (such as τn) which will not release any
job during this interval.

In Sections V and VI we will develope concrete models
of our system.

B. Stability of Discrete-Time Dynamical Systems

A discrete-time dynamical system is a tuple {T ,X ,A,S}
where T = {t[k]|k ∈ N, t[k] > t[k−1] > · · · > t[0] = 0} is the
set of actuation times, X is the state space, A ⊂ X is the
set of all initial states of the system (x[0]), and S is the set

of all trajectories (all solutions of (1) : x[k] = p(t[k], x[0])
where t[k] ∈ T and x[0] ∈ A). Also the state space must
be a metric space (X , d), where d : X × X → R+ is a
distance function between two state vectors in X . We use
the notation d(x,M) = infy∈M{d(x, y)} to describe the
distance from a state to a set M.

A dynamical system’s state is desired to belong to a
preselected bounded set of pointsM⊂ A. Because systems
are typically subject to noises, this condition does not hold.
Under this premises a dynamical system is said to be stable
if its state remains “close” to M under all noise patterns
and initial conditions.

For our real-time system, we will consider the notion of
stability in the sense of Lagrange [17], where a system is
stable if all trajectories starting from states within a ball
of size δ aroundM are bounded in a larger ball of size γ(δ)
around M (x0 ∈ B(δ) ⇒ p(t[k], x[0]) ≤ B(γ(δ))). To test
for stability, we shall use the following theorem described
in [17]:

Theorem 1 (uniform boundedness): Let us consider
the above described dynamical system. Assume that there
exist a function V : X → R+ and two strictly increasing
functions ϕ1, ϕ2 : R+ → R+ with limr→∞ ϕi(r) = ∞, i =
1, 2, such that

ϕ1(d(x,M)) ≤ V (x) ≤ ϕ2(d(x,M)) (2)

for all x ∈ X whenever d(x,M) ≥ Ω, where Ω is a positive
constant.

Also, assume that V (p(t[k], x[0])) is non-increasing for all
trajectories p(t[k], x[0]) ∈ S whenever d(p(t[k], x[0]),M) ≥
Ω. Assume that there exists a constant Ψ > 0 such that
d(p(t[k+1], x[0]),M) ≤ Ψ whenever d(p(t[k], x[0]),M) ≤ Ω.

If the above assumptions hold, then the system is uni-
formly bounded. 3

Any system that satisfies the above theorem is stable,
and this means that its state becomes trapped in the ball of
size max

{
Ω,Ψ

}
around the setM, after a certain amount

of time (possibly infinite), regardless of the initial state x[0] .
In practice however, only initial states within Ω will be of
relevance to us, making max

{
Ω,Ψ

}
a performance metric

for our system.

V. Constrained Model of the Real-Time System

In this section we develop a simple but constrained model
for our system and determine conditions under which it is
stable. In Section VI we will derive a generalized model of
the system.

A. Assumptions

The constrained model is based on the assumption that
the time interval between two successive actuations of the
controller (the controller’s period) h = t[k+1]− t[k] is much
larger then the largest possible offset in the system:

φmax < max
i∈I

{ 1
ρmin
i

}
� h

Since h is large, we can neglect offsets in this model.
Systems described by this model will be called constrained
systems.

B. Model

We will start to model our systems from the definition
of resource demand (Section II-C). By disregarding task
offsets, the formula is:

uD[k] =
1
h

(∑
i∈I

ci[k] · qi[k−1]︸ ︷︷ ︸
Cprevious

+
∑
i∈I

ci[k] · ρi[k] · h︸ ︷︷ ︸
Ccurrent

)
(3)

The first sum represents the accumulation of execution
times from previously released, but not executed (queued
up) jobs. The second sum represents the accumulation
of execution times from jobs that are released during
[t[k−1], t[k]]. We note that ci[k] represents the average ex-
ecution time of the jobs of τi that were executed during
[t[k−1], t[k]]. The resource demand uD[k] corresponds to an
amount of execution time, that needs to be executed by
the end of the period. If this amount is less than h, then
it will be executed entirely, otherwise only h out of it will
get executed.

As we can observe from Equation (3), the model of our
system must contain states for the queue sizes, execution
times, and rates. We will model the evolution of the queue
sizes implicitly, by considering them together, in terms of
an amount of execution time. We will then have:∑

i∈I
ci[k+1] · qi[k+1] = h ·max

{
0, uD[k+1] − 1

}
(4a)

qp
[k+1] = q[k] (4b)

We use the notation q[k] for the vector of queue sizes, and
qp

[k] for the vector of queue sizes at the previous time
instance. Equation (4b) is needed because we wish to make
the resource demand a function of the state of the system
uD[k]

not= uD(x[k]). Observe that queue sizes are modeled as
being continuous values. This is because the jobs at the top
of the queues are partially executed and in our model we
account for that (see Section II-C).

Next, we model the average execution time of the jobs
that will be executed in the current interval of time

[t[k], t[k+1]], as being some function fp : C → C of the
average execution time in the previous time interval plus
some noise ν. The function fp is then a prediction function,
and ν is a random variable which is unknown:

c[k+1] = fp(c[k]) + ν[k] (4c)

Observe that, irrespective of the noise, c[k+1] ∈ C holds.
Equations (4a) to (4c) represent the model of the plant. We
complete the model of the system with the model of the
controller. The controller’s job is to compute new rates:

ρ[k+1] = fc(x[k]) (5)

Here we only model the controller in a general way, as being
any function of the state of the system. The state vector of
the system is:

x[k] =
(
q[k], q

p
[k], c[k], ρ[k]

)T
.

Equations (4a) to (4c), and (5) represent the model of
our real-time system. Our model is a model of a discrete-
time dynamical system {T ,X ,A,S} where T is defined as
in Section IV-B, X = Rn+×Rn+×C×P, A = X and S is the
set of all solutions of equations (4a) to (4c), and (5). We
make the observation that X ⊂ R4n where n is the number
of tasks in the system and, therefore, is a metric space for
the usual distances. Throughout the rest of this paper we
will use the Chebyshev distance [18]:

d(x, y) = sup
i=1,4n

{|xi − yi|}

The above model describes a class of systems, namely the
systems generated by all combinations of existing fp and
fc functions, and all allowable schedulers (see Section II),
for all instances of applications Λ. Our goal is to determine
the subclass of controllers that leads to stable systems.

C. Stability

In this section we want to determine conditions that our
controller must satisfy, in order for the system to be
stable (satisfy Theorem 1). We first define the notions
involved in Theorem 1 and then we determine the stability
conditions.

We define the set of states M as being all the states
where uD = 1. The following lemma determines that M is
bounded.

Lemma 1: The set Mα = {x ∈ X |uD(x) = α} is
bounded, where α > 0 is an arbitrary constant. 3

Proof: From equation (4a), (4b) and (3) we have∑
i∈I

ci · qp
i = h

(
α−

∑
i∈I

ci · ρi
)

and it quickly follows that the largest distance between two
states in Mα is bounded by

dα = max
j∈I
{|qαj − 0|, |qp

j
α − 0|, |cmax

j − cmin
j |, |ρmax

j − ρmin
j |}

ϕ1(d) =

8<:
minj∈I{cmin

j }
h

· d+
P
i∈I c

min
i · ρmin

i − 1, if d ≥ Ω > d1“
minj∈I{cmin

j }
h

+ 1
Ω

`P
i∈I c

min
i · ρmin

i − 1
´”
· d, otherwise

(6)

V (x) = max

0,
X
i∈I

cmax
i

`qp
i + dqp

i + 1

h
+ ρi + dρi

´
− 1

ff
≤ αd

h

X
i∈I

cmax
i + max

0,
X
i∈I

cmax
i

`qp
i
αd + 1

h
+ ρmax

i

´
− 1

ff
, ∀ x ∈Mαd

(7)

where:
qp
j
α =

h

cmin
j

(
α−

∑
i∈I

cmin
i · ρmin

i

)
,

and
qαj =

h

cmin
j

·max
{

0, α− 1
}
, ∀j ∈ I �

Since M = M1, M is bounded as well.
The following theorem gives a necessary condition for a

system to be stable.

Theorem 2: A necessary condition for a system to be
stable is: ∑

i∈I
cmax
i · ρmin

i ≤ 1 (8)
3

Proof: We prove this by contradiction. We allow Equa-
tion (8) not to hold and we will show that this leads to
an unstable system. If equation (8) does not hold, then we
have: ∑

i∈I
cmax
i · ρmin

i − 1 = β > 0

In the case that ci[k] = cmax
i , even if the controller sets

the smallest rates (ρ[k] = ρmin), for all k ≥ 0, we have from
above, and from equations (3), and (4a) that:

uD[k+1] − 1 = uD[k] − 1 + β ⇒ uD[k+1] = uD[0] + (k + 1) · β
and thus limk→∞ uD[k] =∞. �

Theorem 2 implies that, in order to achieve stability,
there must exist at least a rate vector (the rate vector
consisting of the smallest rates for each task), which the
controller can choose such that, when jobs have worst case
execution times, the contribution to resource demand in
each time interval is not more than 1. Otherwise, the queue
sizes will continue growing irrespective of the controller
and scheduler used, and the resource demand will be
unbounded. For the rest of the paper, we will only consider
systems which satisfy Theorem 2. We continue by defining
the set:

Γ? =
{
ρ∗ ∈ P

∣∣∣ ∑
i∈I

cmax
i · ρi∗ ≤ 1

}
6= ∅ (9)

which is the set of all rate vectors that, if chosen, guarantee
that job queue sizes do not continue growing, irrespective
of the execution times of the jobs. If the system satisfies
Theorem 2, Γ? contains at least one rate vector.

Next, we determine sufficient conditions for the con-
troller, in order to render the system stable.

Theorem 3: For any constrained system that satisfies
Theorem 2 and for any uDΩ > 1 a sufficient stability
condition is that its controller satisfies:

ρ[k+1] ∈
{

Γ?, if uD[k] ≥ uDΩ
P, otherwise

(10)
3

Proof: Ultimately, stability means that queue sizes (q and
qp) have upper bounds. We first proceed on defining the
function V (x[k]) (noted V[k] henceforward) and finding the
two function ϕ1(d(x[k] ,M)) and ϕ2(d(x[k] ,M)) such that
equation (2) holds. By inspiring ourselves from the model
of queue sizes (equations (16a) and (16d)), and considering
the worst-case noises in the system (noises are due to
inaccuracies in predicting execution times and in measuring
queues), we define V[k] as:

V[k] = max

0,

1

h

X
i∈I

cmax
i · (qp

i[k] + 1) +
X
i∈I

cmax
i · ρi[k] − 1

ff
(11)

To determine ϕ1 we observe that V[k] ≥ uD[k]−1. We then
construct the set

VαV
=
{
x ∈ X ∣∣uD(x)− 1 = αV

}
= M1+αV

where αV > 0 is an arbitrary constant. We observe that a
bound on the largest distance between a state in VαV

and
a state in M is given by d1+αV , and that:

d1+αV =
h

minj∈I{cmin
j }

(
αV + 1−

∑
i∈I

cmin
i · ρmin

i

)
for all d1+αV ≥ d1. We can also say that d(x[k] ,M) ≤
d1+αV and V (x) ≥ αV , ∀x ∈ VαV

. Since αV was chosen ar-
bitrarily and the above expression of d1+αV , as a function of
αV , is invertible, we obtain ϕ1(d(x[k] ,M)) in equation (6)
which satisfies the conditions in Theorem 1.

To determine ϕ2 we construct the set of all states at a
distance αd or less from M:

Mαd = {x ∈ X|d(x,M) ≤ αd} = {x ∈ X|d(x, y) = αd, ∀y ∈M}

where αd > 0 is an arbitrary constant. We than determine
which of the states in Mαd

has the highest value of V . If

y =
(
q, qp, c, ρ

)T
∈M and

x =
(
q + dq, qp + dqp, c+ dc, ρ+ dρ

)T
∈Md

then we have inequality (7) and, since αd was chosen
arbitrarily, we obtain ϕ2(d(x,M)) as being the right half
of the inequality (7).

V[k+1] ≤
∑
i∈I

cmax
i

qi[k] + 1
h

=
∑
i∈I

cmax
i

(qp
i[k] + 1

h
+ ρi[k]

)− 1
h

∑
i∈I

cmax
i · ei[k] ≤ V[k] (12)

To determine Ω, we construct the set VuD
Ω−1 and we

observe that Ω = du
D
Ω . It seems that we can only choose

uDΩ sufficiently large such that du
D
Ω ≥ d1, however in

practice, we can build an equivalent model of the system by
applying a linear transformation to the state space, where
this condition always holds, thus this is a non-issue.

Next, we proceed on showing that V[k+1] ≤ V[k],
∀d(x[k] ,M) ≥ Ω. In this case, we have from equations (4a),
(4b), (10), and (11):

V[k+1] = max
{

0,
∑
i∈I

cmax
i

qi[k] + 1
h

+
∑
i∈I

cmax
i · ρi[k+1] − 1︸ ︷︷ ︸

≤0

}

When the value inside the max function is larger than
0, we observe from equations (4a) and (3) that qi[k] =
qp
i[k] + ρi[k] · h − ei[k], where ei[k] ≥ 0 is the number of

jobs of τi executed during the time interval [t[k−1], t[k]], and
1
h

∑
i∈I ci[k] · ei[k] = 1. ei[k], for all i ∈ I depend, amongst

others, on the scheduler used, and are typically unknown.
Regardless of their value, however, inequation (12) holds.

To complete the proof, we must show that there exists a
value Ψ > 0 such that for all states with d(x[k] ,M) ≤ Ω we
have d(x[k+1] ,M) ≤ Ψ. Since qi[k] ≤ Ω, ci[k] ≤ cmax

i , and
ρi[k] ≤ ρmax

i , ∀i ∈ I, we then have

uD[k+1] ≤
∑
i∈I

cmax
i

(Ω + 1
h

+ ρmax
i

)
= uDΨ (13)

All subsequencent states x
[k′] , k

′ ≥ k + 1 will have uD[k′] ≤
V[k+1] + 1 if uDΨ ≥ uDΩ or, otherwise uD[k′] ≤ uDΩ . Then we
have Ψ = ϕ−1

2 (max{uDΨ , uDΩ }).
With the above, the proof of Theorem 3 is complete. �

Any system that satisfies the above theorem is stable.
Observe that the condition (10) is a condition for the
controller used in the system. As long as the task execution
times and rates are such that uD[k] < uDΩ , the controller
is free to chose any rate ρi[k+1] ∈ [ρmin

i , ρmax
i]. The

controller will choose rates according to the particular
control goals requested by the application (e.g. keeping
processor utilization high, providing QoS guarantees, etc.).
Once uD[k] ≥ uDΩ (which means that the system reached a
certain critical level of overload), the controller will have
to choose rate vectors from the set Γ?, and keep doing so
until a time instance t[k′], when uD[k′] < uDΩ .

VI. General Model of the Real-Time System

In this section we extend the previous model of a real-time
system, by considering task offsets. This will allow us to
consider controller periods which are arbitrary, therefore
removing the limitation of the previous model (Section V).

Systems described according to this model will be called
general systems.

This section is organized as the previous one: we start
by giving a model of the system and, then, we analyze its
stability.

A. Model

We first describe the resource request :

uR[k] =
∑
i∈I

ci[k] ·
qp
i[k] +

⌈
ρi[k] ·max{0, h− φi[k−1]}

⌉
h

(14)

According with the definition in Section II-C, the resource
demand is:

uD[k] = uR[k] −
1
h
·
∑
i∈I

ci[k] · ρi[k] · φi[k] (15)

The resource request uR[k] represents the amount of execu-
tion times of the queued-up jobs and jobs released during
h, while uD[k] represents only the part of uR[k] that should
actually be executed during h. For the constrained model in
Section V, uD[k] = uR[k], since we ignore offsets. The following
equation models the behavior of the queues:∑

i∈I
ci[k+1] · qi[k+1] = h ·max{0, uR[k+1] − 1} (16a)

This is slightly different from Section V-B because in this
case the accumulation of execution time is given by h ·uR[k].
The most notable difference compared to the constrained
model, however, is the addition of offsets to the state:

φi[k+1] = φi[k]+
1

ρi[k+1]

⌈
ρi[k+1]·max{0, h−φi[k]}

⌉−h (16b)

for each task in the system. The rest of the model is:

c[k+1] = fp(ci[k]) + ν[k] (16c)
qp

[k+1] = q[k] (16d)

φp
[k+1] = φ[k] (16e)

Equations (16a) to (16e) represent the model of the
plant. This model has states similar to the constrained
model presented in Section V-B, but is augmented with new
states corresponding to offsets (equations (16b)). Equa-
tions (16d) and (16e) are part of the model because we
want to make the resource demand a function of the state,
so that we can control it. We assume the same model for
the controller as in Equation (5). The general model of a
real-time system is, thus, given by equations (16a) to (16e)
and (5).

Since the number of states has grown, the state space is
larger but is again of the form Rn and we shall again use
the Chebyshev norm. Also note that offsets are bounded
by φi ∈ [0, 1/ρmax

i], ∀i ∈ I.

V[k] =

max

{
0,
∑
i∈I c

max
i

qp
i[k]+1+

⌈
ρi[k]·max{0,h−φp

i[k]}
⌉

+1−ρi[k]·φi[k]

h − 1
}

, if ρ[k] ∈ Γ?

max
{

0,
∑
i∈I c

max
i

qp
i[k]+1+

⌈
ρi[k]·max{0,h−φp

i[k]}
⌉

+1−ρi[k]·φi[k]

h +
∑
i∈I c

max
i − 1

}
, otherwise.

=

max

{
0, 1

h

∑
i∈I c

max
i

(
qp
i[k] + 2

)
+
∑
i∈I c

max
i · ρi[k] − 1− 1

h

∑
i∈I c

max
i · ρi[k] · φp

i[k]

}
, if ρ[k] ∈ Γ?

max
{

0, 1
h

∑
i∈I c

max
i

(
qp
i[k] + 3

)
+
∑
i∈I c

max
i · ρi[k] − 1− 1

h

∑
i∈I c

max
i · ρi[k] · φp

i[k]

}
, otherwise.

(17)

(18)

B. Stability

Theorem 4: For any general system that satisfies Theo-
rem 2 and for any uDΩ > 1, a sufficient stability condition
is that its controller satisfies:

ρ[k+1] ∈
{

Γ?, if uD[k] ≥ uDΩ
P, otherwise

(19)

ρi[k+1] ≤ ρi[k] if uD[k] ≥ uDΩ , ∀i ∈ I (20)
3

Proof: Compared with the constrained model, we have
and extra condition that the controller must satisfy (equa-
tion (20)). We want to show that the conditions are suffi-
cient to make q[k] and qp

[k] bounded.
We define the function V as in equation (17). At any

moment of time t[k], the V function represents the accu-
mulation of execution times, that should have been exe-
cuted by t[k]

3. Since in each queue, we consider the whole
execution time of all released jobs, we must remove the
part of each job that should be executed after the end
of the resource manager’s period (this done by the term
− 1
h

∑
i∈I c

max
i · ρi[k] · φp

i[k]).
In Figure 4 we consider a system of two tasks, and we

consider that uD[k′] ≥ uDΩ , ∀k′ ≥ k. At each moment in
time t[k] new rates are computed, but jobs are released
with this rates only after a certain offset (marked by the
arrows in the figure). From condition (19) we are certain
that during the intervals of time T3, T5, T7, T9, . . . the
accumulation of execution times added in the system is less
than the size of the respective intervals, therefore the total
accumulation drops. Condition (20) ensures that the same
happens over the transition intervals T4, T6, T8, T10, . . . The
accumulation of execution times from the intervals T1 and
T2 may be larger than T1 + T2 because ρ[k] /∈ Γ?, however,
it is bounded by

∑
i∈I c

max
i . This explains the two cases in

the definition of V . The other constants that appear are
there so that uD[k] − 1 ≤ uR[k] − 1 ≤ V[k] holds. Otherwise,
since the V function is very similar to the one defined in
equation (11), all the steps of this proof are very similar
with the proof of Theorem 3 and in the interest of brevity
we shall not discuss them here.

3Strictly speaking, V represents a load value. To obtain the accu-
mulation of execution times, one must multiply the function with h.

t[k] t[k+1] t[k+2] t[k+3] t[k+4]

[time]

[time]

T1 T2
T3 T4 T7 T8 T9

T6 T10
T5

τ1
τ2

Figure 4. Behaviour of a system with two tasks, when uD
[k′] ≥ uDΩ ,

∀k′ ≥ k.

For determining Ψ, we use a similar reasoning as in
Theorem 3 and we obtain that:

uD[k+1] ≤ uR[k+1] ≤
∑
i∈I

cmax
i

(Ω + 1
h

+ ρmax
i

)
= uDΨ (21)

Thus, any general system satisfying the conditions in The-
orem 4 is stable. �

We observe that for the general model, the stability
criterion is more restrictive than for the constrained model.
This is because the general model considers in more depth
the transition between different rates, and more conditions
are needed to ensure that this transition is done safely. Also,
for both models, we have required that V (xk+1) ≤ V (xk)
holds. This means that if the starting point of the system
is outside Ω, the system may never reach Ω within a
finite amount of time. This is not a problem in practice,
because systems usually start with empty queues, thus from
within Ω. However, the Γ? can easily be modified such that
stronger assumption for V hold.

VII. Worst Case Response Time Bound

For any controller that satisfies the stability condition in
Theorem 4 there exists a finite response time for each
task. The actual value of the response time depends on
the concrete scheduling policy and the controller (fc) used
in the system. In this paper we will develop bounds on
the worst case response time for tasks considering an EDF
scheduler [15] and two classes of controllers. The bounds
developed here are different from the well known worst
case response times derived in literature for EDF, since
our system allows overload situations. The EDF scheduler
considers as a working deadline for each job τij , the sum
of its release time and 1/ρij , where ρij is the current job’s
rate.

For the following analysis, we will consider that the
system always starts from a state where the queues are

τ1

τ2

τi

[time]

[time]

[time]

σD
[?]:

t[?]

τn
[time]

τ2[?]

τ1[?] τ1[?+1]

τi[?]

τn[?]

Figure 5. Accumulation of execution times

empty.
A =

{
x[0] ∈ X

∣∣q = 0
}

(22)

In this case d(x[0] ,M) ≤ d1 ≤ Ω, ∀x ∈ A holds. According
to equations (13) and (21) (for the constrained and general
model), uDΨ is the highest resource demand (and resource
request) ever achieved in the system. This result is impor-
tant, since it allows us to bound the overload in the system.

At a certain moment in time t[?], a new job of a task τj
is released and we wish to compute its response time. We
will denote this job with τj[?]. In the system, at t[?] there
already exists a certain number of un-executed jobs and
their total accumulation of execution times is:

σD[?] =
∑
i∈I

ci[?] · qi[?]
where qi[?], ∀i ∈ I are the queue sizes of each task and
ci[?] are the average execution time for the jobs in the
queues (these averages are unknown, but c[?] ∈ C). Figure 5
illustrates this situation for a system of n tasks. All the jobs
depicted in the figure are not executed at the moment t[?],
when τj[?] is released. The dark shaded jobs represent the
last released jobs of the tasks, before the moment t[?]. The
light shaded jobs have been released before the dark shaded
ones, and their deadlines are guaranteed to be prior to t[?].
σD[?] is the sum of execution times of the light and dark
shaded jobs. Since in overload situations EDF executes jobs
non-preemptively, in the order of their working deadline, all
light colored jobs in the figure will be executed before τj[?],
since their deadlines are before t[?]. The execution times of
these jobs represent

∑
i∈I ci[?] · (qi[?] − 1) out of σD[?]. From

the rest of the jobs considered in σD[?] (the dark colored
ones), the ones with deadlines smaller than that of τj[?]
will be executed before it (τ1[?] and τ2[?] in the figure), and
the rest will be executed after τj[?] (τn[?] in the figure).
Also there may exist other, not yet released jobs, that have
their deadlines prior to the deadline of τj[?] (e.g. τ1[?+1]

in Figure 5) which also need to be considered. Taking all
of this into account, and considering that ρi[?], ∀i ∈ I are
the release rates of all jobs, the response time of τj[?] is:

rj[?] =
X
i∈I

ci[?] · (qi[?] − 1) +
X
i∈I

ci[?] ·
j 1
ρj[?]

+ 1
ρi[?]
− φi[?]

1
ρi[?]

k
(23)

The following theorem gives an upper bound on the
response time of the tasks in the system.

Theorem 5: An upper bound on the worst-case response
time of the task τj in the system can be computed using

the following equation:

rmax
j =

1

ρmin
j

+ h · (uRmax − 1) +
X
i∈I

cmax
i ·

jρmax
i

ρmin
j

k
(24)

3

Proof: The proof follows from equation (23) by observing
that:

1) σD[?] = h·(uR[?]−1) ≤ h·(uRmax−1) (from equation (16a),
since the system is overloaded);

2) When uRmax occurs at time instance t[?], the last re-
leased job of task τj is released with at most 1/ρmin

j

before t[?]. �

Up to this point, we have concerned ourselves with the
scheduler used, and we have determined a formula for the
worst-case response time for EDF assuming knowledge of
the largest resource request in the system (uRmax). One
should note that the largest resource request in the system
typically depends on the scheduler, the controller (fc) and
the prediction of future execution times (fp) used in the
system. The value computed in equations (21) is an upper
bound on the largest resource request, since it is indepen-
dent on these parameters. By adding extra constraints on
the scheduler, the controller, or the prediction function, one
may be able to tighten this bound. We will now consider
two classes of controllers for which we will determine uRmax.
The two classes of controllers are:

C1 =

(
fc : X → P

˛̨̨
ρ[k+1] ∈

(
{ρmin}, if Γα[k] = ∅
P, otherwise

)
(27)

C2 =

(
fc : X → P

˛̨̨
ρ[k+1] ∈

(
{ρmin}, if Γα[k] = ∅
Γα[k], otherwise

)
(28)

where Γα[k] is defined as in equation (25) and α > 1 is
an arbitrary constant (φ

p
is obtained from equation (16b),

according with the chosen ρ). Γα[k] is the set of all rate
vectors which will lead to uD[k+1] = α, if the future average
execution times c[k+1] are equal to the predicted ones cp[k].
To observe this, substitute uR[k] from equation (14) into
equation (15) and rewrite it for uD[k+1] instead of uD[k].

The two classes of controllers have the following meaning:
C2 always tries to take decisions such that uD is kept very
aggressively around α. When uD[k] 6= α, the resource demand
will be brought back to α as soon as possible (uD[k+1] = α
if the prediction is correct). C1 is a class of more general
controllers, with the same goal. We first show that this
classes of controllers lead to stable systems.

Lemma 2: Any system for which fc ∈ C1 is stable and
C2 ⊂ C1. 3

Proof: Since Γα[k] ⊂ P and {ρmin} ⊂ Γ?, C2 ⊂ C1 follows
directly. Also condition (20) is satisfied.

We will now show that for any system having fc ∈ C1,
fc also satisfies condition (19) for a certain uDΩ . We want
to show that there exists a finite uDΩ such that, when-
ever uD[k] ≥ uDΩ , it also happens that Γα[k] = ∅. We can
then say that uDΩ is larger than the largest value of uD[k]

for which Γα[k] 6= ∅. From equation (16a) we have that
1
h

∑
i∈I ci[k] · qi[k] = uR[k]−1 when the system is overloaded.

Γα[k] =
{
ρ ∈ P

∣∣∣ ∑
i∈I

cpi[k] ·
qp
i[k] +

⌈
ρi ·max{0, h− φi[k]}

⌉− ρi · φpi[k]

h
= α, cp[k] = fp(c[k])

}
(25)

uD[k] ≤ uR[k] ≤ V[k] + 1 =
∑
i∈I

cmax
i

(qi[k−1] + 1
h

+ ρi[k]

)
=
∑
i∈I

cmax
i

cpi[k−1]

· ui[k] ≤ α ·max
i∈I

{cmax
i

cmin
i

}
(26)

From this and (25) we have that the largest value of uD[k]

happens when c[k] = cmax and fp(c[k]) = cmin and is:

uD[k] ≤ uR[k] ≤ V[k] + 1 =
1
h

∑
i∈I

cmax
i · q∗

where q∗ is obtained by solving the following linear pro-
gramming problem:

maximize
X
i∈I

cmax
i · qi subject to

qi ≥ 0, (29)

1

h
·
X
i∈I

cmin
i · qi +

X
i∈I

cmin
i · ρmin

i = α

where that last constraint is that Γα[k] 6= ∅. Since uDΩ exists,
the proof follows. �

Lemma 3: For any system {T ,X ,A,S} with fc ∈ C1 and
A defined as in equation (22), the largest possible value of
the resource request given by

uRmax =
∑
i∈I

cmax
i

(q∗i + 1
h

+ ρmax
i

)
(30)

where q∗ is the solution of the linear programming prob-
lem (29). 3

Proof: For any state for which Γα[k] 6= ∅, uD[k] ≤ uR[k] ≤ uRmax

since c[k] ≤ cmax and ρ[k] ≤ ρmax, ∀i ∈ I.
For any state for which Γα[k] = ∅ and Γα[k−1] 6= ∅, we

have that the system is overloading (uD[k] ≥ 1) and therefore
uD[k] ≤ uR[k] ≤ V[k] + 1 ≤ V[k−1] + 1 ≤ uRmax.

For any state for which Γα[k] = ∅ and Γα[k−1] = ∅, there
exists a previous time moment t[k−p] ≤ t[k−1] such that
either Γα[k−p] 6= ∅ when uD[k] ≤ uR[k] ≤ V[k−p] + 1; or
t[k−p] = 1 and Γα[k−p] = ∅ when uD[k] ≤ uR[k] ≤ V[1] + 1 =∑
i∈I c

max
i · ρmax

i (since qp
[1] = q[0] = 0). In both cases

uD[k] ≤ uR[k] ≤ uRmax. From the above cases, since k is
arbitrary, the proof follows. �

Lemma 4: For any {T ,X ,A,S} with fc ∈ C2 and A
defined as in equation (22), the largest possible value of
the resource request is given by

uRmax = max
{
α ·max

i∈I

{cmax
i

cmin
i

}
,
∑
i∈I

cmax
i · ρmax

i

}
(31)

3

Proof: We have two cases to analyze. When Γα[k−1] 6= ∅
then we have from equations (25) and (28):∑

i∈I
cpi[k−1]

(qi[k−1]

h
+ ρi[k]

)
= α

and there exist the quantities ui[k] ∈ [0, α] with∑
i∈I ui[k] = α such that:

ui[k] = cpi[k−1]

(qi[k−1]

h
+ ρi[k]

)
From the above, the inequality (26) follows.

On the other hand, when Γα[k−1] = ∅, there must exist
a previous time instance t[k−p] ≤ t[k−1] with Γα[k−p+r] =
∅, ∀r = 0, p− 1. In this case there are two possibili-
ties: either t[k−p] = 1 when uD[k] ≤ uR[k] ≤ V[1] + 1 =∑
i∈I c

max
i · ρmax

i ; or there exists Γα[k−p−1] 6= ∅. In this
second case we have that uD[k] ≤ uR[k] ≤ V[k−p] + 1 and
inequality (26) applies. �

The bound on the worst case response time (for an
EDF scheduler) can be calculated using the equation (24)
where uRmax is computed according with equation (30) for
controllers in C1, and equation (31) for controllers in C2.
These results were determined considering that the system
is modeled using the general model. For the constrained
model, the classes of controllers C1 and C2 can also be
defined as in equations (27) and (28), where Γα[k] is:

Γα[k] =
n
ρ ∈ P

˛̨̨ X
i∈I

cpi[k]

`qi[k]

h
+ ρi

´
= α; cp[k] = fp(c[k])

o
(32)

By a similar reasoning, these classes of controllers can
also be shown to be stable, and their worst case resource
requests (uRmax = uDmax for the constrained model) are the
same as for C1 and C2 for the general model (equation (30)
for C1 and equation (31) for C2).

VIII. Discussion

In the previous sections we have developed models and sta-
bility conditions, first for a constrained system and then for
a general one. Obviously, eliminating the constraint on the
controller period is very important since it allows to adapt
controller rates to the particularities of the application and,
thus, to improve the quality of management. In order to
provide further insight, we will now compare the controllers
generated with the two models in terms of the bounds on
the worst case response time of the tasks. We will consider
the classes of controllers C1 and C2 for both models.

We will construct two test-cases, both consisting of two
tasks. The first is characterized by small variations of
execution times (cmax

i /cmin
i = 2) and rates (ρmax

i /ρmin
i = 2)

and the fact that the rates of both tasks have the same
order of magnitude. The second test-case will have large
variations (cmax

i /cmin
i = 10, ρmax

i /ρmin
i = 10) and the tasks

will have rates of different orders of magnitude.

Table I
Response times for our examples, considering three

different controller periods

Model Controller Example 1 Example 2
h rmax

1 rmax
2 h rmax

1 rmax
2

Constrained C1 20 48 53 50009120097050
C2 20 28 33 50004620052050

h rmax
1 rmax

2 h rmax
1 rmax

2

General

C1 4 19 24 10001975025600
C2 4 12 17 10001020016050
C1 2 15 20 100 3550 9400
C2 2 10 15 100 2100 7950

Example 1: We consider a task set Λ1 = {τ1, τ2}, where:

τ1 = {P1 = [0.5, 1],C1 = [0.5, 1]}
τ2 = {P2 = [0.25, 0.5],C2 = [1, 2]} 2

Example 2: We consider a task set Λ2 = {τ1, τ2} where:

τ1 = {P1 = [0.01, 0.1],C1 = [5, 50]}
τ2 = {P2 = [0.001, 0.01],C2 = [50, 500]} 2

For the constrained model, as explained in Section V-A,
the controller period must be much larger than the largest
task period in the system. Let us consider that this assump-
tion holds if h is no smaller than 5 times the largest task
period. For the general model this constraint disappears,
and we can choose smaller controller periods as well. In
Table I we present the response time bounds rmax

i for our
chosen examples, considering three controller periods h:

5 ·max
i∈I

{ 1
ρmin
i

}
; max

i∈I

{ 1
ρmin
i

}
; and min

i∈I

{ 1
ρmin
i

}
the first period is used for the constrained model, and the
following two for the general one.

We have two observations to make:

1) in both examples the class of more aggressive con-
trollers (C2) is able the control the system such that
response times reduce up to half when compared with
C1; this is due to the fact that C2 is more aggressive
in controlling the resource demand of the system.

2) in Example 1, the best performing controller (in terms
of response time) C2 with h = 2 leads to worst case
response times that are 21% (for τ1) and 28% (for τ2) of
the worst case response times of the worst performing
controller (C1 with h = 20). In the second example,
the performance gap is much more dramatic, and C2
with h = 100 leads to worst case response times that
are 2.3% and 8.2% of the worst case response times
of C1 with h = 5000. This is largely due to the fact
that for the worst performing controllers (modeled ac-
cording with the constrained model) the period of the
controller h must be much larger than the largest pe-
riod in the system (our assumption from Section V-A),
and in overloaded conditions, a task with high rate will
release a high number of jobs, during the interval h,

that will only queue up.
The general model removes this constraint and the con-

trollers for this model, can take advantage of much smaller
controller periods, in order to reduce response times by very
large amounts.

IX. Case Study of Three Resource Managers

In this section, we take three resource management policies,
presented in previous literature, and determine if they lead
to stable real-time systems. We will consider the QRAM
algorithm described in [1], and the corner-case and QoS
derivative algorithms described in [16].

The QRAM and corner-case algorithms work in similar
ways. They consider as a resource the processor utiliza-
tion and, when the control algorithms are executed, they
initially select task rates such that the perceived resource
demand (computed based on estimations of future job ex-
ecution times, and task queues) is minimum (ρmin). Then,
if resources are still available in the system, the algorithms
select tasks whose rates are increased until all available
resources are used. This tasks are selected such that the
value of some quality-of-service function is maximized. If no
resources are available, the new task rates are ρmin. From
this behavior we can observe that QRAM and corner-case
satisfy Theorem 4 and, therefore, these resource managers
lead to stable systems. More specifically, these resource
managers belong to the class C2.

The QoS derivative algorithm works in a different way.
At the beginning it determines the resource demand in the
system, assuming current rates. Then the manager solves
a convex optimization problem, whose goal is to select
new task rates such that some quality-of-service function is
maximized, with the constraint that the resource demand
with the new rates is equal with the amount of available
resources. If a feasible solution (a solution that satisfies
the constraint) exists, the system is stable. However, if the
constraint cannot be satisfied by any ρ ∈ P, it cannot be
demonstrated that the selected rates will satisfy Theorem 4.
A straight forward approach would be to test the solution
of the optimization to determine if it is feasible, and if not,
to select ρ ∈ Γ?. However, for the convex optimization to
find a feasible solution, it is required that the starting point
satisfies the constraint4 otherwise no feasible solution will
be found and, in practice, the straight forward approach
always sets rates in Γ?, which will keep the processor load
unnecessarily low.

Our solution is to modify the QoS derivative al-
gorithm to start from a feasible point (if one ex-
ists):
Input: ci[k], qi[k], ρi[k], h

1: /* here we assume that uD[k] is computed according to Equa-
tion (15) */

2: uDi ← 1
h
· ci[k] · qi[k] + ci[k] · ρi[k]

4In addition to this the Karush-Kuhn-Tucker matrix must be non-
singular at the starting point, but it can be shown that this condition
holds for any ρ ∈ P. See [19] Sec. 10.2 for an in depth treatment of
these conditions.

3: ∆u← u− uD[k]

4: while i < n and ∆u 6= 0 do
5: /* change ρi[k] to ρi∗ such that the absolute value of ∆u

is reduced */
6: ∆u← ∆u− ci[k] · ρi[k] + ci[k] · ρi∗
7: i← i+ 1
8: end while
9: ρ[k+1] ← QoS derivative(ρ∗)

10: return ρ[k+1]

The algorithm changes the initial rates to a new vector
ρ∗ (line 4− 8). The original manager is then called (line 9
in the algorithm) with this rate vector, as a starting point
If there are ρ ∈ P for which the constraint is satisfied,
then the algorithm has a feasible solution, otherwise, the
algorithm will set ρ[k+1] = ρmax when the system is under-
loading and ρ[k+1] = ρmin when the system is overloading.
From this behavior we can observe that the QoS derivative
resource manager, with the modification, is also stable and
belonging to C2. Also note that if quality-of-service is
not an issue, the above algorithm, with line 9 changed to
ρ[k+1] ← ρ∗ is also guaranteed to be stable and belonging
to C2.

X. Conclusions

In many real-time systems with large variations in exe-
cution times, it is important to regulate and manage the
utilization of system resources at runtime. An important
issue at design time is to verify that the real-time system
is stable when using a certain resource manager. Stability
means that the resource demand is bounded under all
runtime scenarios. We have developed a model for real-time
systems and used it to derive comprehensive conditions
that resource managers must comply with, in order to
render the system stable. For the derived models we also
derived bounds on the response times of tasks. We have
applied our results to existing resource managers to verify
their correctness in terms of stability.

References

[1] C. Lee, J. Lehoczky, R. Rajkumar, D. Siewiorek. “On Quality of
Service Optimization with Discrete QoS Options.” In proceedings
of Real-Time Technology and Applications Symposium, pp.276,
1999.

[2] G. C. Buttazo, G. Lipari, L. Albeni. “Elastic Task Model for
Adaptive Rate Control.” In Proceedings of the IEEE Real-Time
Systems Symposium, pp. 286, December 1998.

[3] G. C. Buttazo, L. Albeni. “Adaptive Workload Management
through Elastic Scheduling.” Journal of Real-Time Systems, vol.
23, pp. 7-24, July 2002.

[4] G. C. Buttazo, M. Velasco, P. Marti and G. Fohler. “Managing
Quality-of-Control Performance Under Overload Conditions.” In
Proceedings of the Euromicro Conference on Real-Time Systems,
pp. 53-60, July, 2004.

[5] M. Marioni, G. C. Buttazo. “ Elastic DVS Management in Pro-
cessors With Discrete Voltage/Frequency Modes.” IEEE Transac-
tions on Industrial Informatics, vol. 3, pp. 51-62, February, 2007.

[6] C. Lu, J. A. Stankovic, S. H. Son, G. Tao. “Feedback Control
Real-Time Scheduling: Framework, Modeling, and Algorithms.”
Real-Time Systems, vol. 23, pp. 85-126, 2002.

[7] L. Palopoli, T. Cucinotta, L. Marzario, G. Lipari. “AQuoSA –
adaptive quality of service architecture.” Journal of Software–
Practice and Experience, vol. 39, pp. 1-31, 2009.

[8] T. Cucinotta, L. Palopoli. “QoS Control for Pipelines of Tasks
Using Multiple Resources.” IEEE Transactions on Computers,
vol. 59, pp. 416-430, 2010.

[9] J. Combaz, J. C. Fernandez, J. Sifakis, L. Strus. “Symbolic Qual-
ity Control for Multimedia Applications.” Real-Time Systems,
vol. 40, pp. 1-43, October, 2008.

[10] X. Liu, X. Zhu, P. Padala, Z. Wang, S. Singhal. “Optimal Multi-
variate Control for Differentiated Services on a Shared Hosting
Platform.” In Proceedings of the Conference on Decision and
Control, pp. 3792-3799, December 2007.

[11] J. Yao, X. Liu, M. Yuan, Z. Gu. “Online Adaptive Utili-
zation Control for Real-Time Embedded Multiprocessor Sys-
tems.” In Proceedings of the International Conference on Hard-
ware/Software Codesign and System Synthesis, pp. 85-90, 2008.

[12] T. F. Abdelzaher, J. A. Stankovic, C. Lu, R. Zhang, Y. Lu.“Feed-
back performance Control in Software Services – Using a Control-
Theoretic Approach to Achieve Quality of Service Guarantees.”
IEEE Control Systems Magazine, vol. 23, pp. 74-90, June 2003.

[13] A. Cervin, J. Eker, B. Bernhardsson, K. E. Årzén. “Feedback-
Feedforward Scheduling of Control Tasks.” Real-Time Systems,
vol. 23, pp. 25-53, July, 2002.

[14] A. Cervin, J. Eker. “The Control Server: A Computational Model
for Real-Time Control Tasks.”Proceedings of the 15th Euromicro
Conference on Real-Time Systems, July 2003.

[15] C. L. Liu, J. W. Layland. “Scheduling algorithms for multipro-
gramming in hard-real-time environment.” Journal of ACM, pp.
40-61, 1973.

[16] S. Rafiliu, P. Eles, and Z. Peng. “Low Overhead Dynamic QoS
Optimization Under Variable Execution Times.” Proceedings of
16th IEEE Embedded and Real-Time computing Systems and
Applications (RTCSA), pp. 293-303, 2010.

[17] A. N. Michel, L. Hou, D. Liu. “Stability of Dynamical Systems:
Continuous, Discontinuous, and Discrete Systems.” Birkhäuser
Boston, 2008.

[18] E. Kreyszing. “Introduction to Functional Analysis with Applica-
tions.” John Wiley & Sons., Inc, 1989.

[19] S. Boyd, L. Vandenberghe. “Convex Optimization.” Cambridge
University Press, 2008.

