
A Simulation Methodology for Worst-Case Response Time
Estimation of Distributed Real-Time Systems

Soheil Samii, Sergiu Rafiliu, Petru Eles, Zebo Peng
Department of Computer and Information Science

Linköpings universitet, Sweden
{sohsa,serra,petel,zpe}@ida.liu.se

Abstract

In this paper, we propose a simulation-based methodology
for worst-case response time estimation of distributed real-
time systems. Schedulability analysis produces pessimistic
upper bounds on process response times. Consequently, such
an analysis can lead to overdesigned systems resulting in un-
necessarily increased costs. Simulations, if well conducted,
can lead to tight lower bounds on worst-case response times,
which can be an essential input at design time. Moreover,
such a simulation methodology is very important in situa-
tions when the running application or the underlying plat-
form is such that no formal timing analysis is available.
Another important application of the proposed simulation
environment is the validation of formal analysis approaches,
by estimating their degree of pessimism. We have per-
formed such an estimation of pessimism for two response-
time analysis approaches for distributed embedded systems
based on two of the most important automotive communi-
cation protocols: CAN and FlexRay.

1. Introduction and Related Prior Work
Many real-time applications are nowadays implemented on
distributed embedded systems comprising a set of commu-
nicating computation nodes interconnected in a network.
Typically, and particularly in automotive embedded sys-
tems, the network consists of one or several buses that
connect the nodes together. For real-time applications,
worst-case behavior is often of interest. Therefore, the sys-
tem must be analyzed—considering worst-case execution
scenarios—to determine whether or not requirements are
met. Researchers in the real-time systems community have
proposed worst-case timing analysis techniques [11] that
more recently have been extended to multiprocessor sys-
tems [6, 14, 7, 8, 3] with various scheduling policies for pro-
cesses, and various communication protocols for the mes-
sage scheduling on the bus. Due to the high computational
complexity of finding exact worst-case response times, the
proposed methods are based on heuristics that can analyze
large system configurations efficiently. However, the heuris-
tics are pessimistic; that is, the obtained response times are
upper bounds on the worst-case response times.

A pessimistic analysis can potentially lead to overde-
signed and underutilized systems, thus resulting in unnec-
essarily increased costs. In this context, as we will show,
even if worst-case behavior is of interest, simulation can
be used as an efficient complement, because it can produce
tight lower bounds on worst-case response times. Another
typical situation when simulation is the practical method
to use is when the running application or the underlying
platform is such that no formal timing analysis is available.

This can be the case with certain communication protocols,
or when the application does not satisfy strict assumptions
required by the available timing analysis (e.g., strict period-
icity or restricted scheduling policies). An important poten-
tial application of simulation, in the context of worst-case
behavior, is the validation of a formal analysis approach,
with regard to its pessimism. Because a good simulation
methodology can produce tight lower bounds on worst-case
response times, comparing such a lower bound with the
upper bound produced by the analysis provides valuable
information on the potential pessimism of the analysis.

Unfortunately, the literature has been meager on the
topic of simulation methodologies for worst-case behavior,
and on the evaluation of the tightness of different schedula-
bility tests. Bini and Buttazzo [1] studied the performance
evaluation of schedulability tests for mono-processor peri-
odic systems without data dependencies between processes.
Thaker et al. [13] considered multiprocessor real-time sys-
tems and used simulations to estimate the pessimism in
different schedulability tests. However, the delays due to
the communication of messages were neglected; that is, the
authors assumed instant communication of messages. Also,
the application model was restricted to linear chains of data
dependencies between processes, meaning that any process
can have at most one predecessor and at most one succes-
sor. Further, the authors assumed constant execution times
for each process and only the offset between the initial re-
leases of any pair of processes was assumed to be arbitrary
and assigned randomly.

The contribution of this paper is twofold. First, we
present a simulation methodology for distributed embedded
systems, where our objective is to maximize the response
time of a particular process in the application. Our meth-
odology allows the simulator to choose execution times of
the jobs intelligently, and to explore the space of execution
times efficiently so that the simulator comes close to worst-
case scenarios and thus yields large response times. Second,
we apply the simulation methodology to estimate the pes-
simism in response-time analyses for distributed embedded
systems, using two of the most important automotive com-
munication protocols: CAN [2] and FlexRay [4].

The remainder of this paper is organized as follows. In
the next section, we present the application model and ar-
chitecture for the systems that we consider. In Section 3,
we give an overview of our simulation environment, where-
after, in Section 4, we describe and evaluate our proposed
simulation methodology. Further, in Section 5, we present
the application of our methodology to pessimism estimation
of response-time analyses for CAN- and FlexRay-based sys-
tems. Finally, in Section 6, we present our conclusions.

2. Preliminaries
2.1. Application Model
We model a real-time application as a set Γ = {Gi : i ∈ I}
(I is a finite index set), where each Gi = (Pi,Ei, Ti) is
a process graph—a directed acyclic graph. For a given
process graph Gi, the finite nonempty set Pi, indexed by
the set Ii, consists of processes that are triggered by an
event. We assume that this event occurs periodically with
the period Ti, releasing a job (i.e., an instance) of each
process in Pi. Thus, job n of process Pij ∈ Pi, denoted
P

(n)
ij , is released for execution at time (n − 1)Ti for any

integer n > 0. We also define the hyperperiod of Γ as
TΓ = LCM({Ti : i ∈ I}), where LCM(X) is the least com-
mon multiple of the elements in the finite nonempty set
X ⊂ Z

+. Further, we introduce the set PΓ = ∪i∈IPi

consisting of all processes in the application, and we in-
troduce the set IΓ = ∪i∈I {(i, j) : j ∈ Ii} to index PΓ.
Thus, the total number of processes in the application Γ
is |IΓ| = |PΓ|. The set of graph edges Ei ⊂ Pi × Pi

represents data dependencies between the processes in Pi.
For example, an edge (Pij , Pik) ∈ Ei indicates that, for
any integer n > 0, the execution of job P

(n)
ik cannot start

until job P
(n)
ij has finished executing and the produced out-

put data has been communicated to P
(n)
ik . Finally, a pro-

cess Pij can have a relative deadline Dij , which is the max-
imum allowed time between the release and the completion
of any job P

(n)
ij . Hence, the absolute deadline of job P

(n)
ij

is (n − 1)Ti + Dij . Assuming that the completion time of
the job is t

(n)
ij , we define the response time of the job as

t
(n)
ij − (n−1)Ti (i.e., the difference in time between comple-

tion and release). The worst-case response time (WCRT)
of a process is the largest possible response-time of any job
of that process.

2.2. System Architecture
We consider real-time applications running on distributed
embedded systems composed of a set of computation
nodes N connected to a bus. Figure 1 shows an exam-
ple of such a distributed bus-based system with two nodes
N = {N1, N2}. A node sends and receives data on the bus
through its communication controller (denoted CC in Fig-
ure 1). The communication controller implements the pro-
tocol services according to the protocol specification, and
runs independently of the CPU of the node. Figure 1 shows
an application consisting of two process graphs, where each
process is mapped to a computation node. Thus, for a given
application Γ and a set of nodes N, we have a mapping
function MΓ : PΓ −→ N indicating on what computation
node a particular process is executed.

Given a network of nodes and a mapping of processes,
we introduce, for each process Pij ∈ PΓ, a bounded
execution-time space Cij ⊂ R

+ consisting of possible ex-
ecution times of Pij . We assume that the space of execu-
tion times is a closed interval Cij = [cbc

ij , cwc
ij], where cbc

ij

and cwc
ij are the best-case and worst-case execution times

of Pij , respectively. We define the execution-time space of
Γ as the Cartesian product of sets CΓ =

∏
(i,j)∈IΓ

Cij =∏
(i,j)∈IΓ

[
cbc
ij , cwc

ij

]
.

On each computation node runs a real-time kernel re-
sponsible for the activation of the processes mapped to
the node, while respecting the data dependencies. A re-
leased job becomes ready for execution when it has re-
ceived all its inputs from the corresponding jobs of all pre-
decessor processes. When a job finishes, produced mes-
sages are sent to the successor processes, which may be
mapped to the same or to another node. In the latter case,
the message is forwarded to the communication controller
of the node. The communication controller broadcasts—
according to the communication protocol—the message on
the bus.

In this paper, we assume that all processes are event-
triggered and that the execution of their jobs on the CPU
is scheduled by a priority-based preemptive scheduler1. At
any point in time, the CPU executes the highest-priority
job that is ready for execution. We denote the priority of
job P

(n)
ij at time t with π

(n)
ij (t) ∈ N, for which a larger

value indicates a higher priority. Further, for each edge
(Pij , Pik) ∈ Ei, such that MΓ(Pij) �= MΓ(Pik) (i.e., Pij

and Pik execute on different computation nodes), a mes-
sage mijk with given communication time is introduced on
the bus. The instance of the message that is produced by
job P

(n)
ij is denoted m

(n)
ijk . For each message in the system,

the necessary parameters required by the communication
protocol are given; for example, for the CAN protocol, fixed
and unique message priorities must be provided.

3. Simulation Environment
The simulator is implemented on top of the SystemC [12]
discrete-event simulation kernel, and is able to simulate
temporal and functional behavior. Figure 2 shows a gen-
eral overview of the simulation environment. The inputs to
the simulator are the application model and system archi-
tecture, an execution-time generator that is a description
of how to choose the variable execution times of the jobs
during simulation, C code for the individual processes in
the application (only if functional simulation is required),
and a stopping condition for the simulation. The outputs of
the simulator are values related to both the temporal and
functional simulation.

The simulator supports various scheduling policies for
the processes on each computation node, such as fixed-
priority scheduling and earliest-deadline-first scheduling for
event-triggered processes, and static cyclic scheduling for
time-triggered processes [5]. We also support hierarchical
schedulers for the case where time- and event-triggered ac-
tivities share the same resource [7]. Further, the simula-
tor supports message scheduling on the bus according to
several broadcast communication protocols. Currently, we
have implemented three protocols common in automotive
embedded systems: Time-Triggered Protocol [5], CAN [2],
and FlexRay [4].

The execution-time generator, which is addressed in Sec-
tion 4, is responsible for providing an execution time of each
released job P

(n)
ij in the system. This execution time can

be chosen to be any point in Cij =
[
cbc
ij , cwc

ij

]
. The choice of

the job execution times affects the response times directly.

1We assume a worst-case overhead for the real-time kernel.

BusCC CC

N1 Pa1

Pa3

Pa2

N2ma12

ma23

Pb1

Figure 1. System architec-
ture example

condition

Execution−time
generator

Timing propertiesFunctional output

Simulator kernelCode

Application model
System architecture

Stopping

Figure 2. Overview of the simu-
lation environment

cbc
a2 cmin

a2 cwc
a2 cmax

a2

WCRTb1

ca2

Figure 3. The WCRT of Pb1 as a
function of ca2

Finally, an optional input to the simulator is C code for the
processes in the application. We will not further elaborate
on this aspect, because, in this paper, we are only interested
in temporal simulation.

Definition 1. (Simulation) Let Γ be a real-time appli-
cation mapped to an architecture, and let tsim denote the
amount of simulated time. A simulation of Γ means run-
ning the system in the time interval [0, tsim] with given ex-
ecution times of the jobs that are released in the simu-
lated time interval. Thus, a simulation is determined by
a sequence of execution times cij for each process Pij ,

according to cij =
(
c
(n)
ij

)Ni

n=1
=

(
c
(1)
ij , c

(2)
ij , . . . , c

(Ni)
ij

)
,

where c
(n)
ij ∈ Cij is the execution time of job P

(n)
ij and

Ni = �tsim/Ti� is the number of job releases of process Pij

in the simulated time interval [0, tsim]. The result of a sim-
ulation is a response time of each job that finished in the
simulated time interval. �

As a results of the simulations, we are, for each process,
interested in the largest response time of any job of that
process. This response time is the estimate of the WCRT
of that process.

4. Simulation Methodology
In this section, we focus on the execution-time generator
in Figure 2. The choice of job execution times affects the
response times directly. It is common knowledge that, in
the context of a multiprocessor system, the WCRT of a
certain process does not necessarily occur when all jobs of
all processes execute for their worst-case execution times.
Such scheduling anomalies are very common and, therefore,
smaller execution times of some jobs or communications can
lead to contexts where the response time of another process
is maximized [11].

To find the WCRT of a process in the application, we
would have to, for all processes, try all possible execution
times and all permutations of them. Also, we would have
to know the amount of time that needs to be simulated to
find the WCRT. In general, none of the two are feasible.
The goal of our simulations is to explore the execution-
time space in a way that maximizes the response time of
a process. We have identified two subproblems that have
to be solved to achieve an efficient exploration of the space
of process execution times: (1) how to reduce the space of
execution times to be explored; and (2) how to generate the
next exploration point at a given moment of the simulation
process—in other words, what exploration strategy to use.

4.1. Execution-Time Space Reduction
We propose two approaches for choosing a subspace C′

Γ ⊆
CΓ of execution times to be considered in the simulation.
The first approach is to consider only the end points of
the execution-time intervals of the individual processes.
We refer to this as the corner-case values, and introduce
the notation CCC

ij = {cbc
ij , cwc

ij } for the two corner-case
values of a process Pij ∈ PΓ. Similarly, with CCC

Γ we
denote the execution-time space of Γ reduced to corner-
case execution times—that is, CCC

Γ =
∏

(i,j)∈IΓ
CCC

ij =∏
(i,j)∈IΓ

{
cbc
ij , cwc

ij

}
.

The second approach is based on a method for extend-
ing the space of corner-case execution times with execution
times that are obtained analytically, and that are of in-
terest for the exploration phase. The method, which we
refer to as improved corner-case reduction, is based on the
sensitivity analysis developed by Racu and Ernst [9]. The
problem that was studied is the effect that variations of the
execution time of a process have on the WCRT of another
process in the system. As an example, let us again study
the application depicted in Figure 1. We assume that the
scheduling policy is based on fixed priorities, ordered ac-
cording to πa1 > πa3 > πb1. Further, we are interested in
variations in the execution time of Pa2 and the effect on
the response time of Pb1. If the execution time of Pa2 is
small, then Pb1 is preempted by Pa3, resulting in a certain
response time of Pb1. On the other hand, if the execution
time of Pa2 is large, then it takes longer time for Pa3 to
become ready for execution, and consequently Pb1 has time
to finish its execution without any preemption from Pa3,
thus resulting in a smaller response time.

Racu and Ernst [9] have proposed an algorithm that,
given an application Γ—mapped to a system architecture—
and a process Pkl ∈ PΓ, finds a subset of processes P′

Γ ⊂
PΓ for which the variation of the execution time of a process
Pij ∈ P′

Γ can potentially lead to nonmonotonic behavior of
the WCRT of a process Pkl. Further, the authors have
presented an analysis that points out execution scenarios
that lead to such scheduling anomalies for Pkl. Figure 3
shows an example of a result of such an analysis for Pb1.2
The figure shows the calculated WCRT of Pb1 as a function
of ca2 (the execution time of Pa2). It can be seen that
the WCRT decreases after the point cmin

a2 , and therefore
it is a point of interest in the simulation. The analysis
points out an interval of execution times for Pa2 that all
lead to scheduling anomalies for Pb1. The figure shows that

2The analysis by Racu and Ernst [9] is a heuristic based on clas-
sical response-time analysis [6]. Thus, the WCRT in Figure 3 is a
pessimistic upper bound on the real WCRT.

scheduling anomalies occur if the jobs of Pa2 have execution
times in

[
cmin
a2 , cmax

a2

]
. If the condition cbc

a2 < cmin
a2 < cwc

a2 <

cmax
a2 holds, then CICC

a2 = CCC
a2 ∪ {

cmin
a2

}
=

{
cbc
a2, c

min
a2 , cwc

a2

}
,

and otherwise CICC
a2 = CCC

a2 .
In conclusion, given an application Γ—mapped to a sys-

tem architecture—and a process Pkl ∈ PΓ under investiga-
tion, the improved corner-case reduction method consists
of two steps. First, we determine the set P′

Γ ⊂ PΓ of
processes that can potentially lead to nonmonotonic be-
havior of the WCRT of Pkl. Second, we run the analy-
sis for all processes in P′

Γ to find a subset of processes
P′′

Γ ⊂ P′
Γ for which the analysis found nonmonotonici-

ties of the WCRT of Pkl. Thus, for each Pij ∈ P′′
Γ, we

have an interval
[
cmin
ij , cmax

ij

]
that consists of those execu-

tion times for which the WCRT function of the process
under investigation has nonmonotonic behavior. The re-
duced execution-time space of Pij ∈ P′′

Γ is now written
as CICC

ij =
({

cmin
ij

} ∩ Cij

) ∪ CCC
ij . For the other processes

Pij ∈ PΓ−P′′
Γ, we have CICC

ij = CCC
ij . In total, the reduced

execution-time space is CICC
Γ =

∏
(i,j)∈IΓ

CICC
ij .

4.2. Execution-Time Space Exploration
Let us now assume that we are given a reduced execution-
time space C′

Γ ⊆ CΓ for an application Γ mapped to a sys-
tem architecture. As discussed in the previous subsection,
C′

Γ can be the nonreduced space CΓ, the corner-case re-
duction CCC

Γ , or the improved corner-case reduction CICC
Γ .

This section discusses two main exploration approaches:
random exploration and optimization-based exploration.
4.2.1. Random Exploration
For the first case for which C′

Γ = CΓ (no execution-time
space reduction), the considered execution-time space of a
process Pij ∈ PΓ is C′

ij =
[
cbc
ij , cwc

ij

]
. At each job release, we

choose an execution time in this interval randomly, where
each execution time is chosen with equal probability (uni-
form probability distribution).

For the second case, C′
Γ = CCC

Γ (corner-case reduction),
the execution-time space of process Pij is C′

ij =
{
cbc
ij , cwc

ij

}
.

For each process Pij we specify a discrete probability den-
sity function defined as

pCC
ij (c) =




pCC
wc if c = cwc

ij

1 − pCC
wc if c = cbc

ij

0 otherwise.

Thus, for each process Pij , each job is assigned randomly
the execution time cwc

ij with probability pCC
wc , and the execu-

tion time cbc
ij with probability 1− pCC

wc . With the customiz-
able parameter pCC

wc , the execution-time space exploration
can be driven either towards best-case execution times or
worst-case execution times.

For the third case, C′
Γ = CICC

Γ (improved corner-case re-
duction), we consider those processes Pij for which CCC

ij �=
CICC

ij . The discrete probability density function for Pij is

pICC
ij (c) =




pICC
wc if c = cwc

ij

pICC
min if c = cmin

ij

1 − pICC
wc − pICC

min if c = cbc
ij

0 otherwise.

Thus, we choose probabilities for each of the three execution
times. For the other processes Pij for which CICC

ij = CCC
ij ,

we have that pICC
ij = pCC

ij and thus specify the value of pCC
wc

to guide the execution-time space exploration.
4.2.2. Optimization-Based Exploration

The random-based exploration policy presented in Sec-
tion 4.2.1 is very likely to miss potentially interesting points
in the execution-time space. To achieve a more intelligent
exploration strategy, we have defined the problem at hand
as an optimization problem in which the response time of
the process under investigation is the cost function to be
maximized. To guide the execution-time space exploration,
we have developed optimization strategies based on three
meta-heuristics: Simulated Annealing, Tabu Search, and
Genetic Algorithms (GAs) [10]. Based on extensive exper-
iments, the GA-based approach turned out to be the most
efficient and, therefore, it is the one that we outline here.
We have implemented the GA-based heuristic for the cases
C′

Γ = CCC
Γ and C′

Γ = CICC
Γ . Further, we have tuned the

parameters of the heuristic experimentally, to obtain a good
performance in terms of quality and runtime.

In the GA approach, each member in a population is a
solution consisting of assignments of job execution times,
possibly leading to the WCRT. We evaluate a solution by
running the simulation for a hyperperiod TΓ. A process
Pij has thus TΓ/Ti job releases during the time TΓ, which
means that a solution is an assignment of the execution
times c

(1)
ij , c

(2)
ij , . . . , c

(TΓ/Ti)
ij for all (i, j) ∈ IΓ. In total, the

solution space C(TΓ)
Γ is defined as the Cartesian product

C(TΓ)
Γ =

∏
(i,j)∈IΓ

CTΓ/Ti

ij =
∏

(i,j)∈IΓ

(Cij × · · · × Cij)︸ ︷︷ ︸
TΓ/Ti times

.

Thus, a solution c ∈ C(TΓ)
Γ is a tuple of |IΓ| tuples (one

for each process)—that is, c = (cij)(i,j)∈IΓ
. Each such

tuple is a tuple of job execution times—that is, cij =(
c
(n)
ij

)TΓ/Ti

n=1
, where c

(n)
ij is the assigned execution time of

job P
(n)
ij . The total number of optimization variables (job

execution times in a solution) is thus given by the prod-
uct n

(TΓ)
Γ =

∏
i∈I |Pi|TΓ/Ti. The cost of each solution

c ∈ C(TΓ)
Γ in a population is defined as the largest response

time obtained during simulation with the execution times
in c. If no job of the process under investigation finished
during the time TΓ, then the simulation is run for another
hyperperiod TΓ with the same execution times in c.

The size of the initial population is chosen to be n
(TΓ)
Γ .

However, we have introduced a lower bound of 50 mem-
bers and an upper bound of 3000 members. The bounds
were introduced because a very small population size limits
the exploration of the execution-time space, whereas a very
high population size results in excessively long runtimes. At
each iteration of the genetic algorithm, the simulation is run
for all solutions in the current population, whereafter the
solutions are sorted according to their quality, given by the
obtained response times. In the next step, a new popula-
tion (the offsprings) is generated by combining the solutions

in the current population, using the crossover and mutation
operators [10]. The optimization stops when two criteria are
fulfilled: (1) the average value of the cost function for the
solutions in the current population has, for 20 consecutive
iterations, been at least 95 percent of the current largest
response time; and (2) there have been 20 consecutive it-
erations for which the current largest response time did not
change.

4.3. Experimental Evaluation
We have evaluated our simulation methodology through ex-
periments on a set of 81 randomly created synthetic appli-
cations consisting of 14 up to 63 processes. The applications
were mapped to systems consisting of 2 up to 9 computa-
tion nodes that run a fixed-priority preemptive scheduler
and communicate on a CAN bus. The individual node uti-
lizations (loads) were set to the values 40, 50, 60, 70, or 80
percent, and the execution times and periods of the pro-
cesses were produced according to the node utilizations.
Further, the data dependencies were generated randomly.

We have compared six different approaches to the
execution-time generation, and for each approach we in-
troduce a notation:

• R, random exploration of CΓ;
• R-CC, random exploration of CCC

Γ ;
• R-ICC, random exploration of CICC

Γ ;
• GA-CC, GA-based exploration of CCC

Γ ;
• GA-ICC, GA-based exploration of CICC

Γ ; and
• W, all execution times are chosen to be the worst-case.

For R-CC and R-ICC, the probabilities were tuned exper-
imentally and finally chosen as pCC

wc = 0.8 and pICC
wc =

pICC
min = 0.4. Regarding the simulation times, we have

recorded the runtimes for the two GA heuristics. We let
the other simulations, except for GA-CC, run for the same
amount of time as GA-ICC.

For the first comparison, we computed—for each
of the approaches and for each application—the ratio
RS/R

A
, where RS denotes the lower bound on the

WCRT obtained with the simulation approach S ∈
{R,R-CC,R-ICC,GA-CC,GA-ICC,W} and R

A
denotes

the upper bound on the WCRT obtained by response-time
analysis. Table 1 contains the average ratios obtained by
the six different approaches. In the same table, we also show
the minimum and maximum ratios that were experienced
in the experiments. For the second comparison, we were
interested to count the number of times a certain approach
S found the largest response time among the six different
simulation approaches (the last column in the table). For
example, the GA-ICC approach was able to find the largest
response time among the six approaches in 97.1 percent of
the cases.

Several conclusions can be drawn from the experiments.
We can see that random exploration without execution-time
space reduction leads to very loose estimates of the WCRT.
On the same line, the simulation approach of only assigning
worst-case execution times to the jobs is also bad. Further,
we observe that the improved corner-case reduction is bet-
ter than the corner-case reduction method, and that the
GA-based execution-time space exploration is better than

the random exploration. We conclude that the GA-ICC
approach yields the best results (largest response times),
and is therefore the simulation approach that we used for
the pessimism estimation presented in Section 5.

Figure 4 shows the runtime of the GA-ICC approach.
We show the individual runtimes for different number of
nodes (note that, for the applications that were generated,
the number of processes grows with the number of nodes).
The figure also shows average runtimes that are computed
for applications with equal number of nodes. Further, the
average runtime for all experiments is 96.2 seconds. It
should be noted that all experiments were run on a PC
with an AMD ATHLON 64 dual-core CPU running at 2
GHz, 2 GB of memory, and running Linux.

5. Pessimism Estimation
As an application of the simulation environment and meth-
odology presented in Sections 3 and 4, we investigate the
performance—in terms of pessimism—of existing response-
time analysis techniques for CAN- and FlexRay-based dis-
tributed real-time systems. We use a response-time analysis
framework [7] using the CAN analysis and the recently de-
veloped FlexRay analysis [8]. Let us now define pessimism
in the context of response-time analysis.

Definition 2. (Pessimism) Let Γ be a real-time appli-
cation mapped to an architecture, Pij ∈ PΓ denote the
process under investigation, and Rij denote the WCRT of
process Pij . By applying a response-time analysis A, we ob-
tain an upper bound R

A
ij on Rij . The pessimism in R

A
ij of

the analysis A is defined as the deviation of R
A
ij relative to

Rij—that is,
(
R

A
ij − Rij

)
/Rij . Further, by using a simula-

tion approach S, we obtain a lower bound RS
ij on Rij . We

define the maximum pessimism as
(
R

A
ij − RS

ij

)
/RS

ij . �

Because of the high computational complexity of finding
the WCRT of a process—both in the context of simulation
and analysis—we cannot determine the (exact) pessimism,
and thus we can only determine the maximum pessimism.
Hence, it is important to use a simulation approach that is
constructed to find as large response times as possible.

For the pessimism estimation we have created randomly
a set of 288 synthetic applications mapped to both CAN-
and FlexRay-based systems, respectively. The number of
nodes range from 2 to 9, whereas the number of processes
range from 10 to 90. Further, the individual node utiliza-
tions range from 30 up to 80 percent, and the data depen-
dencies were generated randomly. We simulated each appli-
cation with the GA-ICC approach and computed the max-
imum pessimism. The results are presented as histograms
of pessimism depicted in Figures 5 and 6. For each his-
togram, we show the maximum pessimism on the horison-
tal axis, whereas on the vertical axis we show the relative
frequency for a certain pessimism—that is, the number of
times that a certain pessimism value occured in the experi-
ments, relative to the total number of applications. For ex-
ample, we can see that, for CAN-based systems (Figure 5),
in 20 percent of the cases, both the analysis and the sim-
ulation resulted in the WCRT (zero pessimism). Further,

Table 1. Comparison of the six simulation approaches
S Avg. ratio Min. ratio Max. ratio Frequency
R 77.6% 38.8% 98.3% 0%

R-CC 87.3% 45.1% 100% 30%
R-ICC 87.4% 45.7% 100% 32.9%
GA-CC 88.0% 45.9% 100% 41.4%
GA-ICC 90.5% 49.3% 100% 97.1%

W 83.7% 45.4% 99.8% 0%

 0

 100

 200

 300

 400

 500

 2 3 4 5 6 7 8 9

R
un

tim
e

[s
ec

on
ds

]

Number of nodes

Average

Individual
Node avg.

Figure 4. Runtimes for GA-ICC

 0

 5

 10

 15

 20

 0 50 100 150 200 250 300 350 400

R
el

at
iv

e
fr

eq
ue

nc
y

[%
]

Maximum pessimism [%]

Figure 5. Pessimism
histogram (CAN)

 0

 5

 10

 15

 20

 0 50 100 150 200 250

R
el

at
iv

e
fr

eq
ue

nc
y

[%
]

Maximum pessimism [%]

Figure 6. Pessimism
histogram (FlexRay)

in 62 percent of the cases, the maximum pessimism was
smaller than 50 percent. For FlexRay-based systems (Fig-
ure 6), the simulation and the analysis found the WCRT in
18 percent of the cases, whereas the maximum pessimism
was smaller than 50 percent for 67 percent of the cases.

Finally, we applied our simulation methodology and the
response-time analysis to estimate the pessimism for a
cruise-controller application comprising 28 communicating
processes mapped to 5 computation nodes. We consid-
ered both CAN- and FlexRay-based communication sys-
tems. We were interested in the response times of the
two processes without successors—that is, the processes
producing the control data. For a CAN implementation
of the application, we obtained a maximum pessimism
of 35.2 and 8.5 percent for the two processes, respec-
tively (the analytical upper bounds on WCRTs are only
35.2 and 8.5 percent, respectively, larger than the lower
bounds on WCRTs obtained with simulation). For a
FlexRay implementation, we obtained a maximum pes-
simism of 39.6 and 6.7 percent. Such information is im-
portant to the designer, because it allows to appreciate the
potential amount of overdesign due to the pessimism of the
analysis. The critical processes are in a relatively narrow
range of maximum pessimism and, therefore, the actual im-
plementation is tight and cost efficient.

6. Conclusions
In this paper, we proposed a simulation methodology aimed
at estimating the WCRTs of processes in distributed real-
time applications. We have shown that intelligently reduc-
ing the space of execution times to be investigated, com-
bined with an efficient exploration strategy, can consid-
erably improve the quality of produced results. We ap-
plied the proposed simulation methodology to evaluate the
potential pessimism of two existing schedulability analysis
tools for CAN- and FlexRay-based distributed embedded
systems. The experiments demonstrate that, by using the

proposed approach, the designer can be provided with use-
ful information regarding the bounds on pessimism. The
simulation tool can also be used efficiently to obtain tight
approximations of the WCRTs in contexts in which no for-
mal response-time analysis has yet been elaborated or such
an analysis is not possible due to the nature of the applica-
tion or execution platform.

References
[1] E. Bini and G. C. Buttazzo. Measuring the performance of

schedulability tests. Journal of Real-Time Systems, 30(1–
2):129–154, 2005.

[2] R. Bosch GmbH. CAN Specification Version 2.0. 1991.
[3] R. I. Davis, A. Burns, R. J. Bril, and J. J. Lukkien. Con-

troller Area Network (CAN) schedulability analysis: Re-
futed, revisited and revised. Journal of Real-Time Systems,
35(3):239–272, 2007.

[4] FlexRay homepage. http://www.flexray-group.com.
[5] H. Kopetz. Real-Time Systems. Kluwer Academic, 1997.
[6] J. C. Palencia Gutiérrez and M. González Harbour.

Schedulability analysis for tasks with static and dynamic
offsets. In Proceedings of the 19th IEEE Real Time Systems
Symposium, pp. 26–37, December 1998.

[7] T. Pop, P. Eles, and Z. Peng. Schedulability analysis for
distributed heterogeneous time/event-triggered real-time
systems. In Proceedings of the 15th Euromicro Conference
on Real-Time Systems, pp. 257–266, 2003.

[8] T. Pop, P. Pop, P. Eles, Z. Peng, and A. Andrei. Timing
analysis of the FlexRay communication protocol. In Pro-
ceedings of the 18th Euromicro Conference on Real-Time
Systems, pp. 203–213, 2006.

[9] R. Racu and R. Ernst. Scheduling anomaly detection and
optimization for distributed systems with preemptive task-
sets. In Proceedings of the 12th IEEE Real-Time and Em-
bedded Technology and Applications Symposium, pp. 325–
334, 2006.

[10] C. R. Reeves, editor. Modern Heuristic Techniques for
Combinatorial Problems. Blackwell Scientific Publications,
1993.

[11] J. A. Stankovic, M. Spuri, M. Di Natale, and G. C. But-
tazzo. Implications of classical scheduling results for real-
time systems. IEEE Computer, 26(6):16–25, 1995.

[12] SystemC homepage. http://www.systemc.org.
[13] G. Thaker, P. Lardieri, D. Krecker, and M. Price. Empiri-

cal quantification of pessimism in state-of-the-art schedul-
ing theory techniques for periodic and sporadic DRE tasks.
In Proceedings of the 10th IEEE Real-Time and Embed-
ded Technology and Applications Symposium, pp. 490–499,
2004.

[14] K. Tindell and J. Clark. Holistic schedulability analysis
for distributed real-time systems. Euromicro Jurnal on
Microprocessing and Microprogramming (Special Issue on
Parallel Embedded Real-Time Systems), 40:117–134, 1994.

